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ABSTRACT
Effector proteins translocated by the Dot/Icm type IV secretion system determine
the virulence of Legionella pneumophila (L. pneumophila). Among these effectors,
members of the SidE family (SidEs) regulate several cellular processes through a
unique phosphoribosyl ubiquitination mechanism mediated by another effector, SidJ.
Host-cell calmodulin (CaM) activates SidJ to glutamylate the SidEs of ubiquitin (Ub)
ligases and to make a balanced Ub ligase activity. Given the central role of SidJ in this
regulatory process, studying the nature of evolution of sidJ is important to understand
the virulence of L. pneumophila and the interaction between the bacteria and its hosts.
By studying sidJ from a large number of L. pneumophila strains and using various
molecular evolution algorithms, we demonstrated that intragenic recombination drove
the evolution of sidJ and contributed to sidJ diversification. Additionally, we showed
that four codons of sidJ which are located in the N-terminal (NTD) (codons 58 and
200) and C-terminal (CTD) (codons 868 and 869) domains, but not in the kinase
domain (KD) had been subjected to strong positive selection pressure, and variable
mutation profiles of these codons were identified. Protein structural modeling of SidJ
provided possible explanations for these mutations. Codons 868 and 869 mutations
might engage in regulating the interactions of SidJ with CaM through hydrogen bonds
and affect the CaM docking to SidJ. Mutation in codon 58 of SidJ might affect the
distribution of main-chain atoms that are associated with the interaction with CaM. In
contrast, mutations in codon 200 might influence the α-helix stability in the NTD.
These mutations might be important to balance Ub ligase activity for different L.
pneumophila hosts. This study first reported that intragenic recombination and positive
Darwinian selection both shaped the genetic plasticity of sidJ, contributing to a deeper
understanding of the adaptive mechanisms of this intracellular bacterium to different
hosts.

Subjects Bioinformatics, Evolutionary Studies, Genetics, Microbiology, Molecular Biology
Keywords Legionella pneumophila, Virulence effector, SidJ, Evolution, Adaptive evolution,
Intragenic recombination, Positive selection

INTRODUCTION
Legionella pneumophila (L. pneumophila) is the most common causative agent of
legionellosis, which manifests as atypical pneumonia or non-pneumonia type illnesses,
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e.g., Pontiac fever (Fields, Benson & Besser, 2002). As a pathogenic Gram-negative
bacterium, L. pneumophila is widely present in natural environments including natural
water and soil sources, inwhich free-living amoebae is its natural host (Albert-Weissenberger,
Cazalet & Buchrieser, 2007; Van Heijnsbergen et al., 2014). From natural environments,
L. pneumophila can colonize artificial environments (e.g., cooling towers and hot-
water systems), and then spread in aerosols, infecting the susceptible person. As an
intracellular parasite for protozoa, L. pneumophila infects mammalian host cells using
similar mechanisms: phagocytosis or macropinocytosis (De Carvalho, Barrias & De
Souza, 2015; Horwitz, 1984; Peracino, Balest & Bozzaro, 2010). After entering the host
cells, L. pneumophila creates an intracellular niche named Legionella-containing vacuoles
(LCVs), which are resistant to the acidification and LCV-lysosome fusion, and permissive
for its replication (Isberg, OConnor & Heidtman, 2009). In this process, host-cell functions
aremodulated by hundreds of effector proteins encoded by the L. pneumophila genome and
delivered by L. pneumophila type IV Dot/Icm secretion system (Hubber & Roy, 2010; Segal,
Feldman & Zusman, 2005). The genomes of L. pneumophila consist of a single circular
chromosome of about 3.4 Mb (Gomez-Valero et al., 2011). Some L. pneumophila strains
(e.g., Paris, Lens and Lorraine) also contain a plasmid (Gomez-Valero et al., 2011). The
number of genes in L. pneumophila chromosome is about 3,000, of which, 98%–99% are
protein-coding genes and about 300 are the type IV Dot/Icm effectors (Gomez-Valero et
al., 2011). As a facultatively pathogenic bacterium interacting with free-living amoebae,
L. pneumophila exhibit a genome larger than their close relatives such as Coxiella burnetii
and Francisella tularensis due to gene conservation and acquisition (Moliner, Fournier &
Raoult, 2010). This was also proved by Gomez-Valero et al. (2019) that the number of gene
gain events in 2,837 representative proteins of genus Legionella considerably exceeded the
number of loss events.

