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The number of outpatient visits is generally influenced by various factors that are difficult to quantify and obtain, resulting in some
irregular fluctuations. The traditional statistical methodology seldom considers these uncertainties. Accordingly, this paper
presents a Bayesian autoregressive (AR) analysis to propose a forecasting framework to cope with the strict requirements. The
AR model was conducted to identify the linear and autocorrelation relationships of historical series, and Bayesian inference
was used to correct and optimize the AR model parameters. Posterior distribution of parameters was stably and reliably
obtained by Gibbs sampling on the condition of the convergent Markov chain. Meanwhile, the lag orders of the AR model
were adjusted based on the series characteristics. To increase the variability and generality of the dataset, the developed
Bayesian AR model was evaluated at seven hospitals in China. The results demonstrated that the Bayesian AR model had
varying degrees of decline in the MAPE value in the seven sets of experimental data. The reductions ranged from 0.1431% to
0.0342%, indicating effective optimization of the Bayesian inference in the AR model parameters and reflecting the useful
correction of the lag order adjustment strategy. The proposed Bayesian AR framework showed high accuracy index and stable
prediction accuracy, thereby outperforming the traditional AR model.

1. Introduction

The continuous population growth has increased the
demand for medical services in China. Moreover, given the
lack of the corresponding growth rate of hospitals, the diffi-
culty in getting medical service has become increasingly seri-
ous in recent years. A system for forecasting outpatient visits
can be used as a decision support system to improve the out-
patient service and patient satisfaction. Therefore, novel
methods should be developed to more efficiently forecast
outpatient visits and make reasonable decisions for health
resource management.

In recent years, the popularity of research by establishing
mathematical models of outpatient visits to realize precise
forecasting has significantly increased, especially in China.
Given that the data of outpatient visits are normally pro-

vided in daily or monthly statistics, time series techniques
have been primarily exploited to predict outcomes. Com-
pared to univariate forecasting methods, numerous studies
have shown that multivariable models improved the predic-
tive performance in many complex system predictive issues
[1–3]. Many forecasts have been constructed based on the
combination of multiple predictors, which have resulted in
a considerable increase in performance with the introduc-
tion of machine learning methods. Junfeng et al. employed
machine learning methods to predict the peak arrivals of
patients with chronic respiratory diseases based on weather
and air quality [4].Won et al. employed a multilevel predic-
tion model to predict conjunctivitis in outpatients [5]. Wang
et al. created a deep learning model with air pollution con-
centrations and meteorological variables as predictors to
estimate the outpatient visits for cardiopulmonary illness
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[6]. Most researchers who used multivariate models have
mainly focused on some specific diseases and have achieved
good results. However, foreseeing the total number of outpa-
tient visits is also very significant, especially for hospital
management and operation. More possible unquantifiable
confounding factors in outpatient prediction studies, such
as personal experience, policy factors, and various environ-
mental factors, may exist. Consequently, forecasting the out-
patient visits exactly by multivariate prediction in practice is
hard, but applying unitary historical data is more advanta-
geous for forecasting outpatient visits. This method involves
the formulation of inferences from single historical data, in
which the linear time series model led by the autoregressive
integrated moving average (ARIMA) is the most commonly
utilized. Lee et al. adopted a two-dimensional hierarchical
decision tree scheme to forecast weekly influenza outpatient
visits [7]. Deng et al. used backpropagation neural networks
to optimize the model hybridized with ARIMA and LSTM
model to calculate outpatient visits [8]. Prashanthi et al.
created a SARIMA model to estimate the ophthalmology
outpatient visits using historical data from the electronic
medical record system [9]. The overwhelming majority of
research has been implemented using statistical models,
which capture information from historical data and quan-
tify the relationship between outpatient visits and explana-
tory variables or lagged time series to generate forecasts.
These methods provide an efficient way to predict outpatient
visits by minimizing the data request. However, without the
analysis and explanation of mixed interfering factors, uncer-
tainty is inevitable in forecasting outpatient visits. Although
the technique described above effectively captures the varia-
tion in the data, the potential influence of any other elements
has not been captured. The uncertainty of outpatient visits
has been handled in a targeting way in a previous research.
To make the estimation close to the actual situation, the tar-
geted formulation of inference based on uncertain informa-
tion is therefore a key strategy to solve the above issues.
The authors considered whether some methods could be
hybridized to further optimize the parameter estimation of
the regression model and sequentially improve the predic-
tion. In this case, Bayesian approach may be a suitable choice.
In quantification of uncertainty, the Bayesian approach has
been considered to be more flexible than the frequentist
approach in exploring the parameter space [10]. In addition,
this approach can be integrated with various algorithms due
to its good extensibility. Contrary to classical statistical
methods, Bayesian methods have two characteristics,
namely, the use of prior distributions and the treatment of
parameters as unknown random variables [11]. Statisticians
have a prior belief on the unknown parameters, which are
updated with the observed data and then summarized in
the posterior distribution. The flexible hypotheses provide
Bayesian methods with high predictive accuracy, making
such methods as the preferred method for some areas [12].
Many reports on the application of Bayesian approach in var-
ious fields, such as hydrology [13], economics [14], clinic
[15], management science [16], and electricity [17], have
been published. However, the Bayesian method shows some
limitations in practical applications. A large number of

unknown parameters should be estimated by using either
maximum a posteriori or maximum likelihood to train a
model from the data. However, the implementation of Bayes-
ian methods is limited by the computational complexity of
traditional multiple integrals and complex posterior distribu-
tions. Hence, numerical integration techniques, such as Mar-
kov Chain Monte Carlo (MCMC), are required to solve the
problem [18].

