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r e v i e w h i g h l i g h t s 

• This review shows the drought prediction research through deep learning techniques. 
• Moreover, this review presents the countries that have published efforts to implement deep learning techniques in drought prediction. 
• Finally, this review highlights the drought index most used to be predicted using a deep learning technique. 
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a b s t r a c t 

Drought prediction is a complex phenomenon that impacts human activities and the environment. 
For this reason, predicting its behavior is crucial to mitigating such effects. Deep learning tech- 
niques are emerging as a powerful tool for this task. The main goal of this work is to review 

the state-of-the-art for characterizing the deep learning techniques used in the drought prediction 
task. The results suggest that the most widely used climate indexes were the Standardized Precipi- 
tation Index (SPI) and the Standardized Precipitation Evapotranspiration Index (SPEI). Regarding 
the multispectral index, the Normalized Difference Vegetation Index (NDVI) is the indicator most 
utilized. On the other hand, countries with a higher production of scientific knowledge in this 
area are located in Asia and Oceania; meanwhile, America and Africa are the regions with few 

publications. Concerning deep learning methods, the Long-Short Term Memory network (LSTM) 
is the algorithm most implemented for this task, either implemented canonically or together with 
other deep learning techniques (hybrid methods). In conclusion, this review reveals a need for 
more scientific knowledge about drought prediction using multispectral indices and deep learning 
techniques in America and Africa; therefore, it is an opportunity to characterize the phenomenon 
in developing countries. 
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Specifications table 

Subject area: Computer Sciences 

More specific subject area: Deep learning 

Name of your method Characterizing drought prediction with deep learning: A literature review 

Name of the reviewed methodology: Drought prediction with deep learning 

Keywords: Drought; deep learning; prediction; remote sensing and climate index 

Resource availability: Not applicable 

Review question: Where is drought prediction research being conducted, and in what areas of study has it been applied? 

What indices have been used with artificial intelligence algorithms to predict drought? 

Which deep learning algorithms are used for drought prediction? 

Background 

Due to several factors, drought is a nonlinear, nonstationary, and complex phenomenon [1,2] . Researchers have recently focused 
on developing warning systems and predicting drought occurrence using mathematical and computational models to minimize its 
impact. 

Models based on deep learning have revealed a significant potential in drought event prediction [ 3 ], taking advantage of its ability
to find and learn the nonlinear relationships in the data. Its success in this field is due to its capacity to classify and process complex
patterns and nonlinear relationships in the information, which is crucial for a proper phenomenon prediction [ 4 ]. Therefore, this
review aims to characterize drought prediction using deep learning methods worldwide. 

In the literature, there are systematic reviews of the advances in drought prediction from a general overview. Notably, in [ 5–15 ],
some stochastics or statistics techniques, general circulation models, machine learning approaches, and deep learning algorithms are 
studied. However, only some reviews are entirely focused on the last one. For example, in [ 9 , 11 , 13 ], the deep learning techniques
implemented for drought prediction are mentioned in a single and short section of the document, with no deepening of the elements
of each approach or inclusion of more methods. Consequently, this review contains a characterization of deep learning methods for
drought prediction in a detailed form and with a particular approach, highlighting the study areas where they are applied, the countries
with interest in the phenomenon study, and the drought indices employed. We aim to highlight the areas of research opportunity by
identifying the study areas where deep learning techniques have been applied to drought prediction and their methodologies. 

Table 1 shows the list of acronyms used in this manuscript. 

Method details 

Distribution of study areas for predicting drought using Artificial Intelligence (AI) approaches 

One particular aspect of this analysis is the worldwide distribution of drought prediction research. This section aims to highlight
the countries where the use of artificial intelligence (AI) techniques for drought prediction has been intensely researched, as well as
those with the most interest in the problem. This analysis answers the research question: Where is drought prediction research being

conducted, and in what areas of study has it been applied? The inclusion criteria employed were drought, prediction or forecast , and
artificial intelligence. 

Analyzed study areas 

Regarding the distribution of study regions where drought prediction was performed using AI techniques, the countries with 
the highest quantity of research are located in Asia and Oceania, with Iran [ 16–28 17 ], India [ 1,12,29–36 ], and Australia [ 37–42 ,]
standing out. It is essential to mention that such countries present arid climate regions where drought is a constant problem. In contrast,
Africa, Europe, and America are the continents with the lowest number of publications on drought prediction using AI techniques.
These publications focused on small, arid regions in each country. The United States of America has the highest number of drought
prediction research studies on the American continent [ 43–45 ], while Latin American countries have the fewest publications on the
subject. Fig. 1 shows this distribution, and Table 2 shows the country’s name and the number of publications in each. 

Various studies employ simulations to attempt to predict the future behavior of drought. These simulations utilize a range of Global
Circulation Models (GCMs). They are based on scenarios such as Shared Socioeconomic Pathways (SSP) in phase 5-8.5 (SSP5-8.5)
and Representative Concentration Pathways (RCP) in phases 4.5 (RCP4.5) and 8.5 (RCP8.5). 

In the first case (See Fig. 2 in [ 46 ]), the SSP5-8.5 scenarios and nine circulation models belonging to the Coupled Model Inter-
comparison Project (CMIP) in phase 6 (CMIP6) were considered. Four climate indices, SPI, SPEI, Standardized Runoff Index (SRI), 
and Standardized Streamflow Index (SSI), were calculated to describe the trends in drought conditions for 1901-2100. The analysis
revealed that the regions exhibiting an increased likelihood of experiencing intensified drought conditions are concentrated in the 
United States and Mexico, Latin America, Europe, the Middle East, North and South Africa, Australia, and parts of China [ 46 ]. 

In scenarios RCP4.5 and RCP8.5 with 16 GCMs (See Fig. 5 in [ 47 ]), the frequency and severity of drought would be more significant
in areas throughout the Americas, Africa, Europe, Asia, and Australia [ 47 ]. 

The preceding analysis highlights the importance of conducting studies in various areas worldwide where drought conditions 
could intensify. Compared with the studies found where AI is applied to predict the phenomenon ( Fig. 1 ), we can highlight that the
countries with the most extensive studies (Iran and Australia) are located where the phenomenon could intensify. In contrast, India
is an example of a country where simulations indicate a reduction in drought conditions, yet many studies employ AI. 
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Table 1 

List of used acronyms. 