Functional redundancy among groups of effector proteins is required for L. pneumophila
to survive in different host cells (Newton et al., 2010; Richards et al., 2013; Shames et al.,
2017). However, only a few of these proteins are necessary for intracellular replication, and
elimination of numerous effector genes rarely leads to detectable defects in intracellular
growth (O’Connor et al., 2011). There were some critical components for both intracellular
growth and disease within animals that have been identified in L. pneumophila, including
SdhA, SidJ, and AnkB (Al-Khodor et al., 2008; Anand, Choi & Isberg, 2020; Harding et al.,
2013; Jeong, Sexton & Vogel, 2015; Liu & Luo, 2007). SidJ, encoded by a 2,622 to 2,628 bp
length gene, is a member of the Dot/Icm effector and plays a key role in regulating several
host cellular processes and pathways through another effector member named SidE family
(SidEs), including SdeA (1,499 aa), SdeB (1,920 aa), SdeC (1,533 aa) and SidE (1,495 aa) (Liu
& Luo, 2007). These proteins are encoded by genes with lengths of 4,497 bp, 5,760 bp, 4,599
bp, and 4,485 bp respectively. SidEs localize to the cytoplasmic face of the LCV in the early
stages of L. pneumophila infection. They are required for the mono-ADP-ribosyltransferase
activity involved in ubiquitin activation, which is regulated by SidJ glutamylase activity.
Such activity is subsequently modulated by the eukaryote-specific protein calmodulin
(CaM) via binding (Gan et al., 2019; Liu & Luo, 2007). SidJ catalyzes glutamylation of
SidEs (Bhogaraju et al., 2019; Black et al., 2019), and in turn, inhibits their unrestrained
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ubiquitin (Ub) ligase activity; which is shown to be harmful to the host by poisoning the
cellular Ub pool and possibly blocking the action of other L. pneumophila effectors that
manipulate the host Ub machinery (Bhogaraju et al., 2016). Three functional domains of
SidJ were identified in a previous report, including a kinase domain (KD) in the center of
protein spanning residues 336 to 593, which forms a catalytic structure and an N-terminal
(NTD) and C-terminal domains (CTD) (Black et al., 2019). Given the crucial role of SidJ in
this regulation network, studying the nature of evolution of sidJ is of great importance to
understand the virulence in L. pneumophila and the interaction between the bacteria and
its hosts. A study on 32 unrelated strains of L. pneumophila revealed that recombination
was an important strategy in the evolutionary adaptive process and played an active role
in sidJ genetic plasticity (Costa et al., 2014). Recombination of sidJ might also provide a
broad-host-range for L. pneumophila by preventing host specialization and contributing
to the resilience of the species (Costa et al., 2014). Besides recombination, selection was
another fundamental evolutionary force that shaped DNA sequence variation. Interaction
between recombination and natural selection within a gene can either increase or decrease
sequence diversity. Moreover, recombination can generate genetic variation, which is tested
by natural selection, and as such, it plays an important role in fueling adaptive evolution
(Jouet, McMullan & Van Oosterhout, 2015).

The ultimate goal of this work is to understand the underlying patterns in the evolution
of the sidJ gene of L. pneumophila during its lifecycle (e.g., infect the amoebae via amoebal
attack and present a sympatric lifestyle) through identifying individual codons under
positive selection. We utilized various algorithms to identify the molecular evolution
patterns of sidJ in a relatively large number of L. pneumophila strains. It is shown here
both intragenic recombination and positive selection drove the adaptive evolution of sidJ
and shaped its genetic plasticity. Codons of sidJ that were identified to experience positive
selection might play key roles in regulating the binding affinity of SidJ to CaM; and thus,
change the glutamylases activation of SidJ, which might, in turn, manipulate the host Ub
machinery balance. This reticular regulation network might be an important strategy for
the survival and adaptability of L. pneumophila to variable host cells.

MATERIALS AND METHODS
L.pneumophila strains
One hundred and sixteen L. penumophila strains were enrolled in this study. These strains
were isolated from 1947 to 2016, from different environmental and clinical sources. Full-
length sequences of sidJ were captured from the whole genome of the strains. The detailed
information of these strains including the sources and place of isolation, the collection dates,
the NCBI biosample, and the sequence accession numbers were summarized in Table S1.
Some of these strains are defined as subspecies (subsp. pneumophila, subsp. fraseri, subsp.
pascullei, and subsp. raphaeli) of L. pneumophila, and belong to different serogroups (sgs)
including sg1, sg4, sg5, sg8, sg11, etc. based on literature report (Kozak-Muiznieks et al.,
2018).
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Sequence and phylogenetic analysis
The sidJ gene sequences from the 116 L. pneumophila strains were manually checked for
integrity and were aligned by MEGA X software using Muscle (codons) algorithms (Kumar
et al., 2018). Allele type and DNA sequence polymorphism analyses were performed by
DnaSP 6.12.03 (Rozas et al., 2017). The most appropriate model for sidJ nucleotide or
SidJ amino acid substitution was determined by the model finder module of MEGA
X and using the Akaike Information Criterion (AIC) (Posada & Buckley, 2004). An
unrooted phylogenetic tree of the sidJ alleles was constructed using MEGA X, inferring the
evolutionary history using theMaximumLikelihood (ML)method andHasegawa-Kishino-
Yano model with gamma distribution (HKY+G) (Hasegawa, Kishino & Yano, 1985). Initial
trees were obtained automatically by applying the Neighbor-Joining and BioNJ algorithms
to a matrix of pairwise distances estimated using the Maximum Composite Likelihood
(MCL) approach. The evolutionary history of SidJ protein was inferred by using the
Maximum Likelihood method and the JTT matrix-based model (Jones, Taylor & Thornton,
1992). Initial tree(s) for the heuristic search were obtained automatically by applying
Neighbor-Join and BioNJ algorithms to a matrix of pairwise distances estimated using
the JTT model, and then selecting the topology with a superior log-likelihood value. A
discrete Gamma distribution was used to model evolutionary rate differences among sites.
Bootstrap values were estimated using 1000 replications.