However, as a cogent strategy in many areas, in all the
studies reviewed here, reports on the application of Bayesian
inference to forecast outpatient visits are lacking. Therefore,
the present work was performed to develop a linear time
series model to estimate the monthly outpatient visits based
on the Bayesian approach. Its performance in the outpatient
visit time series with different characteristics was explored.
In the present study, the design of the outpatient visit pre-
diction system was synthetically considered among the
data-related characteristics and uncertainty. The Bayesian
inference was utilized in the model to provide automatic
correction of parameters. Posterior distributions of parame-
ters were approximately simulated by Gibbs sampling algo-
rithm, which avoided the complex integral calculation
problem in solving the complete probability function. Next,
the model was validated by evaluating how well the models
performed against the outpatient visit time series of multiple
hospitals (real data) by verifying the model accuracy. More-
over, the prediction results were considered to be in the form
of prediction intervals, which provided more valuable infor-
mation by quantifying fluctuations in the outpatient visits.
Finally, to explore the stability of the prediction accuracy
of the Bayesian AR model, the training set divided in differ-
ent proportions was used to train models and calculate pre-
dictions. Decomposition algorithm (seasonal and trend
decomposition using LOESS (STL)) was applied on each
sequence to identify the underlying patterns of the
sequences. The association of the patterns and the stability
of prediction accuracy was also determined. Then, the best
applicable scenarios for the Bayesian AR model were
explored. Based on the Bayesian approach, this article pro-
vided a novel concept for forecasting possible lines in future
outpatient visits and explored whether this methodology
enhanced the prediction accuracy compared with the tradi-
tional method. The proposed model was aimed to offer hos-
pital administrations with a novel and powerful reference for
decisions in health resource management.

2. Methods

2.1. Data Sources. The developed Bayesian time series frame-
work was evaluated at seven hospitals in China. All data
were derived from the published literature. All data of out-
patient visits were obtained from the CNKI (http://www
.cnki.net/) website, and data were selected based on the fol-
lowing criteria:

(1) Data were derived from hospitals distributed in dif-
ferent Chinese provinces

(2) The entire hospital historical data should be included
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(3) Monthly data recorded continuously should be con-
tained in the historical data of each hospital

The data were marked as H1, H2, H3, H4, H5, H6, and
H7 as follows: for H1, the first 8 years of data (between
2004 and 2011) from Zhang [19] and the last 7 years
(between 2012 and 2018) from Lin et al. [20]; for H2 to
H7, data were obtained from Wang et al. [21], Liu [22],
Chen et al. [23], Zhou et al. [24], Fu and Gu [25], and Zhou
et al. [26]. Data from the seven selected hospitals are briefly
summarized in Table 1, and the time sequence is presented
in Figure 1. The statistical data, excluding patient personal
information, were mainly provided by the Medical Record
Information Management System from the hospitals.

2.2. Model Establishment.When the historical values display a
linear pattern, the classical time series models advantageously
capture such structure, especially against nonstationarity data
[27]. In the present study, Bayesian autoregressive models,
which adopted the Bayesian inference to estimate the param-
eters, were used.

2.2.1. AR Model. The AR model is suitable for time series
with autocorrelation, because the linear combination of pre-
vious historical data was used to forecast the future values of
interest in it. The AR model is as follows:

yt = α + 〠
p

t=1
βkyt−k + ϵt , ð1Þ

where p is the order of lag, Yt is the current time series value,
Yt−k (k = 1, 2,⋯, p) represents the past values, α is a con-
stant, βk (k = 1, 2,⋯, p) represents autoregressive coeffi-
cients, and εt is a zero-mean white noise, εt~N(0, σ2).

In the AR model, finding an appropriate lagged value is
the key to a good prediction. In the present study, the Akaike
information criterion (AIC) was introduced to resolve the
problem. AIC is one of the most common measures for
determining the optimum order p of the AR model, and
the value of p that minimizes the AIC was chosen [28].
AIC is defined as follows:

AIC pð Þ = log
SSE pð Þ
T − p

+
T − pð Þ + 2p
T − pð Þ , ð2Þ

where T is the length of observation periods (training set)
and SSE is the residual sum of squares. A residual is defined
as the difference between observed and predicted values.

In addition, parameters were calculated using least
square estimation with the ARIMA function of the R
software.

2.2.2. Bayesian Inference. The MCMC approach based on
Gibbs sampling can generate a multiple random variable,
which is very complex to be generated directly when the
conditional distribution of each component is known [29].
Gibbs sampling-based methods can be used for iterating
samples from a posterior conditional distribution and
approximating the joint marginal distribution [30]. For the
computational efficiency, Gibbs sampling is computationally
remarkably faster than other approaches because of the sim-
pler analytic expressions of the full conditional posterior dis-
tributions of the model parameters [31]. Therefore, Gibbs
sampling was used to perform the Bayesian estimation and
obtain the confidence interval of the AR model parameters.
In the present study, the Bayesian AR model was built upon
incorporating the AR model and Gibbs sampling approach.
The Bayesian method was introduced to optimize the
parameters and thus enabled the model to reasonably con-
sider any potential interactions between the current values
of outpatient visits and historical data. In general, the AR
model can be considered as a linear regression of the follow-
ing form:

yt = βxt + ϵt: ð3Þ

The likelihood function is as follows:

F yt β, σ
2��À Á

= 2πσ2À Á−T/2 exp −
yt − βxtð ÞT yt − βxtð Þ

2σ2

" #
:

ð4Þ

The formula for the Bayes rule is stated as follows:

P A Bjð Þ = P B Ajð ÞP Að Þ
P Bð Þ : ð5Þ

From the Bayesian theory, the parameters of the AR
model are random variables with probability distribution,
and the posterior probability of parameters can be written
as follows:

H α, β, σ2 ytjÀ Á
=
F yt α, β, σ2

��À Á
P α, β, σ2
À Á

F yð Þ : ð6Þ

The denominator ½FðYÞ� does not depend on the param-
eters. Therefore, the posterior distribution can be further
described as follows:

H α, β, σ2 ytjÀ Á
∝ F yt α, β, σ

2��À Á
P α, β, σ2À Á

: ð7Þ

Table 1: Data of outpatient visits as collected from the seven
hospitals in China.

Marked symbol City Starting time Ending time Month

H1 Nanning 2004/1 2018/12 180

H2 Anqing 2009/1 2017/12 108

H3 Xiamen 2007/1 2015/12 108

H4 Xian 2007/1 2015/12 108

H5 Chongqing 2012/1 2017/12 72

H6 Nanjing 2015/1 2019/12 60

H7 Shanghai 2013/1 2017/12 60
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The AR model has a joint distribution of P + 2 variables
and can written as f ðα, β1, β2,⋯, βP , σ2Þ. The Gibbs sam-
pling process can be described as follows.

Step 1. The initial values of all variables should be set.

ϕ 0ð Þ = α 0ð Þ, β 0ð Þ
1 ,⋯, β 0ð Þ

P , σ2 0ð Þ� �
, ð8Þ

where the numbers in the parentheses (at the top-right of
variables) represent the current state of the variables in the
Gibbs sampling process.

Step 2. Each variable was sampled from the conditional dis-
tribution in sequence. In this case, αð1Þ was sampled from the
current values of the other (P + 1) variables described as fol-
lows:

f α 1ð Þ β 0ð Þ
1 ,⋯,β 0ð Þ

P , σ2 0ð Þ
���� �

: ð9Þ

Then, αð0Þ was replaced with αð1Þ and constituted a new

conditional distribution. Then, βð1Þ
1 was sampled condition-

ally on this new distribution as follows:

f β
1ð Þ
1 α 1ð Þ, β 0ð Þ

2 ,⋯,β 0ð Þ
P , σ2 0ð Þ

���� �
: ð10Þ

This process was repeated, until each variable had been
sampled, and the first iteration of sampling was completed.
The initial values of all variables were obtained for the fol-
lowing iteration:

ϕ 1ð Þ = α 1ð Þ, β 1ð Þ
1 ,⋯, β 1ð Þ

P , σ2 1ð Þ� �
: ð11Þ

The above step was repeated M times, and the sample
series was obtained and represented as ðϕð1Þ, ϕð2Þ,⋯, ϕðMÞÞ.
The anterior-N groups were discarded, and the remaining
sample series converged to a stationary distribution inde-
pendent of the initial value once M‐N was large enough, in
which the mean values were used as the estimates of each
parameter.

Once the posterior parameters were generated based by
Gibbs sampling, forecasts of outpatient visits were calculated
based on the Bayesian AR model by using the parameters
obtained above. In M iterations of the Gibbs sampling algo-
rithm, M posterior samplings of each parameters were gen-
erated. The corresponding M forecast values were obtained
for each point in the forecast horizon.

For the Gibbs sampling algorithm, iterations equal to
20,000 were set in the Gibbs sampling algorithm, and prior
distributions of parameters were set up below:

p αð Þ ~N 0, 1ð Þ,
p βK K=1,⋯,pð Þ
� �

~N 0, 1ð Þ,

p εð Þ ~ Γ−1 1
2
,
1
20

� �
:

ð12Þ

For α and β, normal distribution with mean of 0 and
variance of 1 was set as prior distributions. For ε, inverse
gamma distribution with shape parameter of 1/2 and scale
parameter of 1/20 was set as prior distribution.

In each iteration of the Gibbs sampling algorithm, the
parameters of the ARðPÞ model were obtained using the
MCMC approach based on Gibbs sampling, in which the
predicted values in the forecast horizon were calculated.
The effectiveness and stability of Gibbs sampling algorithm
can be proved under global convergence. The simulation
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Figure 1: Variation in the outpatient visits with time as collected from the seven hospitals in China.
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results of Gibbs sampling could be considered as an accept-
able approximation of posterior distribution once the Mar-
kov chains converge to a stable state.

In all models, the anterior 80% of the outpatient visits
dataset was used as the training set, and the posterior 20%
of the dataset was used as the testing set. The test set was
masked during model fitting. The flowchart for the algo-
rithm is presented in Figure 2. The predicted mean was used
as a point estimate for each month and the prediction stan-
dard deviation as a measure of forecasting uncertainty. The
prediction accuracy of each model in the different methods
needs to be understood, and error metric indices, including
root mean squared error (RMSE) and mean average percent
error (MAPE), were adopted to evaluate the performance of

the two forecasting frameworks. A good forecasting perfor-
mance indicates a low RMSE or MAPE, which are defined
as follows:

RMSE =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
n
〠
n

i=1
yt − ŷtð Þ2

s
, ð13Þ

MAPE =
1
n
〠
n

i=1
100

ŷt − ytj j
yt

, ð14Þ

where ŷt is the forecasted value (represented by predict
mean), yt is the corresponding observation, and n is the
sample size of the testing set.