Acronym Definition 

SPI Standardized Precipitation Index 
SPEI Standardized Precipitation Evapotranspiration Index 
NDVI Normalized Difference Vegetation Index 
LSTM Normalized Difference Vegetation Index 
AI Artificial Intelligence 
GCMs Global Circulation Models 
SSP Shared Socioeconomics Pathways 
RCP Representative Concentration Pathway 
CMIP Coupled Model Intercomparison Project 
SRI Standardized Runoff Index 
SSI Standardized Streamflow Index 
DF Drought Frequency 
DS Drought Severity 
MCI Meteorological-drought Composite Index 
SDI Standardized Drought Index 
SAPEI Standardized Antecedent Precipitation Evapotranspiration Index 
SWDI Soil Wetness Deficit Index 
MSSI Multivariate Standardized Streamflow Index 
EDI Multivariate Standardized Streamflow Index 
SSAI Standardized Streamflow Anomaly Index 
WBC Water Bearing Coefficient 
CDD Consecutive Dry Days 
SHDI Standardized Hydrological Drought Index 
nSPI non-parametric SPI 
NDI Natural Drought Index 
MSPI Multivariate Standardized Precipitation Index 
SMI Soil Moisture Index 
SMAI Soil Moisture Anomaly Index 
LST Land Surface Temperature 
NMDI Normalized Multiband Drought Index 
ET Evotranspiration 
SSM Surface Soil Moisture 
SUSM Subsurface Soil Moisture 
MEI Multivariate El Niño Southern Oscilation 
SOI Southern Oscilation Index 
ONI Oceanic Niño Index 
RDI Reconnaissance Drought Index 
WMO World Meteorological Organization 
SAVI Soil Adjusted Vegetation Index 
ARVI Atmospherically Resistant Vegetation Index 
EVI Enhanced Vegetation Index 
VHI Vegetation Health Index 
NDWI Normalized Difference Water Index 
SMDI Soil Moisture Deficit Index 
SDCI Scaled Drought Condition Index 
MNDWI Modified Normalized Difference Water Index 
VCI Vegetation Condition Index 
NDVI Normalized Difference Vegetation Index 
ANN Artificial Neural Network 
DFNN Deep Feedforward Neural Network 
DRF Distributed Random Forest 
GBM Gradient Booster Machine 
PAI Precipitation Anomaly Index 
PCI Precipitation Condition Index 
TCI Temperature Condition Index 
GAM Generalized Additive Models 
CNN Convolutional Neural Network 
RNN Recurrent Neural Network 
MERRA Modern Era Retrospective-Analysis for Research and Applications 
NAR Nonlinear Autoregressive 
MSE Mean Square Error 
ARIMA Autoregressive Integrated Moving Average 
EA-LSTM Entity-Aware LSTM 

MLP Multi-Layer Perceptron Neural Network 
RMSE Root Mean Square Error 
ConvLSTM Convolutional Long- and Short-Term Memory 
RF Random Forest 

( continued on next page ) 
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Table 1 ( continued ) 

Acronym Definition 

GAN Generative Adversarial Network 
AE-CNN-LSTM Autoencoder Convolutional Neural Network model for Long Short-Term Memory 
TD-CNN Time-Distributed Convolutional Neural Network 
CNN-LSTM Convolutional Neural Network Model for Short-Term Memory 
TWSA Terrestrial Water Storage Anomaly 
GWSC Groundwater Storage Changes 
MD-to-AD Meteorological Drought to Agricultural Drought 
MD-to-GD Meteorological Drought to Groundwater Drought 
SGI Standardized Groundwater Index 
MRA-WT-LSTM Multi-Resolution Analysis Wavelet Transform and LSTM 

RFR Random Forest Regression 
MODIS Moderate-Resolution Imaging Spectroradiometer 
TRMM Tropical Rainfall Measuring Missionhttps://gpm.nasa.gov/missions/trmm 

GLDAS Global Land Data Assimilation System 

GRACE Gravity Recovery and Climate Experiment 
GRACE-FO Gravity Recovery And Climate Experiment - Follow-On 
SRTM Shuttle Radar Topography Mission 
GFS Global Forecast System 

CHIRPS Climate Hazards Group InfraRed Precipitation with Station data 
AVHRR Advanced Very High Resolution Radiometer 
IRIMO Islamic Republic of Iran Meteorological Organization 
MAE Mean Absolute Error 
ERA5 ECMWF Reanalysis version 5 
TAMSAT Tropical Applications of Meteorology using SATellite 
NDDI Normalized Difference Drought Index 

Table 2 

Number of publications per country where a region study was performed. 

Country Frequency 

Iran 13 
India 10 
Australia 6 
Turkey, China 5 
USA 4 
Malaysia 3 
Ethiopia, Algeria 2 
Vietnam, Cambodia, Laos, Italy, Morocco, Nigeria, Colombia, South Korea, Pakistan, Slovakia, Peru, Bangladesh, Indonesia, Mexico, Ecuador 1 

 

 

 

 

 

 

 

 

 

 

 

 

In most countries of the American continent, drought conditions tend to increase and become more severe. However, studies 
attempting to predict these conditions with AI techniques have not been conducted, except in the United States of America, where
the most significant number of studies can be found. Similarly, the same conditions prevail in Africa as in America, where the
phenomenon is predicted with high intensity, and there is not sufficient research for forecasting with AI (see Fig. 1 ). 

Regions where drought analysis is produced 

One curious aspect of drought prediction publications is that they are often generated in regions where the analysis is not applied.
This issue has been increasing in recent years. This study suggests the need to establish collaborative networks within the country
where the study area is located and with experts from other countries to investigate this phenomenon. This distribution suggests the
need for a collaborative approach [ 26 , 48,49 ]. According to Fig. 2 , the distribution of countries involved in the issue is lowest in the
Americas and Africa, while Europe and Asia have more countries involved. It is worth noting that authors such as [ 11,50 ] conduct
research in countries where the phenomenon is a constant problem despite being elsewhere. 

Anurag Malik has produced five research papers on using AI to predict drought in various regions of India, making him one of
the most prolific researchers in this field [ 31–35 ]. 