Molecular evolution analysis
The neighbor-net analysis was performed and split networks were constructed with
algorithms implemented in SplitsTree4 software (version 4.14.4) (Huson & Bryant, 2006).
A reticulate network tree was prepared to show the relationships among sidJ alleles and to
visualize possible recombination events. Pairwise homoplasy index (Phi) tests were used to
calculate a measure of statistical significance for recombination and a cutoff value was set at
0.05 (Bruen, Philippe & Bryant, 2006). The sidJ allele sequences were screened by RDP4 to
detect intragenic recombination (Martin et al., 2015). Six methods (RDPMartin & Rybicki,
2000), GENECONV, BootScan (Martin et al., 2005), MaxChi (Smith, 1992), Chimaera
(Posada, 2002), and SiScan (Gibbs, Armstrong & Gibbs, 2000) implemented in the RDP4
were utilized. Potential recombination events (PREs) were defined as those identified by at
least four methods. Common settings for all the methods were as following: sequences were
considered as linear, statistical significance was set at P < 0.05, Bonferroni correction was
used to correct P-values for multiple comparisons, phylogenetic evidence was required,
and breakpoints were polished. Genetic diversity of the sidJ alleles was investigated by
using DnaSP 6.12.03 (Rozas et al., 2017).

Population genetics analysis
DnaSP 6.12.03 was used to perform genetic diversity analyses for the sidJ alleles (Librado
& Rozas, 2009; Rozas et al., 2009). Tajima’s D, Fu, and Li’s D* and F* tests were employed
to verify the neutrality hypothesis of sidJ as previously described by our research group
(Zhan & Zhu, 2017). These analyses were carried out using DnaSP 6.12.03 (Rozas et al.,
2017). A statistical significance cutoff was set at 0.05 for all the tests. Nonsynonymous
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and synonymous mutations of sidJ were calculated using the MEGA X software package
(Kumar et al., 2018). A parsimony network of sidJ alleles was created using PopART
software (http://popart.otago.ac.nz) (Clement, Posada & Crandall, 2000). The demographic
history of sidJ was inferred by analyzing the mismatch distribution of pairwise nucleotide
differences in the sidJ alleles, which was carried out by an algorithm implemented in
Arlequin3.5 (Excoffier & Lischer, 2010). Expected values for a model of constant sidJ allele
population size were calculated and plotted against the observed values. Harpending’s
raggedness index and the sum of squared deviations (SSD), as implemented in Arlequin3.5,
were used to evaluate Rogers’ sudden expansion model, which fits a unimodal mismatch
distribution (Rogers & Harpending, 1992).

Analysis of positive selection at the codon level
The positive selection pressure operating on the L. pneumophila sidJ gene was investigated
using the Maximum Likelihood (ML) method by a visual tool of codeml software program
(Bielawski, Baker & Mingrone, 2016), EasyCodeML (Gao et al., 2019). First, the topologies
of the ML trees of sidJ alleles were generated by MEGA X as mentioned above, for the
subsequent selection analysis. Then, three nested models (M3 vs. M0, M2a vs. M1a,
and M8 vs. M7) were compared, and the likelihood ratio tests (LRTs) were applied to
assess the best fit of codons. Model fitting was performed using multiple seed values for
dN/dS. SidJ codon frequencies were assumed using the F3x4 model. When the LRT was
significant (P < 0.05), Bayes empirical Bayes (BEB) (M8 model) and Naive Empirical
Bayes (NEB) methods (M3 and M2a models) were used to identify codons that evolved
under positive selection based on a posterior probability of more than 0.95. Positive
selection was inferred when the individual site or codon had a ratio of nonsynonymous
to synonymous mutations greater than one (ω > 1). To omit the influence of intragenic
recombination on the selection analysis, a modified topology of ML trees was applied to
the selection analysis by identifying non-recombinant regions and allowing each to have
its phylogenetic tree. The modified and fitted trees were obtained by using the GARD
(http://www.datamonkey.org/gard) (Kosakovsky Pond et al., 2006; Pond & Frost, 2005),
which can screen an alignment for recombination breakpoints, infer a unique phylogenetic
history for each detected recombination block, and generate a modified tree topology. The
HyPhy software package was also employed to validate the results obtained using the ML
method (Kosakovsky Pond et al., 2019). Fixed Effects Likelihood (FEL), Fast, Unconstrained
Bayesian AppRoximation (FUBAR), Evolutionary Fingerprinting, andMixed EffectsModel
of Evolution (MEME) algorithms were used (Kosakovsky Pond & Frost, 2005;Murrell et al.,
2013). These methods can take recombination into account by screening recombination
breakpoints of the sequences, identifying non-recombinant regions and allowing each to
have its own phylogenetic tree by using an updated partitioned dataset provided by GARD
(Pond et al., 2006).