Training set

Bayesian inference

Priors distribution
of parameters

Algorithmic initialization:
iterations times and
forecasting horizon

Parameters’ approximation of
posterior mean and variance

Markov chain monte carlo (MCMC) simulation

Gibbs sampling algorithm

Parameters’ approximation of posterior

Forecast

Prediction interval Testing set

Predictive performance evaluation

Figure 2: Workflow for the development of the outpatient visit prediction system.

Table 2: Descriptive and inferential statistical overview of outpatient visit series in the seven hospitals.

H1 H2 H3 H4 H5 H6 H7

Kurtosis 1.967 2.147 1.720 1.823 2.683 2.270 3.087

Skewness 0.418 0.186 0.342 0.316 -0.587 0.188 -0.350

Permutation entropy 2.528 2.576 2.520 2.494 2.542 2.426 2.479
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Figure 3: Continued.
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3. Results

The seven sets of validated data were first comparatively
analyzed via descriptive statistics, which included kurtosis,
skewness, long-term trend, periodicity, and complexity.
The data were first comparatively analyzed via descriptive
statistics. The kurtosis and skewness were calculated by the
moment package of the R software, and permutation
entropy could effectively reflect the complexity of the time
series data [32], as shown in Table 2. The periodicity, the
long-term trend, and the complexity of the seven series were
displayed by adopting the STL decomposition (Figure 3.
Each time series was split into three components, namely,
seasonal, long trend, and remainder components. The com-
prehensive analysis of above features showed that all datasets
exhibited kurtosis and heavy-tail distributions. In the sub-
components of the STL decomposition in Figure 3, obvious
seasonal and long-term trend features were observed in the
seven datasets. It can also be observed that the remainder
components have different dynamic patterns. This result
suggests that there are other patterns besides seasonal and
long trend that control outpatient volume accumulation. In
Table 2 and Figure 3, the higher complexity could be
expressed as a larger value of permutation entropy or some
irregular change in the remainder curves.

The models described above were fitted to the monthly
outpatient visits for each hospital in the seven locations.

First, the AIC values were calculated from 1 to the maximum
order of the models, and the optimal orders in each time
series were selected, in which the maximum orders were
set as 1/2 of the number of observations in the training set.
The optimal order was determined by the corresponding p
value, which minimized the AIC value, based on which the
models were built. For the Bayesian approach, once the pos-
terior sampling of parameters was generated by Gibbs sam-
pling, the Bayesian AR models, in which the parameters
were defined as the sampling results, were used to calculate
outpatient visits. After the first 4,000 iterations were dis-
carded as burn-in, 1,600 forecast values were obtained for
each month (within the forecast horizon), which constituted
the prediction intervals. To show the superiority of the
Bayesian AR forecasting model, the AR model was adopted
as the baseline based on the traditional method. The fore-
casting errors in the outpatient visit by using the AR model
and the Bayesian AR forecasting model at the selected loca-
tions are summarized in Table 3. For the RMSE and MAPE,
the Bayesian approach had substantially lower values than
those with of traditional approach, especially the evident
decline in MAPE by over 0.10% in H3 and H4. Overall,
the accuracies of the Bayesian AR forecasts were better than
those of the traditional AR forecasts. In addition, data from
the same hospital selected had different orders for the two
models, which were attributed to the AIC results depending
on the model residual. In theory, as a generic methodology
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Figure 3: Three additive components obtained from a robust STL decomposition from the seven outpatient visits datasets.

Table 3: Forecasting results of outpatient visits by using AR and Bayesian AR to check the stability of the models.

Model Metric
Site

H1 H2 H3 H4 H5 H6 H7

AR

Order 4 2 1 2 1 1 1

RMSE 42504.95 11571.18 26656.66 36917.47 22103.58 38841.64 11461.68

MAPE 0.156% 0.114% 0.258% 0.229% 0.104% 0.173% 0.156%

Bayesian AR

Order 4 5 4 3 12 5 5

RMSE 31793.72 7347.76 13984.98 12918.25 15705.38 20254.35 9021.714

MAPE 0.119% 0.081% 0.144% 0.129% 0.074% 0.082% 0.142%
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Figure 4: Continued.
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of order determined for the AR model, minimized AIC
selects an appropriate order for the two models based on
the same dataset and penalty.