Drought indices used as input of the deep learning techniques 

Several indices estimate drought intensity based on information captured by local warning networks or remote sensors 51 [ 51,52 ].
These indices can be categorized into two groups: climate indices and multispectral indices. Climate indices are calculated using data
from local meteorological warning network sensors that capture climate variables at specific locations and time intervals. In contrast,
multispectral indices are computed from satellite images that capture the earth’s surface conditions [ 51 ]. 

Both indices can predict drought behavior over time. However, maintaining a local meteorological monitoring network that pro- 
vides information to calculate climate indices can be challenging in some regions due to financial constraints. Consequently, it can
4
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Fig. 1. Countries where AI has been used for drought prediction. The intensity of the red color indicates the number of papers published on the 
topic, with the darkest red indicating the most published. Conversely, lighter shades of red indicate countries with fewer publications. 

Fig. 2. Distribution of countries where research on drought prediction using artificial intelligence techniques is being carried out. The red color 
indicates the presence of a study or research center related to the search. 
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Fig. 3. Heat map of the publications number where each index was used and which region was implemented. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

result in missing information over extended periods, complicating the study of the phenomenon [ 51 ]. Multispectral indices are com-
monly used to address this issue. However, it is essential to note that these indices are derived from high-resolution satellite images
and only reflect the land surface conditions, such as bodies of water and vegetation, without providing contextual information. There-
fore, caution should be exercised when interpreting these indices, as they may indicate drought conditions where the phenomenon
does not occur. 

This section aims to answer the research question: What indices have been used with artificial intelligence algorithms to predict

drought? The goal is to identify the most effective indices for describing the phenomenon’s behavior in different contexts. The
inclusion criteria employed to answer this question were drought, prediction or forecast, artificial intelligence , and remote sensing or

satellite images . 
Table 3 and Fig. 3 display the correlation between the study region and the index utilized in predicting drought behavior. The

climatic indexes discovered include the SSI, Meteorological-drought Composite Index (MCI), Standardized Drought Index (SDI), SPI, 
SPEI, Standardized Antecedent Precipitation Evapotranspiration Index (SAPEI), Soil Wetness Deficit Index (SWDI), Multivariate Stan- 
dardized Streamflow Index (MSSI), Effective Drought Index (EDI), Standardized Streamflow Anomaly Index (SSAI), SRI, Water Bearing 
Coefficient (WBC), Consecutive Dry Days (CDD), Standardized Hydrological Drought Index (SHDI), non-parametric SPI (nSPI), Nat- 
ural Drought Index (NDI), Multivariate Standardized Precipitation Index (MSPI), Soil Moisture Index (SMI), Soil Moisture Anomaly 
Index (SMAI), Land Surface Temperature (LST), Normalized Multiband Drought Index (NMDI), Evotranspiration (ET), Surface Soil 
Moisture (SSM), Subsurface Soil Moisture (SUSM), Multivariate El Niño Southern Oscilation (MEI), Southern Oscilation Index (SOI), 
Oceanic Niño Index (ONI) and Reconnaissance Drought Index (RDI). SPEI is the most commonly used set for prediction as it estab-
lishes a relationship between precipitation and evapotranspiration [ 4 ]. SPEI has been used in drought prediction with AI in various
regions, including China [ 53–63 ], Australia [ 38 , 41 , 42 ], and Iran [ 9,18,64,65 ]. These regions are known for their hot and arid weather
conditions. 

On the other hand, SPI is another frequently used climatic index. It is used to observe the deviation of accumulated precipitation
from the climatological mean. It is worth mentioning that the World Meteorological Organization (WMO) recommends using SPI to
describe the phenomenon [ 66 ]. This index has been utilized to forecast drought using AI tools in different parts of the world, such as
Turkey [ 67 ], Nigeria [ 68 ], India [ 12 , 32,57 ], Indonesia [ 69 ], and Mexico [ 70 ]. 

Regarding multispectral indices, the following multispectral indices are reported: Soil Adjusted Vegetation Index (SAVI), At- 
mospherically Resistant Vegetation Index (ARVI), Enhanced Vegetation Index (EVI), Vegetation Health Index (VHI), Normalized 
Difference Water Index (NDWI), Soil Moisture Deficit Index (SMDI), Scaled Drought Condition Index (SDCI), Modified Normalized 
6
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Table 3 

Number of publications per country and employed index. 

Index Africa Algeria Australia China Colombia Ecuador Europe India Irak Iran Kazakhstan Korea Nigeria Slovakia USA Benin Italy Malaysia Morocco Mexico Turkey Indonesia 

ARVI 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
CDD 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
MEI 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
ET 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
EVI 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
LST 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
MCI 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
MCZI 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
MSPI 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 
MSSI 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 
NDI 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 
NDVI 0 0 0 1 1 0 1 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
NDWI 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
NMDI 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
nSPI 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 
ONI 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
Other 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
RDI 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 
SAPEI 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
SAVI 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
SHDI 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 
SMAI 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
SMI 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
SOI 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
SPEI 0 0 3 7 0 0 0 1 0 4 1 0 0 0 0 0 1 1 1 0 1 0 
SPI 0 2 3 2 0 0 0 3 1 3 1 0 1 0 0 1 0 0 0 1 1 1 
SRI 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 
SSAI 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
SSI 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
SSM 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 
SUSM 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
SWDI 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
TCI 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
VCI 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
VHI 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
WBC 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 
EDI 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
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Difference Water Index (MNDWI), Vegetation Condition Index (VCI), and Normalized Difference Vegetation Index (NDVI). For this 
type of index, NDVI is the most commonly used worldwide, especially in regions of India [ 71–74 ], where its geophysical characteristics
and topology strongly influence climate changes [ 75 ]. 

Deep learning techniques for drought prediction 

This section analyzes deep learning implementations for drought prediction, particularly papers that use multivariate remote 
sensing data in different case studies. This analysis answers the question: Which deep learning algorithms are used for drought

prediction? Moreover, the inclusion criteria search used were drought and prediction or forecasting and deep learning and neural networks

and remote sensing or satellite images . 
The reviewed documents include several deep learning algorithms, from conventional implementations and their variants to hybrid 

models. The different models are described below. 

Artificial Neural Networks (ANN) 

Recently, Artificial Neural Networks (ANN) have gained popularity among data-driven models for drought prediction. They pro- 
vide superior prediction results to models based on physical principles. Given droughts’ inherent nonlinearity, neural networks have 
proven practical tools for analyzing the relationship between indices and variables that influence drought [ 76 ]. 

