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Abstract: Since the pioneering work of John Gofman in the 1950s, our understanding of high 

density lipoprotein cholesterol (HDL-C) and its relationship to coronary heart disease (CHD) 

has grown substantially. Numerous clinical trials since the Framingham Study in 1977 have 

demonstrated an inverse relationship between HDL-C and one’s risk of developing CHD. Over 

the past two decades, preclinical research has gained further insight into the nature of HDL-C 

metabolism, specifi cally regarding the ability of HDL-C to promote reverse cholesterol transport 

(RCT). Recent attempts to harness HDL’s ability to enhance RCT have revealed the complex-

ity of HDL-C metabolism. This review provides a detailed update on HDL-C as an evolving 

therapeutic target in the management of cardiovascular disease.
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Introduction
In the early 1900s, a German chemist named Adolph Windaus determined atheromatous 

plaque from human aortas contained 20-fold higher concentrations of cholesterol than 

normal aortas. Soon after, the Russian pathologist Nikolai Anitschov strengthened 

this observation by feeding rabbits a high-cholesterol diet and creating the fi rst animal 

model of atherosclerosis (Khavkin et al 1975; Vance et al 2000). In 1955, a biophysi-

cist named John Gofman used ultracentrifugation to separate plasma lipoproteins by 

density and correlated risk of myocardial infarction (MI) with elevated low-density 

lipoprotein cholesterol (LDL-C) levels. Henceforth, the ‘lipid hypothesis’ proposed 

that elevated LDL-C, elevated triacylglycerols (TG), and low levels of high density 

lipoprotein cholesterol (HDL-C) were causally associated with an increased risk of 

coronary heart disease (CHD) (Soloff 1998).

In 1977, the Framingham Study showed that elevated LDL-C and reduced HDL-C 

levels independently predict one’s risk for developing cardiovascular disease (Gordon 

et al 1977). Since the fi rst Adult Treatment Panel (ATP) recommendations in 1988 

[Expert Panel on Detection, Evaluation, and Treatment of High Blood Cholesterol 

in Adults (Adult Treatment Panel II) 1993], guidelines have increasingly focused on 

aggressive management of elevated LDL-C in populations at risk for CHD. According 

to the National Cholesterol Education Panel (NCEP) ATP III guidelines published 

in 2001, patients with established CHD, non-coronary atherosclerosis, diabetes mel-

litus, or greater than two major cardiac risk factors with a calculated Framingham 

risk score of greater than 20% should have an LDL-C goal of less than 100 mg/dL 

[Expert Panel on Detection, Evaluation, and Treatment of High Blood Cholesterol in 

Adults (Adult Treatment Panel III) 2001]. Subsequently, the Heart Protection Study 

(HPS) (MRC/BHF Heart Protection Study 1999) and Pravastatin or Atorvastatin 
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Evaluation and Infection Therapy (PROVE-IT) (Cannon 

et al 2004) trial reported incremental 22% and 16% reduc-

tions, respectively, in the risk of cardiovascular events with 

LDL-C levels lowered below 100 mg/dL. Based on these 

data, an “optional” target of therapy focusing on aggressive 

LDL-C lowering less than 70 mg/dL for patients with known 

coronary disease or CHD equivalent status has been proposed 

(Grundy et al 2004).

However, despite lowering LDL-C to levels recom-

mended by the NCEP in 90% of treated patients, an overall 

reduction of only 20%–35% in the rate of cardiovascular 

events has been observed in randomized trials (Shah et al 

2002). Moreover, nearly 15% of patients with acute myocar-

dial infarction (MI) have LDL-C levels less than 100 mg/dL 

at presentation (Forrester et al 2005), suggesting that previ-

ously cited LDL-C targets remain too high or the benefi t of 

very aggressive LDL-C lowering is quite limited. The Treat-

ing to New Targets (TNT) trial (LaRosa et al 2005) showed 

a 2.2% absolute and a 22% relative risk reduction for major 

cardiovascular events in patients receiving high dose com-

pared to low dose atorvastatin. The mean LDL-C levels were 

77 mg/dL in the high dose statin group versus 100 mg/dL in 

the low dose statin group. Thus, while great emphasis has 

been placed on the importance of LDL-C lowering in CVD 

risk reduction, there is growing interest directed at raising 

HDL-C levels for further risk reduction.