Based on Table 3, the lag order selected was generally
low. However, based on the expressions of the AR model,
very limited historical data are likely to result in the reduc-
tion of the calculative MAPE of the model. A large historical
data may result in overfitting. In this case, to further explore
the optimal performance of the method, the search range of
the lag order for the Bayesian AR models was expanded. In
this paper, searches of order were restricted to 1/2 of the
number of training sets. The ARIMA function of the R soft-
ware has a required process of checks for stability before fit-
ting the data. The function reported an error while the order
of the AR model was raised. The optimal performance of the
AR model was not explored further in this study. To deter-
mine the appropriate order more intuitively, the AIC values
and prediction accuracy of the models were calculated while
the p value was raised, as presented in Figure 4. Figure 4 dis-
plays the 3D scatter diagram of the relationship among the
order, AIC, and MAPE results. As the p value increased,
the AIC values declined gradually, and some values reached
a significantly low point. Some values tended to stabilize at p
values of 12–20 and finally continued to increase. However,
in any case of AIC values described above, the best predic-
tion performance of the majority of hospital was achieved
at p values of 12–16. The p value that minimized the AIC
value was selected as the order for each hospital and showed
the prediction accuracy in Table 4. Comparison of Tables 3
and 4 showed the low RMSE and MAPE values. After mod-
ifying the lag orders of the Bayesian AR models, the MAPE

values decreased to 0.073%, 0.043%, 0.136%, 0.086%,
0.070%, 0.073%, and 0.067%. These results showed perfor-
mance benefits.

Once the models were determined, the posterior param-
eter distributions were obtained based on the Bayesian
inference. Models were simulated 20,000 times with param-
eters sampled from these posterior distributions. With the
first 4,000 iterations removed as burn-in, the posterior den-
sity provided the shape of the posterior parameter distribu-
tions (Figure S1 in the Supplementary Material). Figure S1
shows that all samples were similar in shape to a normal
distribution. The trace plots from the Gibbs sampling are
presented in Figure S2 in the Supplementary Material.
The sampling sequence of each parameter in Figure S2 were
concentrated, close to some value, and fluctuated within a
narrow range. Hence, the Markov chains formed by the
sampling results were convergent and stable, which
confirmed the reliability of the parameter estimation process.

The AR model readily generated multistep predictions
on the condition of acquiring parameters. The forecasting
horizon was designed to match the length of each testing
set. Based on the generated sampled parameter, 16,000 pre-
dicted values were obtained for each month, comprising
the predicted distribution. Means and variances were calcu-
lated using these predicted values. To accurately visualize the
forecasts, the 90 quantiles were converted into 17 prediction
intervals {Iα = ð0:10, 0:15,⋯, 0:90Þ} with 5% increment. The
blue curves included prediction intervals in each point in
Figure 5, which shows the outpatient visits forecasts in the
seven hospitals. The graph was generated from the Bayesian
AR model. In Figure 5, the prediction curves were roughly
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Figure 4: Comparison of the AICs and MAPEs of the different models in increasing order at the different hospitals.

Table 4: Forecasting results of outpatient visits by using Bayesian AR at high lag order.

Metric
Site

H1 H2 H3 H4 H5 H6 H7

Order 16 13 12 13 14 7 12

RMSE 21930.83 4450.81 15184.97 9295.21 14912.540 18407.43 3862.077

MAPE 0.073% 0.043% 0.136% 0.086% 0.070% 0.073% 0.067%
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closer to the actual measured curves and greatly described
the tendency of the outpatient visits. However, some rela-
tively large errors were found toward the end of the predic-
tion horizon compared with the front section, especially in
H3, H4, and H5.

The stability of the prediction accuracy of the seven hospi-
tal models was also examined (Figure 6). To perform an objec-
tive evaluation, training sets were divided into the following
proportions: 50%, 55%, 60%, 65%, 70%, 75%, 80%, 85%, and
90%. The seven color lines in Figure 6 indicated the MAPE
values of the seven hospitals being forecasted in the different
training sets. The prediction accuracy maintained superior
stability, except for H1 and H3 (the green and the purple lines
in Figure 6). MAPE values were typically higher when the per-

centage of the training sets in the entire sequence was lower
(notice the point at 50% in Figure 6) and gradually declined
as this proportion increased. When the training set was
between 70% and 80% of the total sequence, lower MAPE
values (mostly concentrated between 0.03% and 0.08%) were
essentially achieved.

4. Discussion

As shown in Figure 1, intensity of outpatient volume season-
ality remained consistently detectable but with varying
intensity throughout the seven datasets we collected. But
unfortunately, very little is known about the mechanisms
behind the process of outpatient volumes production,
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Figure 5: Forecasts in the outpatient visit in seven hospitals based on the Bayesian AR model.
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especially in the case of public health epidemic. The seven sea-
sonal datasets still tell us little about whether the seasonal pat-
tern is the inherent characteristics of outpatient volume.
Therefore, it seems logical that AR, whose forecasts do not
depend on seasonal observed data, would be a more appropri-
ate model to ensure more sensitive outpatient visits changes.

Considering the high uncertainty in the number of out-
patient visits, the inference can be strengthened substantially
by using adequate multivariate statistical and mathematical
models. Thus, multivariate time-varying parameter model-
ing to track patterns in outpatient visits has been suggested.
However, such tools require numerous factors, such as the
time-varying nature of the underlying ecological and cli-
matic scenarios and the policy and social behavioral influ-
ences involved in hospital selection. In actual application,
the development of a more complex model is difficult to
implement not only because of the challenge of fully under-
standing both intrinsic and extrinsic complex factors but
also the relative scarcity of available data. The current
research have mainly focused on relying on univariate trend
of the time series data and used traditional time series
models to capture patterns. The authors further propose
the introduction of Bayesian inference to consider uncer-
tainty associated with parameters.