Mapping of positively selected sites to structure models of proteins
The three-dimensional structure of SidJ and CaM was modeled using the Phyre
server (Kelley et al., 2015), and the SWISS-MODEL (http://swissmodel.expasy.org)
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Figure 1 Phylogenetic relationships among L. pneumophila sidJ alleles. (A) Neighbor-net phyloge-
netic network shows the relationship among 39 sidJ alleles (see Table S1). The sidJ-1 subgroup is shown
in a purple cycle, sidJ-2 blue, sidJ-3 green, and sidJ-4 red. The internal nodes represent hypothetical an-
cestral alleles and edges correspond to reticulate events such as recombination in the evolution of sidJ. The
red arrow points to a representative reticulate event. (B) The evolutionary history of sidJ was inferred by
using the Maximum Likelihood method. The ML tree was constructed from the alignment of nucleotide
sequences of 39 alleles. Allele names were marked as their representative strain names. The earliest possi-
ble year for the allele to arose is shown in blue. Numbers on the interior branches represent bootstrap val-
ues and are indicated when the values are >0.5. The tree is drawn to scale, with branch lengths measur-
ing in the number of substitutions per site. Branches in the same color were clustered into a group. Allele
names are marked in red to indicate that they are recombinants. Unique recombination events detected by
six recombination detection methods implemented under the RDP4 based on sidJ alleles are mapped onto
the corresponding breaking point positions in the alignment (in the right of the figure). Recombination
events that were identified by four or more methods were selected and numbered according to the RDP4
analysis, and the minor parent names of the recombinant alleles are shown nearby the breaking point po-
sitions (see Table 1).

Full-size DOI: 10.7717/peerj.12000/fig-1

(Waterhouse et al., 2018). The positive selection sites were mapped onto the structure
and visualized by PyMol (http://www.pymol.org/) (Lilkova et al., 2015).

RESULTS AND DISCUSSION
Characteristics of L.pneumophila strains and sidJ sequences
The sidJ sequences of the 116 L. pneumophila strains in this study could be clustered
into 39 unique alleles (alleles were marked with representative strain name, shown
in Table S1), which corresponded to 36 different SidJ amino acid sequences. We
propose that these sequences might represent most of the sidJ alleles. A total of 544
polymorphic (segregating) sites in the 39 sidJ alleles (the full-length gene is 2,622
bp) generate high amino acid sequence polymorphism in the SidJ protein, about
one fifth (19.68%, 172/874) amino acid sites were polymorphic. Significantly higher
amino acid sequence polymorphisms were found in the NTD than the CTD (24.78% Vs.
15.35%, 83/335 Vs. 43/280, Chi-Square test, P = 0.019).
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Intragenic recombination drives the evolution of sidJ
A reticulate network tree was obtained by the Neighbor-net algorithm of SplitsTree4, using
the alignment of the 39 sidJ alleles. As shown in Fig. 1A, we could observe many reticulate
events which indicated possible recombination events among sidJ alleles. Moreover,
the implemented Phi test in SplitsTree4 did find significant evidence for recombination
within the alleles (P < 0.001). Thus, we tested the intragenic recombination by using
RDP 4. Eight potential recombination events (PREs) and 14 recombinant alleles were
identified, which were supported by at least four of the six analysis methods according
to Costa et al. (2014) report (Table 1). Figure 1B showed the phylogenetic relationship of
these alleles. Allele names were shown with their representative strain names. Four main
clades were found and all recombinants sidJ were distributed in clades three and four.
Two non-recombinant sidJ alleles, D7119 and NCTC12273 formed a sub-clade and had
a relatively far relationship with those non-recombinants. We observed that the stains
harboring such alleles (D7119 and NCTC12273) all belonged to L. pneumophila subsp.
pascullei and most were from environmental sources. In contrast, three recombinant
sidJ alleles, D5265, D4954, and D7705 also formed a sub-clade but stains harbored such
alleles all belonged to L. pneumophila subsp. raphaeli and most were from clinical sources.
Previously reports by Costa et al. (2014) indicated that intragenic recombination was an
important strategy in the evolutionary adaptive process of sidJ. We here showed similar
results, but due to the fact that in this study a greater number of L. pneumophila strains
and alleles of sidJ were used, we can consider our results more robust.

Intragenic recombination drives the diversification of the sidJ
To explore whether intragenic recombination drives the diversification of the sidJ,
we categorized the 116 strains into two groups: the recombinant group and the non-
recombinant group. Then, we utilized DnaSP to study the difference in genetic diversity
between the two groups. It showed that most of the parameters that represent genetic
diversity were higher in the recombinant group. These parameters included nucleotide
diversity, polymorphic sites, and the average number of nucleotide differences (Table 2),
suggesting that recombination added a high density of polymorphisms in sidJ. The
phylogeny of sidJ alleles also showed that recombinant alleles roughly formed an
outside subclade (sidJ-3 and sidJ-4, Fig. 1B) compared with those non-recombinants.
Recombination also introduced an excess of non-synonymous and synonymous diversity
for sidJ (0.02454 Vs. 0.01371 and 0.1660 Vs.0.1063, Table 2). These results were partly
consistent with the research with another intracellular bacteria,Mycobacterium tuberculosis,
of which the genetic diversification was partly driven by recombination and led to a high
genetic diversity and genomic plasticity (Namouchi et al., 2012). Furthermore, we did not
find evidence for recombinant sidJ alleles experiencing demographic expansion based on
the current pools of strains. The mismatch distributions for the total sidJ set, recombinant
sidJ, and non-recombinant sidJ genes were roughly multimodal with P > 0.05 for the SSD.
Also, P-values for Harpending’s Raggedness index was lower than 0.05 in each group,
indicating that no demographic expansion exists (Figs. 2A–2C). However, a potential
reduction of recombinant sidJ alleles in the L. pneumophila community was found. Fu and
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Table 1 Intragenic recombination in the 39 allelles of sidJ by using six different methods implemented in RDP software.