At present, no approved therapies increase HDL-C 

levels by any comparable magnitude to therapies designed 

to lower LDL-C levels. This review provides a detailed 

update on HDL-C as a therapeutic target for CVD risk 

reduction.

HDL-C and coronary heart disease
Substantial epidemiologic evidence suggests a negative lin-

ear correlation between HDL-C levels and the incidence of 

CHD. First proposed by Barr and colleagues in 1951 (Barr 

et al 1951), an inverse relationship between HDL-C and 

cardiovascular disease was not well established until the 

Framingham study in the 1970s (Gordon et al 1997). This 

analysis of 2815 men and women aged 49–82 years identi-

fi ed HDL-C as a powerful risk factor inversely associated 

with the incidence of CHD. Similarly, in the early 1980s, the 

Prospective Cardiovascular Munster (PROCAM) (Kannel 

1983) study evaluated 4559 male participants aged 40–64 

years and found a strong negative linear correlation between 

the incidence of CAD and HDL-C levels (CHD risk ratio 

of 4.0 for HDL-C �25 mg/dL versus 1.0 for HDL-C �65 

mg/dL, p � 0.001).

Data from four studies (Framingham Heart Study, the 

Lipid Research Clinic Prevalence Mortality Follow-up Study, 

Lipid Research Clinic Primary Prevention Trial, and Multiple 

Risk Factor Intervention Trial) estimate a 2% reduction in 

cardiovascular risk for every 1 mg/dL increase in serum 

HDL-C (Gordon et al 1989; Castelli et al 1992; Multiple 

Risk Factor Intervention Trial 1982). Individuals with low 

HDL-C (�40 mg/dL in men and �50 mg/dL in women) are 

at increased risk of CVD (Miller et al 1977), restenosis fol-

lowing coronary balloon angioplasty (Shah and Amin 1992) 

and cardiovascular death (Wilson et al 1988).

One of the fi rst trials demonstrating the benefi t of raising 

HDL-C and lowering TG levels in individuals with low 

baseline HDL-C levels was the Helsinki Heart Study (HHS) 

(Manninen et al 1992), in which 4081 men with dyslipidemia 

were randomized to receive gemfi brozil (600 mg twice 

daily) or placebo. At 5 years of follow-up, gemfi brozil 

therapy increased HDL-C levels by 11% and reduced total 

cholesterol (TC), LDL-C, and TG levels by 10%, 11%, and 

35% respectively. Gemfi brozil therapy reduced the primary 

end point of cardiac death or non-fatal MI by 34% (27.3 vs 

41.4/1,000, p � 0.02) with the greatest reduction found in 

patients with low HDL-C and high TG at baseline (Manttari 

et al 1990).

The Air Force/Texas Coronary Atherosclerosis Pre-

vention Study (AFCAPS/TexCAPS) (Downs et al 1998) 

compared treatment with lovastatin versus placebo for the 

prevention of a fi rst major coronary event in adults with 

average TC and LDL-C levels, but low baseline levels of 

HDL-C. Lovastatin decreased both TC and LDL-C levels by 

18% and 25%, respectively, while increasing HDL-C levels 

by 6%. After more than 5 years of follow-up, the absolute 

risk in the primary composite end point of fatal or non-fatal 

MI, unstable angina, or sudden cardiac death was reduced 

in absolute terms by 2.2% in men and 1.2% in women with 

a relative risk reduction of 37%. This study was the fi rst 

primary prevention study to show that individuals with 

HDL-C �40 mg/dL received the greatest benefi t, suggesting 

the lower cutpoint HDL-C of 35 mg/dL in ATP II should be 

raised to 40 mg/dL in ATP III. These clinical trials confi rm 

an increased risk associated with low serum levels of HDL-C 

and the benefi cial effects of pharmacotherapy in adults with 

low HDL-C in primary prevention.