As mentioned in the literature review, Bayesian inference
can effectively express uncertainty. However, no relevant
studies on the prediction of outpatient visits were found.
This study was performed first to determine whether the
Bayesian inference could optimize the traditional prediction
time series model for outpatient visits. Table 3 exhibits the
superiority of the Bayesian method, but these results are
not good enough because of order limitation as shown by
stability checking. For MAPE, the most significant improve-
ment was displayed in H3, which was lower by approxi-
mately 0.114%, and other parameters also declined to
varying degrees. These results may support the hypothesis
that the accuracy of predicting outpatient visits could be
improved by introducing Bayesian inference. This conclu-
sion is in agreement with those obtained [33] in other areas.

However, based on the overall RMSE and MAPE results,
the results in Table 4 were unsatisfactory. The findings may
have been influenced by the lower lag order, because the
majority of the determined time lag were only within the
range from 1 to 5, except for H5. Moreover, various disease
seasonality has been linked to annual climate seasonality as
observed by other researchers, such as respiratory infections
[34, 35], eye illness [36], and skin disease [37]. Therefore, the
number of outpatient visits usually shows seasonal varia-
tions. Figure 7 illustrates the seasonal trends in the number
of outpatient visits. Except for H6, all datasets at six selected
hospitals showed similar geometries with notable seasonal
variation. In Figure 7, the data in the different years are rep-
resented as different colors. The farther the data point in
each month axis was from the center of the circle, the larger
were the outpatient visits. The number of outpatient visits in
the seven selected hospitals increased annually and displayed
higher volatility, reaching the peak between July and August
and troughs during January and February every year. If the
lag order was not high enough, the learning algorithms could

hardly capture substantial insight from the data. The learning
model is commonly assumed to perform better if more histor-
ical data are integrated into learning. As data argumentation
was mentioned by Sukegawa et al. [38], sufficient data should
be prepared for learning general-purpose parameters. This
rule is not only limited to deep learning models but also
applies to time series models. With insufficient lag order, the
proposedmodel was apparently unlikely to completely explain
the data pattern. Therefore, the authors disregarded the check-
ing of the model stability to resolve this issue by increasing the
lag order. Notably, based on the results in Figure 4, except for
H6, the minimum AIC centered on the lag order between 12
and 16. This finding was obtained possibly, because the data
of outpatient visits were seasonal.

In addition, compared with the low lag order case, signif-
icant improvements were observed in the prediction accu-
racy at the majority of selected hospitals, as illustrated by
the vertical lines that gradually became shorter in Figure 4.
For the stability of prediction accuracy, H1 and H3 (the
green and purple lines in Figure 6) exhibited significant vol-
atility, while the others were generally more gradual. Hence,
the STL decomposition algorithm was employed to identify
the underlying patterns of each outpatient visit dataset, as
presented in Figure 3. As seen in Figure 3, obvious variation
in the remainder components emerged in H1 (Figure 3(a))
and H3 (Figure 3(c)). The pattern change in H1 happened
in 2017 and that of H3 in 2009. These unexpected variations
in the outpatient visits had various and complex reasons.
This unpredictable data volatility is unrecognizable by AR
models, resulting in unstable prediction accuracy in H1
and H3. Both alterations in the data patterns transpired at
the tail of the sequence, preventing the model from fully
learning the pattern. Any model could not deal with such sit-
uations, because of the nonaccess to strict conditions but was
acceptable for a satisfactory performance of a univariate pre-
diction model.

As expected, the predicted accuracy was further
enhanced to various degrees. These results should help
researchers to find novel ideas to further enhance the predic-
tion accuracy of outpatient visits. However, the present
study has limitations. First, similar to other univariate
models, prediction results might be affected by unmeasured
confounding factors. Second, the AR model checks for sta-
bility before fitting the data, thus limiting the choice of the
more probable appropriate order. In the present paper, to
further explore the optimal performance of the method, sta-
bility checking was eliminated from the algorithm in the
Bayesian AR models during fitting. Finally, several relatively
high errors were found near the end of the prediction hori-
zon in H3–H5, most probably due to the inability of the
model to fully handle the long-term nonlinear information.
As a result, in the authors’ next investigation, deep learning
models with long-term memory should be incorporated in
the study design to improve prediction accuracy.

5. Conclusion

This study was performed to develop a Bayesian-based AR
model for the efficient prediction of outpatient visits. The
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AR model was applied to identify autocorrelation and linear
relationship of series data, and Bayesian inference was used
to accurately correct and optimize the parameters of the
AR model. Gibbs sampling was adopted to generate a large
number of sampling values, which could be considered as a
posterior distribution of parameters. Then, the developed
Bayesian AR model was evaluated at seven hospitals, and
forecasts of outpatient visits were generated. The following
conclusions could be drawn:

(1) Comparison of the predicted results of the single
conventional and Bayesian-based AR model showed
that the Bayesian approach could effectively opti-
mize the parameters, resulting in higher perfor-
mance in forecasting outpatient visits

(2) The Gibbs sampling algorithm provided an effective
approximation method for parameter estimation.
Due to the convergent Markov chain, the generated
sampling results of each parameter were stable and
reliable

(3) Modifying the lag orders of the AR model according
to the series characteristics of the outpatient visits
could enhance the fitting ability of AR model, thus
providing better accuracy in forecasting outpatient
visits

(4) The developed framework for predicting outpatient
visits is robust for hospitals at different locations
with distinct scales

For purposes of the management and distribution of
medical resources and the formulation of medical policies,
these research findings are worthy as a reference for the
future design of study protocols.
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Bayesian inference. With the first 4,000 iterations removed
as burn-in, the posterior density provided the shape of the
posterior parameter distributions. It shows that all samples
were similar in shape to a normal distribution. Figure S2:
the trace plots from the Gibbs sampling. The sampling
sequence of each parameter in FigureS2 were concentrated,
close to some value, and fluctuated within a narrow range.
(Supplementary Materials)

References

[1] A. Castellini, F. Bianchi, and A. Farinelli, “Generation and
interpretation of parsimonious predictive models for load
forecasting in smart heating networks,” Applied Intelligence,
vol. 52, pp. 9621–9637, 2022.