Recombination
events

Recombinant
alleles

Major
parent#

Minor
parent$

Detection methods implemented in RDP software∧

RDP GENECONV Bootscan Maxchi Chimaera SiSscan

1 ATCC33216,
ATCC33737

NCTC12273 ST42 Na Yb N Y Y Y

2 D4954, D5265 D7705 ST23 Y Y Y Y Y Y
3 Lens Fleg244 NCTC12273 Y Y N Y Y Y
4 Lens, 80-045,

ATCC43130,
NCTC12179,
D7475, ST42,
NCTC11404

Lorriane D4954 N Y N Y Y Y

5 D7705, D5265,
D4954

NCTC12273 D7475 Y Y Y Y Y Y

6 D7475,
ATCC43130,
NCTC12179,
ST42, 80-045,
NCTC11404

NMex4 NCTC12273 Y Y N Y Y Y

7 ATCC43130,
NCTC12179,
D7475, ST42,
80-045,
NCTC11404

Aco20 NCTC12273 Y Y N Y N Y

8 F4198, D7708 ATCC35251 Unknown Y Y Y Y Y N

Notes.
*The allele names are shown as their representative strain’ names.
∧Recombination events detected by more than three methods are shown.
#Major parent: parent sequences contribute the larger fraction of the sequence.
$Minor parent: parent sequences contribute the smaller fraction of the sequence.
aN indicates recombination events were not detected by the method.
bY indicates recombination events were detected by the method.
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Table 2 Summary of genetic diversity parameters for sidJ from L. pneumophila strains.

Parameters Over all Non-recombinant
alleles

Recombinant alleles

Sequences, n 116 83 33
Haplotypes, h 39 25 14
Haplotype diversity, Hd 0.909 0.843 0.866
Nucleotide diversity, π 0.05317 0.03178 0.05123
(standard deviation) 0.00278 0.00342 0.00193
Polymorphic sites, S 544 390 361
Theta per site (from S) 0.03900 0.03178 0.03396
(standard deviation) 0.00925 0.00755 0.01029
Average number of nucleotide differences, k 139.246 83.255 134.163
Total number of mutations, Eta 600 414 381
dN 0.02344 0.01371 0.02454
dS 0.1833 0.1063 0.1660
dN/dS 0.1278 0.1290 0.1478
Tajima’s D 0.7917 (P > 0.10) 0.01120 (P > 0.10) 1.64769 (P > 0.10)
Fu and Li’s D* 1.46609 (0.10> P > 0.05) 1.30041( P > 0.10) 1.62736 (P < 0.02)
Fu and Li’s F* 1.38900 (P > 0.10) 0.90431 (P > 0.10) 1.94078 (P < 0.02)

Li’s D* and F* tests showed significantly positive values (Table 2), indicating an excess
of intermediate-frequency alleles which might result from bottleneck populations, thus
causing demographic reduction (Rowbotham, 1980). Parsimony (TCS) network of sidJ
alleles showed no central allele (node). Many mutations were found among the alleles,
and these alleles did not comprise a scattered star structure (Fig. 3), suggesting that the
expansion of the L. pneumophila population with a specific mutation in the sidJ gene has
not taken place (Leigh & Bryant, 2015).

Evidence of positive selection in sidJ
The M0 model of the EasyCodeML package showed an average ω of 0.1636 which was
less than 1, suggesting that at the whole gene level, purifying selection conducting the
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evolution of sidJ. Moreover, the frequency distribution of codon classes based on the M3
model showed proportion of sidJ codons that was subject to purifying selection was 0.8176
(Fig. 4A), further proved that purifying selection was a major force during sidJ evolution.
Although the proportion of codon 3 (under positive selection) was relatively smaller
(0.01473, Fig. 4A), the three likelihood ratio tests (LRTs) showed that model M3 and M8
were significantly better fit (P < 0.05) than the relevant nullmodelM0 andM7, respectively.
These results together suggested that a small number of codons of sidJ were subjected to
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positive selection pressure (ω =1.1155–2.5605). Here, we took results from models M7 Vs.
M8 as a standard as Yang et al. recommended (Yang, 2007; Yang & Bielawski, 2000). Thus,
four positive selection sites including 58G, 200N, 868T, and 869S were identified with
posterior probabilities (Pr) of at least 0.95 (Table 3). Still, only eight PREs were identified
among the 39 alleles, the PREs and allele sequences’ ratio was about 20%, indicating that
the LRT was robustness to such low levels of recombination (<30%) (Anisimova, Nielsen
& Yang, 2003). These nested models were also more realistic and showed more robust
to recombination (Anisimova, Nielsen & Yang, 2003). Similar results were obtained when
recombination was not taken into account by using the unmodified tree topology of the
39 sidJ alleles. 868T, a definitive positive selection site with Pr =0.973, when using the
modified tree topology, was identified as a critical positive selection site (Pr =0.942).
(Table S2). To further confirm our results, three additional algorithms implemented in
the HyPhy software package were used to identify positive selection sites of SidJ. We could
identify all of the same positive selection codons as we obtained from the codeML package
(Table S3). Thus, combined with the results from different algorithms, finally, four sites
including 58G, 200N, 868T, and 869S were identified as definitive positive selection sites
of SidJ. These sites were distributed in either the NTD or CTD of SidJ (Fig. 4B). The
distributions of single amino acid polymorphic loci in the KD versus the NTD and CTD
were not uneven (17.83% Vs. 20.45%, 46/258 Vs. 126/616, P =0.464, Chi-Square test), and
average numbers of amino acid site profiles in each domain of SidJ were roughly the same
(Fig. 4C). This result further verified that positive selection pressure selectively operated
on the NTD and CTD domains, but not on the KD. Based on this result, we propose
that the KD domain of SidJ is essential, but conserved to maintain its glutamylase activity
to catalyze the glutamylation of L. pneumophila SidEs, while NTD and CTD domains
modulate the interaction between SidJ and CaMs from different hosts. Positive selection
in the CTD and NTD of SidJ may be an evolutionary strategy for L. pneumophila surviving
in different hosts. Few studies had focused on studying positive selection signals in the
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Table 3 Log-likelihood values and parameter estimates for the sidJ gene of L. pneumophila using
modified topology tree of the alleles.