For example, Prodhan et al. [ 72 ], present a deep learning technique for monitoring agricultural drought in South Asia using
remotely sensed data, specifically for predicting SMDI behavior. In this work, a Deep Feedforward Neural Network (DFNN) was used,
and the results were compared with two machine learning models: the Distributed Random Forest (DRF) and the Gradient Booster
Machine (GBM). The constructed model considers the SMDI as a function of the prediction and soil factors, as presented in Eq. (1 ),
where 𝑌 is the SMDI value, precipitation is Precipitation Anomaly Index (PAI), Precipitation Condition Index (PCI), SPI-3, SPI-6,
SPEI-3, SPEI-6, vegetation is VCI, VHI, Temperature Condition Index (TCI), and soil is EDI. 

𝑌 = 𝑓 ( 𝑝𝑟𝑒𝑐𝑖𝑝𝑖𝑡𝑎𝑡𝑖𝑜𝑛, 𝑣𝑒𝑔𝑒𝑡𝑎𝑡𝑖𝑜𝑛, 𝑠𝑜𝑖𝑙 ) (1) 

This study used a raster image dimension of 7818 (row) × 8859 (column) with a total pixel cell of 69259662 for each input
variable. The DFNN model was implemented with one input layer, four hidden layers, and one output layer connected. The output
is achieved by linear summation through a nonlinear activation function that passes through the layers with neurons, where each
neuron receives one or more input signals. As a result, DFNN outperforms the compared models regarding prediction accuracy. 
Analysis of the importance of variables showed that precipitation factors had the most significant influence on SMDI variability. The
study highlighted the spatio-temporal trends of drought and evaluated the stability of the DFNN model through cross-validation, 
demonstrating its effectiveness for agricultural drought monitoring in South Asia. 

Furthermore, due to its multi-layer approach, the DFNN has the advantage of finding an optimal output in high-dimensional data.
By increasing the model parameters (hidden layers with neurons, adaptive learning rates, among others), the calculations become 
more practical, relevant, and precise in prediction. However, this model depends on the input parameters and the size of the training
set. 

On the other hand, Adede et al. [ 77 ] introduce a multivariate model to predict drought conditions up to three months in advance
using VCI. This work uses an integrated approach combining Generalized Additive Models (GAM) and ANNs. Initially, GAM reduces 
the variable space from rainfall and vegetation cover data, thus optimizing the selection of variables. The GAM models are expressed
as Eq. (2 ), where 𝑎 is an intersection, 𝑓 are soft functions, 𝑌 is the response function, and 𝑥1 … 𝑥𝑛 are the 𝑛 predictors variable. 

𝑌 = 𝑎 + 𝑓1 
(
𝑥1 
)
+ 𝑓2 

(
𝑥2 
)
+ ⋯ + 𝑓𝑛 

(
𝑥𝑛 
)
+ 𝜀 (2) 

The model space for the study is approximately 2.15 billion, which renders it impractical to navigate the search for the optimal
predictor model. By applying a two-variable plus a third sufficiency assumption for seasonality, the model space is reduced to 496
models. Additional reduction is achieved by ensuring that no two variables of the same type (precipitation and vegetation) are
used and that only one level of lag variables is used in the same model. This process reduces the model space to 102. After that,
a brute force method is applied with ANNs using the backpropagation algorithm for the final model, benefiting from the previous
simplification to improve training efficiency. Moreover, the network architecture was defined with two hidden layers followed by a
2-5-3-1 configuration aimed at limiting the complexity of the model and allowing the representation of arbitrary functions. 

Consequently, integrating GAM with ANN enables a reduction in the model space, thereby reducing the training time. However,
this approach employs a brute force methodology to obtain the prediction results, which is inefficient in high-dimensional data. 

Convolutional Neural Networks (CNNs) 

In the case of Convolutional Neural Networks (CNN), Chaudhari et al. [ 78 ] compare three deep learning approaches: CNN, AlexNet,
and VGGNet. These models were complemented with ANN for agricultural drought prediction using satellite images and vegetative 
indices (NDVI, SAVI, EVI, and ARVI). CNN model is based on convolutional layers to process images identifying relevant features
through filters and max-pool operations to reduce the data dimensionality. Moreover, a dropout layer is used before the last one to
prevent model overfitting. The output of this model is added to the other indices calculated from the image and serves as training for
the neural network. On the other hand, AlexNet follows a similar methodology but changes the sequence of convolutional and pooling
layers. AlexNet and VGGNet are used instead of CNN to train the images, and ANN to train the index data. The results showed that the
customized CNN model outperforms the AlexNet and VGGNet models, highlighting its effectiveness in integrating satellite imagery 
8
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and vegetative data for agricultural drought prediction. Furthermore, the CNN model has a structure that necessitates a smaller
number of trainable parameters, in contrast to AlexNet and VGGNet, which implies a lower computational complexity. Nevertheless, 
this model cannot detect temporal patterns within images, as it solely considers the spatial component. 

Recurrent Neural Networks (RNNs) 

Recurrent Neural Networks (RNNs) are designed to process sequential data. Consequently, they are considered highly suitable for 
time series analysis, which encompasses drought indices, among other things. RNNs maintain a hidden state that preserves information
from past sequences, enabling them to recognize and learn from long-term patterns in the data [ 4 ]. A LSTM network inherits the
memory feature of a RNN. The primary innovation in LSTM is its memory cell 𝑐𝑡 , which serves as a repository of state information.
This cell is operable through multiple self-parameterized access, modification, and clearance control gates. Each time a new input
arrives, its information will be stored in the cell if the input gate is active. 

Furthermore, the previous cell state 𝑐𝑡 −1 can be erased if the forget gate 𝑓𝑡 is engaged. The transfer of the most recent output
from cell 𝑐𝑡 to the final state ℎ𝑡 is managed by the output gate 𝑜𝑡 . One significant benefit of employing the memory cell and gates to
manage information flow is the containment of the gradient within the cell, which helps prevent it from dissipating too rapidly. Eq.
(3 ) expresses LSTM element calculation, where 𝜎 represents the sigmoid function, and ◦ represents the Hadamard product [ 79 ]. 