[2] G. Covarrubias-Pazaran, B. Schlautman, L. Diaz-Garcia et al.,
“Multivariate GBLUP improves accuracy of genomic selection
for yield and fruit weight in biparental populations of Vacci-
nium macrocarpon Ait,” Plant Science, vol. 9, 2018.

[3] L. A. Erdodi, “Five shades of gray: conceptual and methodo-
logical issues around multivariate models of performance
validity,” NeuroRehabilitation, vol. 49, no. 2, pp. 179–213,
2021.

[4] P. Junfeng, C. Chuan, Z. Mi, X. Xiaohua, Z. Yuqi, and
L. Ching-Hsing, “Peak outpatient and emergency department
visit forecasting for patients with chronic respiratory diseases
using machine learning methods: retrospective cohort study,”
JMIR medical informatics, vol. 8, no. 3, p. 8, 2020.

[5] S. J. Won, Y. J. Sang, P. SeJoon, and J. C. Ki, “Development of a
conjunctivitis outpatient rate prediction model incorporating
ambient ozone and meteorological factors in South Korea,”
Frontiers in Pharmacology, vol. 9, 2018.

[6] C. Wang, Y. Qi, and G. Zhu, “Deep learning for predicting the
occurrence of cardiopulmonary diseases in Nanjing, China,”
Chemosphere, vol. 257, article 127176, 2020.

[7] T.-S. Lee, I.-F. Chen, T.-J. Chang, and C.-J. Lu, “Forecasting
weekly influenza outpatient visits using a two-dimensional
hierarchical decision tree scheme,” International Journal of
Environmental Research and Public Health, vol. 17, no. 13,
p. 4743, 2020.

[8] Y. Deng, H. Fan, and S. Wu, “A hybrid ARIMA-LSTM model
optimized by BP in the forecast of outpatient visits,” Journal of
Ambient Intelligence and Humanized Computing, 2020.

[9] G. S. Prashanthi, N. Molugu, P. Kammari, R. Vadapalli, and
A. V. Das, “Forecast of outpatient visits to a tertiary eyecare
network in India using the EyeSmart electronic medical record
system,” Healthcare, vol. 9, no. 6, p. 749, 2021.

[10] G. B. King, A. E. Lovell, L. Neufcourt, and F. M. Nunes, “Direct
comparison between Bayesian and frequentist uncertainty
quantification for nuclear reactions,” Physical Review Letters,
vol. 122, no. 23, 2019.

[11] F. E. Harrell and Y. C. Shih, “Using full probability models to
compute probabilities of actual interest to decision makers,”

14 Computational and Mathematical Methods in Medicine

https://downloads.hindawi.com/journals/cmmm/2022/4718157.f1.docx


International Journal of Technology Assessment in Health
Care, vol. 17, no. 1, pp. 17–26, 2001.

[12] R. S. Sansom, P. G. Choate, J. N. Keating, and E. Randle, “Par-
simony, not Bayesian analysis, recovers more stratigraphically
congruent phylogenetic trees,” Biology Letters, vol. 14, no. 6,
article 20180263, 2018.

[13] J. Li, Q. Zhou, andW. W. Yeh, “A Bayesian hierarchical model
for estimating the statistical parameters in a three-parameter
log-normal distribution for monthly average streamflows,”
Journal of Hydrology, vol. 591, article 125265, 2020.

[14] M. C. Ausín, P. Galeano, and P. Ghosh, “A semiparametric
Bayesian approach to the analysis of financial time series with
applications to value at risk estimation,” European Journal of
Operational Research, vol. 232, no. 2, pp. 350–358, 2014.

[15] M. Ghosh, T. Maiti, D. Kim, S. Chakraborty, and A. Tewari,
“Hierarchical Bayesian neural networks,” Journal of the
American Statistical Association, vol. 99, no. 467, pp. 601–
608, 2004.

[16] Z. Wang, J. Crook, and G. Andreeva, “Reducing estimation
risk using a Bayesian posterior distribution approach: applica-
tion to stress testing mortgage loan default,” European Journal
of Operational Research, vol. 287, no. 2, pp. 725–738, 2020.

[17] Y. B. Chen, F. Liu, G. Y. He, and S. W. Mei, “A Seidel-type
recursive Bayesian approach and its applications to power sys-
tems,” Ieee Transactions on Power Systems, vol. 27, no. 3,
pp. 1710-1711, 2012.

[18] L. Yin, H. Zhang, X. Zhou et al., “KAML: improving genomic
prediction accuracy of complex traits using machine learning
determined parameters,” Genome Biology, vol. 21, no. 1, 2020.