Model nP lnL Estimates of pa-
rameters

LRT P-value Positively sites

M3 (discrete) 81 −9330.3176 p0= 0.8126,
p1= 0.1727,
p2= 0.01473,
ω0 = 0.01711,
ω1 = 0.7739,
ω2= 2.5605

P <10 −9 200N*, 868T*, 869S**

M0 (one ratio) 77 −9567.0414 ω0= 0.1636 Not Allowed
M2a (selection) 80 −9331.9663 p0= 0.8393,

p1= 0.1533,
p2= 0.00744,
ω0= 0.02473,
ω1 = 1.00000,
ω2= 3.1041

P =0.0803 N/A

M1a (neutral) 78 −9334.4879 p0= 0.8392,
p1= 0.1608
ω0= 0.02390,
ω1= 1.0000

Not Allowed

M8a (beta& ω) 80 −9333.3117 p0= 0.8654,
p = 0.04277,
q = 0.3594
p1= 0.01345,
ω = 1.1155

P <10 −9 58G**, 200N**, 820A*,
867R*, 868T**, 869S**

M7 (beta) 78 −9358.5621 p = 0.03809,
q= 0.17020

Not Allowed

Notes.
P is the number of parameters in the ω distribution; lnL is the log likelihood; ω is ratio of dN /dS, LRT P-value indicates the
value of chi-square test; Parameters indicating positive selection are presented in bold; positive selection sites were identified
by the Bayes empirical Bayes (BEB) methods under M8 model or by Naive Empirical Bayes (NEB) methods under M3 and
M2a models.
The posterior probabilities (p)≥0.90, (p)≥0.95 and p≥ 0.99 are indicated by *, ** and ***, respectively. (Yang, 2007; Yang &
Bielawski, 2000) recommended that results from M8 model were preferred to find sites under positive selection pressure, and it
is more robust to recombination which was proved by Anisimova, Nielsen & Yang (2003)

individual L. pneumophia genes. Kenzaka et al. (2018) previously reported preferential
positive selection in F-Box Domain gene (lpp0233), and they found a higher ω in this
gene compared with those in other protein encoding genes and housekeeping genes.
However, the ω in lpp0233 was less than 1 (0.40), indicating that at the whole gene level,
the positive selection signal was still weak and codon level analysis was required. Costa
et al. (2014) also attempted to discover positive selection sites of sidJ by using the M8
model but failed because the likelihood ratio tests between M8 and M7 models showed
no significant difference. This might be due to the limited sidJ alleles (23 alleles) they
obtained, as the codeML algorithm was phylogeny-based, and more allelic profiles of a
gene could infer an authentic phylogenetic history much better. This result highlighted the
importance of using enough alleles of a gene for analyzing positive selection at the codon
level. We previously verified 14 positive selection sites of a key protein associated with an
antibiotic-resistance characteristic of methicillin-resistant Staphylococcus aureus, named
penicillin-binding protein (PBP) 2a (Zhan & Zhu, 2018). We found that all these sites in
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PBP2a have only one mutation profile. However, SidJ positive selection sites showed there
were more mutation profiles in a codon. Three mutation profiles including G58R, G58M,
and G58E were identified at codon 58. Four mutation profiles including N200T, N200I,
N200A, and N200V were identified at codon 200. Two mutation profiles including T868N,
T868P, and S869T, S869P were identified at codons 868 and 869, respectively (Table S4).
Most of these mutation profiles included changes in chemical properties of the amino acids
(e.g., amino acid polarity) (Table S4), which might affect the three-dimensional structure
of SidJ. SidJ modulates host cellular pathways through the membrane remodeling of L.
pneumophila (Luo, 2012). Given that SidJ interacts with both SdeA and eukaryotic CaM,
diversified mutation profiles of these positive selection sites might imply that sidJ was a
target for host specialization or selection and these mutations might increase the fitness of
L. pneumophila in certain environments, and in turn promote their survival in different
hosts (Costa et al., 2014; Park, Ghosh & O’Connor, 2020). However, the exact function of
these mutations requires further study.