𝑖𝑡 = 𝜎
(
𝑊𝑥𝑖 𝑥𝑡 +𝑊ℎ𝑖 ℎ𝑡 −1 +𝑊𝑐𝑖 ◦𝑐𝑡 −1 + 𝑏𝑖 

)
𝑓𝑡 = 𝜎

(
𝑊𝑥𝑓 𝑥𝑡 +𝑊ℎ𝑓 ℎ𝑡 −1 +𝑊𝑐𝑓 ◦𝑐𝑡 −1 + 𝑏𝑓 

)
𝐶𝑡 = 𝑓𝑡 ◦𝑐𝑡 −1 + 𝑖𝑡 ◦𝑡𝑎𝑛ℎ

(
𝑊𝑥𝑐 𝑥𝑡 +𝑊ℎ𝑐 ℎ𝑡 −1 + 𝑏𝑐 

)
𝑂𝑡 = 𝜎

(
𝑊𝑥𝑜 𝑥𝑡 +𝑊ℎ𝑜 ℎ𝑡 −1 +𝑊𝑐𝑜 ◦𝑐𝑡 + 𝑏𝑜 

)
Ht = ot ◦𝑡𝑎𝑛ℎ

(
ct 
)

(3) 

Zhang et al. [ 80 ], propose a deep learning method based on LSTM networks for predicting historical monthly time series data
of soil moisture based on Modern Era Retrospective-analysis for Research and Applications (MERRA)-Land from 1980 to 2012. This
approach involves using lagged values as training sequences, relying on a nonlinear autoregressive (NAR) model to predict future
values, and relying on historical data. Mathematically, this model predicts future sequence values, denoted by the hat symbol, �̂� ( 𝑡 ) ,
based on past data points of the series, 𝑦 (𝑡 − 1 ) , … , 𝑦 (𝑡 − 𝑑 ) . Training sequences consist of the time series data, excluding the final time
step. Eq. (4 ) expresses the predictive model, represented by the function 𝑓 . This function is designed to grasp temporal dependencies
within the data and embodies the LSTM model. 

�̂� ( 𝑡) = 𝑓 ( 𝑦( 𝑡 − 1 ) , … , 𝑦( 𝑡 − 𝑑 ) ) (4) 

In this model, the LSTM layer matrix contains 200 hidden units, and the Adam optimization algorithm with an adjustable learning
rate was used to train the dynamic neural networks for 600 epochs. The proposed method showed a much lower Mean Square Error
(MSE) than the Autoregressive Integrated Moving Average (ARIMA) model and NAR. 

Another work that implements LSTM networks from remotely sensed data is developed by Lees et al. [ 81 ], who propose two
types of LSTMs to predict VCI. This approach uses a standard LSTM network and an Entity-Aware LSTM (EA-LSTM) network, which
modifies the input gate where only static (pixel-specific) attributes are used to determine what information is passed from the input
data to the state vector. As a result, the number of weights in the model is reduced, acting as a regularization technique and potentially
improving the model’s generalization. Data from the last three months served as input for both models. The models utilized data from
times 𝑡 − 3 , 𝑡 − 2 , and 𝑡 − 1 to forecast the VCI at time 𝑡 . The models were trained using the smooth 𝐿 1 loss function, which has been
observed to exhibit reduced sensitivity to outliers in comparison to the root mean square error loss. The training was halted after 100
epochs due to a lack of performance enhancement over ten successive epochs. The loss function can be referred to as Eq. (5 ). 

The proposals were trained on the same input data from 2002 to 2005, and their performance was evaluated on the exclusion test
set for all months from 2016 to 2018. The models were trained over the period 2002-2015 and tested over the period 2016-2018.
In addition, the results were compared with a Multi-Layer Perceptron Neural Network (MLP), consisting of a single hidden layer
(fully connected), which has as an activation function the ReLu function and generates a vector of the same size as that generated by
the LSTM hidden layer (i.e., 64 values). The performances of LSTM and EA-LSTM were very similar, with significantly better results
than the fully connected neural network in terms of Root Mean Square Error (RMSE) and 𝑅2 . The principal advantage of employing
EA-LSTM is that it rectifies the gateway promptly, utilizing solely static attributes to ascertain the data flow to the state vector. This
approach enables the reduction of the model’s weightings, thereby regulating the computational cost. 

𝑙𝑜𝑠𝑠( 𝑥, 𝑦 ) = 

1 
𝑛 

∑
𝑖 

𝑧𝑖 

𝑧𝑖 = 

{ 

0 . 5
(
𝑥𝑖 − 𝑦𝑖 

)2 
𝑖𝑓 ||𝑥𝑖 − 𝑦𝑖 || < 1 ||𝑥𝑖 − 𝑦𝑖 || − 0 . 5 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 

(5) 

The methods presented above address medium and long-term drought prediction. However, Park et al. [ 82 ] propose a short-term
(eight-day) drought prediction model that takes into account temporal patterns of satellite-based drought indices, numerical model 
results using Convolutional Long- and Short-Term Memory (ConvLSTM), and Random Forest (RF) approaches in a part of East Asia.
The proposed approach consists of two steps. First, ConvLSTM, which combines CNN and LSTM, is used to obtain temporal patterns
9
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from historical drought conditions (SPI and SDCI) over a study period from 2003 to 2018. Unlike a standard LSTM, ConvLSTM
replaces internal matrix multiplications with convolutional operations. As a result, ConvLSTM can produce a 2-D output, while the 
LSTM result is only a one-dimensional vector. In Eq. (6 ), the components of ConvLSTM are specified, where the symbol ∗ denotes the
convolution operator. Besides, in the second step, RF is used to incorporate static variables (i.e., land cover, elevation, and climate
zone) and predicted climate factors (temperature and precipitation) provided by the numerical model into the output of the previous
step. 