[19] F. Zhang, “Analysis of the seasonal variation of outpatient
visits of a tertiary general hospital in Guangxi from 2004 to
2013,” Chinese Journal of Hospital Statistics, vol. 22, pp. 197–
201, 2015.

[20] G. L. Lin, Y. Y. Jiang, and H. Y. Huo, “Dynamic analysis of out-
patient volume in a grade three class A general hospital from
2012 to 2018,” Jiangsu Health System Management, vol. 30,
pp. 754–757, 2019.

[21] W.Wang, J. H.Wang, P. L. Liao, and L. Lin, “Outpatient quan-
tity variation tendency from 2009 to 2017 in a three A and ter-
tiary hospital,” Chinese Medical Record, vol. 19, pp. 38–41,
2018.

[22] F. Liu, Y. Y. Wu, B. H. Yang, and M. J. Du, “Variation trend
analysis on the outpatient work volume of a hospital from
2007 to 2015,” Chinese Medical Record, vol. 17, pp. 56–58,
2016.

[23] X. Chen, Z. Z. Huang, W. Xin, Y. N. Fan, W. T. Dong, and
Z. M. Wang, “Outpatient quantity variation tendency from
2007 to 2015 in a three A and tertiary hospital,” Chinese Med-
ical Record, vol. 18, pp. 54–57, 2017.

[24] Y. Zhou, H. Huang, X. B. Luo, and Q. M. Wei, “The seasonal
changes analysis on the outpatient numbers of a three A and
tertiary hospital from 2012 to 2017,” Chinese Medical Record,
vol. 19, pp. 47–50, 2018.

[25] H. Fu and Y. M. Gu, “Seasonal variation trend analysis on out-
patient volume in certain grade-A tertiary children's hospital
from 2015 to 2019,” Jiangsu Health System Management,
vol. 31, pp. 1614–1616, 2020.

[26] G. J. Zhou, X. B. Jiang, D. Dong, J. F. Luo, and H. Sun, “Sea-
sonal variation trend analysis on outpatient visits in a derma-
tology hospital from 2013 to 2017,” Shanghai Journal of
Preventive Medicine, vol. 31, pp. 70–73, 2019.

[27] H. A. Afan, M. F. Allawi, A. El-Shafie et al., “Input attributes
optimization using the feasibility of genetic nature inspired
algorithm: application of river flow forecasting,” Scientific
Reports, vol. 10, no. 1, 2020.

[28] F. Masina, V. Orso, P. Pluchino et al., “Investigating the acces-
sibility of voice assistants with impaired users: mixed methods
study,” Journal of Medical Internet Research, vol. 22, no. 9,
2020.

[29] P. Gagnon, A. N. Rousseau, A. Mailhot, and D. Caya, “Spatial
disaggregation of mean areal rainfall using Gibbs sampling,”
Journal of Hydrometeorology, vol. 13, no. 1, pp. 324–337, 2012.

[30] G. O. Roberts and S. K. Sahu, “Approximate predetermined
convergence properties of the Gibbs sampler,” Journal of Com-
putational and Graphical Statistics, vol. 10, no. 2, pp. 216–229,
2001.

[31] M. Arunabha, H. Tanushree, B. Sourabh, and J. S. Witte, “An
efficient Bayesian meta-analysis approach for studying cross-
phenotype genetic associations,” PLoS Genetics, vol. 14, no. 2,
2018.

[32] Y. Shen, J. Wang, and S. Yang, “Improved method for detect-
ing weak abrupt information based on permutation entropy,”
Advances in Mechanical Engineering, vol. 9, Article ID
168781401668666, 2017.

[33] S. Benjamin and V. I. Delphine, “Prospects and potential uses
of genomic prediction of key performance traits in tetraploid
potato,” Plant Science, vol. 9, 2018.

[34] B. Xu, J. Wang, Z. Li et al., “Seasonal association between viral
causes of hospitalised acute lower respiratory infections and
meteorological factors in China: a retrospective study,” The
Lancet Planetary Health, vol. 5, no. 3, pp. E154–e163, 2021.

[35] Y. Xiang and L. Shixiao, “Impact of environmental factors on
pulmonary tuberculosis in multi-levels industrial upgrading
area of China,” Environmental Research, vol. 195, p. 110768,
2021.

[36] Z. Mo, Q. Fu, D. Lyu et al., “Impacts of air pollution on dry eye
disease among residents in Hangzhou, China: a case-crossover
study,” Environmental Pollution, vol. 246, pp. 183–189, 2019.

[37] Y.-m. Dong, L.-y. Liao, L. Li et al., “Skin inflammation induced
by ambient particulate matter in China,” Science of the Total
Environment, vol. 682, pp. 364–373, 2019.

[38] S. Sukegawa, K. Yoshii, T. Hara et al., “Multi-task deep learn-
ing model for classification of dental implant brand and treat-
ment stage using dental panoramic radiograph images,”
Biomolecules, vol. 11, no. 6, p. 815, 2021.

15Computational and Mathematical Methods in Medicine


	A Method for Improving the Prediction of Outpatient Visits for Hospital Management: Bayesian Autoregressive Analysis
	1. Introduction
	2. Methods
	2.1. Data Sources
	2.2. Model Establishment
	2.2.1. AR Model
	2.2.2. Bayesian Inference


	3. Results
	4. Discussion
	5. Conclusion
	Data Availability
	Conflicts of Interest
	Authors’ Contributions
	Acknowledgments
	Supplementary Materials