Recombination and positive selection shape the population structure
of SidJ in L. pneumophila
The evolutionary history of the SidJ proteins corresponding to 39 alleles was studied by
using MEGA X. Similar topology of the trees was found when compared to that of the sidJ
alleles (Figs. 1B and 4). Three paired alleles (Lorraine and ATCC35096, Ice27 and Aco13,
and D5265 and D4954) encoded SidJ with the same protein sequences. The properties of
these alleles and the information of their representative strains were studied. Of the 39
sidJ alleles, some were distributed both in clinical and environmental strains, while some
were only distributed in environmental strains (Table S1). We defined those alleles that
could be found in clinical strains as clinically associated alleles. Among the 14 recombinant
alleles, 12 (85.71%) were clinically associated. In contrast, among the 25 non-recombinant
alleles, only 15 (60%) were clinically associated. This result suggested that recombinant
sidJ alleles were more likely to be clinically associated alleles, although not significant (P
=0.093, Chi-Square test). (Fig. 5A). A larger pool of L. pneumophila strains is required
to sufficiently explain the association of recombinant sidJ with clinical strain. Based on
this result, we propose that recombination is an important strategy for L. pneumophila
to survive in different environments, and for infecting human cells. We did find specific
mutation profiles of positive selection sites in clinically associated alleles (Fig. 5B) or
recombinant alleles (Fig. 5C), for example G58M mutation happened less frequently in
clinically associated alleles, while T868P, T869P happen more frequently in recombinant
alleles of sidJ (Table S5 and Figs. 5B–5C). Considering that the positive selection is usually
beneficial to the survival of the individual bacteria carrying the mutation, these results
indicated that mutations in positive selection sites increased SidJ variability, and made
more extensive the adaptability in environmental hosts for L. pneumophila. This might lead
to broad coevolution of L. pneumophila genes (e.g., sidJ ) with viable environmental hosts
before it could infect human cells and thus be of crucial importance in the virulence of
this bacteria. The fact that the finding of alleles harboring particular mutations in positive
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Figure 5 Phylogenetic relationships among SidJ proteins of L. pneumophila from different sources,
and with different mutation profiles at positive selection sites. (A) Numbers on the interior branches
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between different groups was carried out by using the Chi-square tests or Fisher’s Exact tests.

Full-size DOI: 10.7717/peerj.12000/fig-5

selection sites were more likely recombinants further demonstrated that recombination in
sidJ enhanced the environmental adaptability of some L. pneumophila strains (Fig. 5C).

Mutation of positive selection sites of SidJ might influence the
binding of CaM to SidJ
Here, the four definitive positive selection sites are located in the NTD and CTD, but
not in the KD. CaM binding is required by SidJ glutamylase activity. An IQ (I841 and
Q842) motif located in the C-terminal domain of SidJ is involved in CaM binding by
burying in a hydrophobic cleft of the CaM C lobe. The CTD of CaM semi-encircles the
C-terminal helix of SidJ and the NTD domain of CaM makes extensive contacts with the
N-terminus of SidJ (Bhogaraju et al., 2019). Residues in these domains also play roles in
mediating the formation of the SidJ-CaM complex, and in turn, stabilize the position of
the N-lobe of the KD, and thereby leading to the formation of a stable catalytic pocket
for SidES (Bhogaraju et al., 2019). A previous site-directed mutagenesis study verified the
importance of I841 and Q842 for optimal binding. In addition, some other sites including
Q830, S808, E812, R796, R660, R804 that engaged in hydrogen-bonding interactions
with corresponding CaM residues also showed the importance of the binding affinity of
SidJ with CaM (Gan et al., 2019). Therefore, the mutation on the positive selection sites
might change the level of interactions of SidJ with CaM through hydrogen bonds and salt

Zhan et al. (2021), PeerJ, DOI 10.7717/peerj.12000 14/24

https://peerj.com
https://doi.org/10.7717/peerj.12000/fig-5
http://dx.doi.org/10.7717/peerj.12000


E812

R38

T868 S869

I841

Q842

R796
R804

E812

S808

R660

Q830

Lorraine strain SidJ (58G)
Amino acid residues that defined to be 
important in the SidJ-CaM complex

A B

SidJ (T200)SidJ (N200)

K196

N200

S204

D

SidJ–CaM complex

SidJ (V200)

T200
S204

K196
P197

V200

K196

Lorraine strain SidJ (G58)

S808

C

R660R796

R804

S808

E812
Q830

I841

Q842

G58

E58

R796 R660
T868

S869

R804

S808

E812
Q830

T868
S869

I841

Q842

M58

R660

R796 T868
S869

I841

Q842

R804

S808

E812
Q830

 SidJ (G58)  G58 to Q842 59.5Å  SidJ (E58)  E58 to Q842 34.7Å  SidJ (M58)  M58 to Q842 45.9Å

Figure 6 Structure of SidJ and potential influence of mutation in positive selection sites. The yellow
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Full-size DOI: 10.7717/peerj.12000/fig-6

bridges. Structural studies on a truncated SidJ–CaM complex indicated that some of the
residues in the C- terminus of SidJ were crucial to the complex which is adjacent to the
IQ motif (Fig. 6A). Our protein structural modeling showed a similar three-dimensional
image as the truncated one (Fig. 6B). The definitive positive selection site on codon 58
of SidJ indicated that the mutation of this site was functional, although a previous study
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and are indicated when the values are> 0.5. Details of CaM from Homo sapiens and other potentialL. penumophila environmental hosts are shown
in Table S6. We utilized the CaM protein with the NCBI accession number AAD45181.1 as the representative for Homo Sapiens, AAA33172.1 as the
representative for Dictyostlium discoideum, XP_004334690.1 as the representative for Acanthamoeba castellanii, XP_002674748.1 as the representa-
tive for Naegleria gruberi, XP_001022775.2 as the representative for Tetrahymena thermophila, and XP_651708.1 as the representative for Entamoeba
histolytica. All three-dimensional structures of CaM are shown in the same visual angle.