𝑖𝑡 = 𝜎
(
𝑊𝑥𝑖 ∗ 𝑥𝑡 +𝑊ℎ𝑖 ∗ ℎ𝑡 −1 +𝑊𝑐𝑖 ◦𝑐𝑡 −1 + 𝑏𝑖 

)
𝑓𝑡 = 𝜎

(
𝑊𝑥𝑓 ∗ 𝑥𝑡 +𝑊ℎ𝑓 ∗ ℎ𝑡 −1 +𝑊𝑐𝑓 ◦𝑐𝑡 −1 + 𝑏𝑓 

)
𝐶𝑡 = 𝑓𝑡 ◦𝑐𝑡 −1 + 𝑖𝑡 ◦𝑡𝑎𝑛ℎ

(
𝑊𝑥𝑐 ∗ 𝑥𝑡 +𝑊ℎ𝑐 ∗ ℎ𝑡 −1 + 𝑏𝑐 

)
𝑂𝑡 = 𝜎

(
𝑊𝑥𝑜 ∗ 𝑥𝑡 +𝑊ℎ𝑜 ∗ ℎ𝑡 −1 +𝑊𝑐𝑜 ◦𝑐𝑡 + 𝑏𝑜 

)
𝐻𝑡 = 𝑜𝑡 ◦𝑡𝑎𝑛ℎ

(
𝑐𝑡 
)

(6) 

ConvLSTM offers a distinct advantage over traditional LSTM methods. By integrating convolutional operations into the mathemat- 
ical equations of the LSTM, ConvLSTM enables the prediction of time series while considering spatial characteristics. This approach 
allows for the maintenance of the complexity inherent to LSTM cells while accounting for spatial characteristics. 

Generative Adversarial Networks (GANs) 

Ferchichi et al. [ 8 ], recently proposed a model that uses Generative Adversarial Networks (GAN) to predict drought in Africa. This
architecture comprises two components, a generator 𝐺 and a discriminator 𝐷, represented as 𝑓 = (𝐺, 𝐷 ) , which integrates both CNN
and LSTM technologies. The model focuses on how future spatio-temporal variations in drought change under the effects of climate
change. The study uses multivariate remote sensing data over the continent from 1999 to 2022. The study evaluates agricultural
drought using the SMI as a response parameter. The input variables for the GAN model include hydrological, meteorological, and
vegetation spectral factors. 

Given a time series data set in the latent space vector 𝑍𝑡 , which is encoded by the multivariate time series 𝑋𝑡 , the generator 𝐺
is capable of defining a distribution of the generated time series to match the distribution of the actual time series by fitting 𝑍𝑡 to
the generated time series 𝐺( 𝑧 ) . The discriminator then takes 𝐺(𝑍𝑡 ) and 𝑋𝑡 as inputs to differentiate between them. The optimization
process can be regarded as a minimax game problem. The optimization function for the proposed GAN model is expressed in Eq. (7 ),
where x ⁓ pg represents the temporal series from the generated data distribution and 𝐸𝑥 ∼𝑝𝑔 [log (1 − 𝐷(𝐺(𝑍𝑡 ) ) ) ] denotes the expecta- 
tion that the discriminator will identify the generated time series as false. Conversely, x ⁓ preal represents the time series from the
distribution of actual data, and 𝐸𝑥 ∼𝑝𝑟𝑒𝑎𝑙 [log 𝐷(𝑋𝑡 ) ] denotes the expectation that the original time series will be found to be authentic
by the discriminator. 

min 
G 

max 
𝐺 
𝐿( 𝐺, 𝐷 ) = Ex∼preal 

[
log 𝐷

(
𝑋𝑡 

)]
+ Ex∼pg [ 𝑙𝑜𝑔( 1 − 𝐷( 𝐺( 𝑍𝑡 ) ) ) ] (7) 

The proposed model’s structure includes a convolution layer with 16 filters, a kernel size of 2, and a ReLU activation function. It
also has a max-pooling layer with a pool size and stride of 2, a fully connected layer with a unit and sigmoid activation, an LSTM
layer with 100 cells, and a dropout layer of 0.2. The optimization is performed using the Adam algorithm, experimenting with two
different values of batch size, learning rate, and epoch size. The experimental results confirmed the reliability of the proposed model
for forecasting agricultural drought. It was superior to the deep learning techniques, Autoencoder Convolutional Neural Network 
model for Long Short-Term Memory (AE-CNN-LSTM), Convolutional Neural Network model for Long Short-Term Memory (CNN- 
LSTM), CNN, and LSTM. 

Furthermore, the GAN model’s structure enables it to identify spatio-temporal data characteristics using CNN and LSTM. However, 
the model’s limitations primarily stem from its structure, which, although it reflects the relationships between time series and drought
events and can accurately capture the complex relationships between climate and RS indices, remains opaque. Understanding the 
model’s results and how they were obtained is challenging. Furthermore, this proposal is unable to predict uncertain data. Finally,
as a deep learning algorithm, its computational time is competitive due to the time series generation component, which requires
iterative debugging to achieve better-than-real results. 

Hybrid models 

Dhyani et al. [ 83 ] proposed a methodology that analyzes how meteorological droughts, characterized by prolonged periods of low
precipitation, affect water availability by increasing evaporation and transpiration. This phenomenon can lead to agricultural droughts 
due to the reduced water accumulation necessary for crops. This approach uses a recurrent LSTM network to learn the sequential
characteristics of SPEI data from 1901 to 2018. In a drought, agricultural prediction is made using the NDVI index calculated from
Landsat 8 images as input to the Time-Distributed Convolutional Neural Network (TD-CNN) to classify the subsequent sequential 
output. If a drought is predicted, the authors will develop anti-drought strategies based on the proposed model output and SMI
analysis. 

Consequently, TD-CNN with LSTM has the advantage of predicting an image sequence using distributed CNNs, which allows for
identifying the sequential relationships of the image sequence. By utilizing different CNNs in parallel and with individual parameters,
TD-CNN can extract the relevant and essential features independently for each image of the input sequence. However, it still maintains
a high computational cost by using LSTM as part of its methodology. 
10
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On the other hand, Seo and Lee [ 59 ] developed a probabilistic framework to analyze drought propagation in South Korea using
satellite data. They implemented a CNN-LSTM with data from 2003 to 2019. The predictor variables included precipitation, temper- 
ature, NDVI, MNDWI, soil moisture content, and Terrestrial Water Storage Anomaly (TWSA), while the response variable was the 
Groundwater Storage Changes (GWSC). The model was trained using the Adam optimizer and the ReLU activation function to mini-
mize the mean square error. Hyperparameters such as delay time, epochs, nodes, filters, hidden layers, and batch size were optimized
using Bayesian techniques. The mean propagation times were also estimated, with the propagation time from Meteorological Drought 
to Agricultural Drought (MD-to-AD) estimated at 2.83 months and the propagation time from Meteorological Drought to Groundwater 
Drought (MD-to-GD) estimated at 4.34 months. The results indicate that the probability of drought occurrence increases with the 
severity of previous meteorological conditions. It highlights the importance of using models to characterize the relationship between 
meteorological, agricultural, and groundwater droughts under different conditions for effective management. Subsequently, a joint 
distribution between three drought types was constructed using the most appropriate copula functions. Conditional probabilities of 
drought occurrence at different temporal and spatial scales were calculated. Given the joint probability distribution of SPI, SSMI, 
and Standardized Groundwater Index (SGI), the conditional probability of droughts under preceding drought conditions can be ob- 
tained using Eq. (8 ). For example, the transition probabilities from MD-to-GD for light, moderate, severe, and extreme meteorological
drought scenarios are 38%, 43%, 48%, and 53%, respectively. 