Full-size DOI: 10.7717/peerj.12000/fig-7
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suggested that a truncated SidJ lacking the first 99 residues (SidJ(1N99)) showed activity
indistinguishable from that of the full-length protein (Gan et al., 2019). This implied that
a full-length protein of SidJ was required for a more detailed description of the function
of some important amino acid sites of the whole protein. As shown in Fig. 6C, the G58E
or G58M mutations significantly influence the three-dimensional structure of SidJ. The
G58E mutation might be associated with the interaction with CaM because it was spatially
closer to the I841 and Q842 than the original 58G (Fig. 6C). A similar explanation of the
influence of codons 868 and 869 was determined as they were closer to those that could
interact with CaM residues (Fig. 6B) and where the CaM docked and could mediate most
of the interactions with CaM (Bhogaraju et al., 2019). Although codon 200 of SidJ had
four mutation profiles, we found two of which might be functional. As shown in Fig. 6D,
the N200T and N200V mutations significantly affected the hydrogen bonds of SidJ. Two
hydrogen bonds of N200 could be formed with K196 and S204, while T200 could form
three ones with K196, P197, and S204. In contrast, V200 could only form one with K196
(Fig. 6D). The more hydrogen bonds indicated a more stable α-helix, in turn, stabilizes
the whole protein structure. Thus, the mutations in codon 200 may also mediate the
interaction between SidJ and CaM and all these mutations in the positive selection sites
could only adjust, but not abolish the affinity of CaM binding to SidJ. Based on protein
structure modeling, we propose a potential explanation of the influence of the mutation
on the four positive selection sites. Experimental data was still required to understand
the exact function of these mutations. Mutation in positive selection sites might facilitate
the survival of the lifeform containing mutated alleles. As an intracellular bacterium,
entering the host and establishing infection were crucial for L. pneumophila lifecycle, and
in which SidJ was dedicated to balance the host Ub ligase activity and was important
for successful infection. L. pneumophila was shown to survive as an intracellular parasite
of free-living protozoa in aquatic and moist soil environments (Bhogaraju et al., 2019;
Fields, Benson & Besser, 2002; Gan et al., 2019). Protozoa provide a specific environment
for gene exchange between L. pneumophila and other microorganisms invading them as
pathogens or symbionts, also protozoa might be act as donors and transfer their own DNA
to L. pneumophila (Mondino, Schmidt & Buchrieser, 2020). Many potential environmental
hosts of L. pneumophila have been identified, including Dictyostelium discoideum (soil
amoeba), Acanthamoebae castellanii, Entamoeba histolytica, Naegleria, and Tetrahymena,
etc. (Hagele et al., 2000; Steinert et al., 1994;Rowbotham, 1980; Swart et al., 2018). Figure 7A
showed the phylogenetic relationship of CaM among humans and potential hosts of L.
pneumophila. Despite that CaM was relatively conserved, the protein sequences of CaM in
these eukaryotes are variable (Fig. 7B, Table S6). And this might lead to a slightly structural
difference among human CaM and those of protozoa hosts of L. pneumophila (Fig. 7C).
Given that most of the time L. pneumophila is inhabiting in environmental hosts, we
also propose that the variability in SidJ, especially that in positive selection sites might
be important towards L. pneumophila survival in different environmental hosts and has
an adaptive function to a broad selection of environments. The exact functions of these
mutations to L. pneumophila living in the environmental host are worthy of further study.
These results also suggested that more natural variants of a protein from a broad-host
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bacterium were required to discover the mechanism of how this protein and its variants
are involved in the infection.

CONCLUSIONS
We presented molecular evolution analyses on a large and comparative set of sidJ alleles,
derived from a collection of L. pneumophila strains.We found that among the 39 recognized
sidJ alleles, about one-third were recombinants generated by eight PREs. Intragenic
recombination also drove the sidJ diversification manifested by a higher genetic diversity
in the recombinants as compared with that in non-recombinants. In addition, we found
definitive positive Darwinian selection of SidJ at the codon level. Four codons in the
NTD and CTD domains of SidJ were identified, and their mutation profiles were also
determined. Protein structural modeling of SidJ provided possible functional explanations
for the mutations in positive selection sites. It might influence the binding affinity of
CaM to SidJ, thus regulate SidJ glutamylase activity to SidEs, and in turn balance the
Ub ligase activity in different hosts. This study gave us a deeper understanding of the
adaptive mechanisms of this intracellular bacterium to different hosts and highlighted the
importance of the NTD and CTD domains in SidJ kinase activity that is activated by the
binding of CaM. Further studies should focus on experimental evidence to illustrate the
function and mechanism of natural sidJ mutants (with a mutation in positive selection
sites) in regulating balanced Ub ligase activity in different L. pneumophila hosts.
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