𝑃 ( 𝑌 ≤ 𝑦 |𝑋 ≤ 𝑥 ) = 𝑃 ( 𝑋 ≤ 𝑥 , 𝑌 ≤ 𝑦 ) 
𝑃 ( 𝑋 ≤ 𝑥 ) 

=
𝐹𝑋,𝑌 ( 𝑥, 𝑦 ) 
𝐹𝑋 ( 𝑥) 

𝑃 ( 𝑌 ≤ 𝑦 |𝑥1 < 𝑋 ≤ 𝑥2 ) =
𝑃
(
𝑥1 < 𝑋 ≤ 𝑥2 , 𝑌 ≤ 𝑦 

)
𝑃
(
𝑥1 < 𝑋 ≤ 𝑥2 

) =
𝐹𝑋,𝑌 

(
𝑥2 , 𝑦 

)
− 𝐹𝑋,𝑌 

(
𝑥1 , 𝑦 

)
𝐹𝑋 

(
𝑥2 
)
− 𝐹𝑋 

(
𝑥1 
) (8) 

The principal advantage of this method is the utilization of conditional probabilities of drought occurrence, calculated by the cop-
ula function, which permits the description of intricate dependencies between variables. Nevertheless, it is computationally complex 
as a method that employs LSTM cells due to the mathematical operations involved. 

Finally, Abbes et al. [ 64 ] propose a hybrid model, MRA-WT-LSTM, combining LSTM and Multi-Resolution Analysis Wavelet 
Transform (MRA-WT) to predict drought in the Sarab region of Iran. This model is called MRA-WT-LSTM. The model utilizes station
data, including precipitation, temperature, humidity, pressure, and evaporation, and the NDVI index derived from satellite images 
from 1988 to 2016 to predict the SPEI. The initial phase of the analysis involves examining the evaporation data using the MRA-WT
technique. This method, referred to as WT, partitions nonstationary time series across both the time and frequency domains. It is
represented by Eq. (9 ), where 𝜓𝑎,𝑏 is known as the mother wavelet, 𝑎 denotes the scale parameter, and 𝑏 indicates the position of the
wavelet. The discrete wavelet transform (DWT) is a signal decomposition method that creates a discrete set of wavelets. This process
decomposes the signal into orthogonal parts. It is computed as Eq. (10 ). 

𝜓𝑎,𝑏 =
1 √
𝑎 
𝜓

(
𝑡 − 𝑏 

𝑎 

)
(9) 

𝜓𝑗,𝑘 = 2−
𝑗 

2 𝜓
(
2− 𝑗 𝑡 − 𝑘 

)
(10) 

The level of Wavelet decomposition for the MRA-WT method is determined by the equation 𝐿 = 𝑖𝑛𝑡 [log ( 𝑁) ] , where N represents
the number of the data set, 𝐿 is the decomposition level, and 𝑖𝑛𝑡 expresses the integer part function. The trend and seasonal compo-
nents obtained are scaled to the range of (0, 1) according to the nature of the feature. The LSTM network was implemented using
hyperparameters adjusted to the model’s objectives, with the MSE used as loss function. The methodology was trained using the Adam
optimizer with an initial learning rate of 0.001 for 200 epochs. This approach utilizes the benefits of LSTM for time series analysis
and MRA-WT for nonstationary data analysis, resulting in precise long-term predictions. MRA-WT-LSTM outperformed three other 
machine learning models, ANN, SVR, and Random Forest Regression (RFR), including the LSTM network. 

Furthermore, using the wavelet transformation, MRA-WT decomposes nonstationary time series in both the time and frequency 
domains. This process enables the MRA-WT-LSTM to reduce training time compared to LSTM. Finally, the MRA-WT-LSTM can handle 
nonstationary features in the data, a capability that is not shared by most prediction methods. 

Table 4 presents a comparative summary of the methods discussed, emphasizing using Moderate-Resolution Imaging Spectrora- 
diometer (MODIS) and Landsat as input data for drought prediction. This preference may be attributed to these sources providing
freely accessible information with constant temporality [ 84 ]. The most commonly used evaluation metrics are RMSE and 𝑅2 . RMSE
assesses model performance in meteorology, climate, and geosciences. For the second, it is used to measure the reliability of the
prediction model about the observed values. A value close to or equal to one indicates a good prediction of the model, while values
close to zero indicate the opposite case [ 58 , 13 ]. Moreover, LSTM is the most widely used method for drought prediction, individually
or in combination with other methods, due to its ability to process sequential data and long-term retention of data behavior. However,
as aforementioned, LSTM presents a high computational complexity, which results in high hardware costs and energy consumption 
due to the mathematical operations used for the prediction [ 85–87 ]. 

New research areas for drought prediction 

Based on the findings in this review, the following research opportunity are detected. 
11
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Table 4 

Deep learning models where satellite data and climate indices were used as input. Performance metrics presented were those corresponding to the 
best results obtained. 

Model Type Data Data source Drought Index Performance Metrics Case Study 

[ 59 ] CNN-LSTM Remote sensing data TRMM, Landsat 5 
and 8, GLDAS, 
GRACE and 
GRACE-FO 

GWSC r = 0.72, RMSE = 42.92 
mm/month 

South Korea 

[ 82 ] 1st stage: ConvLSTM Remote sensing data MODIS, TRMM SDCI, SPI SDCI: r = 0.90, RMSE = 0.11 
SPI: r = 0.93, RMSE = 0.08 

East Asia, including east 
China, southeast Russia, 
Korea, and part of Japan 

2nd stage: Random 

Forest 
MODIS, SRTM, GFS 

[ 72 ] DFNN Remote sensing data GLDAS-02), MODIS, 
CHIRPS 

SMDI R2 = 52 to 0.94, 
RMSE = 0.486, 
MAE = 0.359, MSE = 0.237 

South Asia (India, Nepal, 
Bhutan, Bangladesh, 
Pakistan, Afghanistan, Sri 
Lanka, and the Maldives) 

Station Data Department of 
meteorology for 
each country 

[ 64 ] LSTM Remote sensing data (AVHRR) instrument 
on-board the Landsat 
series 7 

SPEI LSTM: R2 = 0.92, 
RMSE = 0.03, Bias = 0.00512, 
MAPE = 9.246 

Sarab, Iran 

Hybrid model 
MRA-WT-LSTM 

Station Data Islamic Republic of 
Iran Meteorological 
Organization 
(IRIMO) 

MRA-WT-LSTM: R2 = 0.93, 
RMSE = 0.02, 
Bias = 0.00735, 
MAPE = -1.955 

[ 83 ] 1st stage: LSTM - - SPEI Cosine similarity = 0.74, 
loss = 0.33 

Northern Karnataka 

2nd stage: Hybrid 
TD-CNN 

Remote sensing data Landsat 8 NDVI Accuracy = 95%, loss = 0.08 

[ 8 ] GAN based on 
hybrid CNN-LSTM 

Remote sensing data GLDAS, MODIS, 
CHRISPS, Landsat 5 
and 8 

SMI RMSE = 1.008, 
MAPE = 0.009, MAE = 0.739 

African continent 

[ 78 ] CNN Remote sensing data _ NDVI, SAVI, EVI and 
ARVI 

Accuracy CNN: NDVI = 0.94, 
SAVI = 0.91, EVI = 0.88, 
ARVI = 0.88 

_

AlexNet Accuracy AlexNet: 
NDVI = 0.76, SAVI = 0.67, 
EVI = 0.73, ARVI = 0.67 

VGGNet Accuracy VGGNet: 
NDVI = 0.91, SAVI = 0.91, 
EVI = 0.94, ARVI = 0.97 

[ 81 ] LSTM Remote sensing data CHIRPS, ERA5, 
NASA SRTM, MODIS 
(BOKU) 

VCI LSTM: RMSE = 6.46, 
R2 = 0.95 

Kenya 

Aware LSTM (EA 
LSTM) 

EA LSTM: RMSE = 6.46, 
R2 = 0.95 

[ 77 ] ANN Remote sensing data TAMSAT, BOKU VCI R2 = 0.78 Kenya: Turkana, Marsabit, 
Mandera and Wajir. 

[ 80 ] LSTM Remote sensing data MERRA-Land SMI RMSE = 0.088 _

 

 

 

 

 

 

 

 

 

 

1. Use of combined multispectral drought indices. The analysis presented in this work determines the need to employ multispec-
tral indices combining two or more features for predicting drought, such as the Normalized Difference Drought Index (NDDI).
NDDI takes advantage of two indices used to determine the vegetation conditions (NDVI) and surface moisture (NDWI) [ 56 ].
Works worldwide demonstrate that NDDI is a complementary and powerful tool for efficiently determining drought conditions. 
It is worth noting that deep learning techniques have yet to be used to predict drought using NDDI. 

2. Drought Prediction in Latin America . According to the works analyzed in this study, only four studies have been conducted
in Latin American countries using deep learning techniques to predict drought: Mexico [ 70 ], Colombia [ 88 ], Ecuador [ 89 ], and
Peru [ 11 ]. It may be due to the prevalent use of meteorological models or stochastic and statistical techniques to predict this
phenomenon. Furthermore, Latin American countries still need to utilize multispectral indices to predict drought with deep 
learning models. This document highlights a research opportunity in this region, which contains distinct features compared to 
the study areas analyzed. 

3. Neuroevolution . Most of the deep learning techniques discussed in this review use architectures proposed by their respective 
authors. However, proposing an architecture is a complex task that requires prior knowledge of the problem and expertise in
designing the structure of a deep neural network. Therefore, a previously unexplored research direction, until this study, is
using methods to find a suitable deep neural network architecture for predicting drought. This method is called neuroevolution.
Neuroevolution uses evolutionary optimization algorithms to efficiently determine the neural network structure for solving a 
specific problem. Therefore, neuroevolution has not been utilized to determine the number of hidden layers and the number
of LSTM or GRU units, among others, to predict drought in a particular study area. 
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Conclusion 

Drought is a complex phenomenon with significant human impacts. Therefore, the scientific community aims to mitigate its 
impacts by predicting it. Deep learning has emerged as a valuable tool for achieving this goal. 

This review differs from other reviews on drought prediction in that it is more specific in its focus. Rather than examining
a range of statistical and artificial intelligence techniques, it concentrates on deep learning techniques and the data indices used
for drought prediction on an international scale. Furthermore, the countries most interested in studying the phenomenon and the 
regions most studied were identified. Consequently, this review employs a comprehensive approach that enables the identification 
of pertinent issues about the utilization of deep learning tools and the global research interest in this field. This approach facilitates
the identification of potential avenues for future research. The points above are described in greater detail below. 

AI techniques are primarily utilized in Asia and Oceania, with most institutions dedicated to studying the phenomenon in these
regions. In contrast, America and Africa have fewer areas of study and institutions. It is important to note that experts from various
countries, even those outside the analysis area, are involved in studying the phenomenon. The most commonly used indices for
studying the phenomenon are climatic, specifically SPI and SPEI. However, the use of these indices is restricted by the need for
long-term climate data, which is only accessible in countries with a reliable climate monitoring network. Regarding remote sensing 
indices, NDVI is the most commonly used indicator for analyzing vegetation conditions. The text primarily discusses MODIS and
Landsat data, which have consistent periodicity and cover extended periods. 

As a result, the LSTM network is the most frequently used deep learning technique, individually or combined with other models
(hybrid techniques), even with its high computational cost. Moreover, the most commonly used metric to evaluate model performance 
is RMSE, which ranges between values of [0.02, 42.92] and [0.78, 0.96], respectively. Finally, this literature review highlighted the
lack of work on drought prediction using machine learning techniques in Latin America, even though the problem is a priority and
high incidence. Therefore, we propose applying Deep Learning with remote sensing indices to address the lack of reliable monitoring
networks. 
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