Patients with manifest CHD also benefi t from raising 

HDL-C and lowering TG. The Veterans Affairs High-Density 

Lipoprotein Cholesterol Intervention Trial (VA-HIT) com-

pared treatment with gemfi brozil versus placebo in more 

than 2500 men with established CHD, average LDL-C levels 
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(�140 mg/dL), and low HDL-C levels (�40 mg/dL). After a 

mean follow-up of 5 years, gemfi brozil decreased TG levels 

by 31% and increased HDL-C levels by 6%, while levels 

of LDL-C remained quantitatively unchanged; there was a 

relative risk reduction of 22% (17.3% vs 21.7% p � 0.006) 

in CHD death and non-fatal MI in the treatment group. 

Gemfi brozil therapy was associated with a 24% relative risk 

reduction in the composite end point of nonfatal MI, stroke, 

and CHD death (p � 0.001) (Rubins et al 2001).

The Scandanavian Simvastatin Survival Study Group 

(4S) was a large, randomized, placebo-controlled trial 

evaluating simvastatin (20–40 mg/day) in 4444 men and 

women aged 35–70 years over a median follow-up period 

of 5.4 years. Simvastatin therapy decrease TC and LDL-C 

(25% and 35%, respectively) and increased HDL-C by 8% 

compared to placebo. Simvastatin treatment resulted in a 

30% relative risk reduction in overall mortality (8.2% vs 

11.5%, p = 0.0003) and reduced non-fatal MI, ischemic heart 

disease death, and coronary revascularization (Scandinavian 

Simvastatin Survival Study Group 1994).

The Bezafi brate Infarction Prevention Study (BIPS) was 

a blinded, placebo-controlled trial of bezafi brate therapy in 

3122 patients with previous MI or angina pectoris and base-

line LDL-C �180 mg/dL, HDL-C �45 mg/dL, and TG �300 

mg/dL. At 5–7 years of follow-up, bezafi brate increased 

HDL-C more than 15% and decreased TG levels by 25%. 

The overall relative reduction in the primary end point of 9% 

was not statistically signifi cant; however, a 40% relative risk 

reduction was observed in patients with baseline TG �200 

mg/dL, suggesting fi brates may be benefi cial in patients with 

known CAD and elevated TG levels (Kaplinsky 1998).

Based on the epidemiologic data available, the NCEP ATP 

III guidelines raised the cut-point for low HDL-C levels from 

35 mg/dL to 40 mg/dL, thereby identifying a larger number of 

adults at risk for developing CHD. Current guidelines defi ne 

“high” HDL-C levels as above 60 mg/dL (Grundy et al 2004). 

The defi nition of “optimal” HDL-C will likely undergo further 

modifi cation as data becomes available.

HDL-C metabolism and reverse 
cholesterol transport (RCT)
By transporting excess cholesterol from peripheral cells 

to the liver for excretion in a process known as reverse 

cholesterol transport (RCT), HDL-C may retard the pro-

gression of atherosclerosis. In animal studies, exogenous 

infusions of HDL-C or apolipoprotein A-1 (Apo AI), the 

major apolipoprotein associated with HDL-C, prevents 

atherosclerosis from developing or progressing (Badimon 

et al 1990; Duverger et al 1996). Similar fi ndings have been 

reported in animal models of Apo AI gene over-expression 

(Dimayuga et al 1999). Harnessing this unique ability of 

HDL-C requires further insight into the basic mechanisms 

of HDL-C metabolism.

HDL-C metabolism involves numerous enzymes and 

unique nuclear transcription regulatory proteins intimately 

linked to other lipoproteins. HDL-C is a macromolecule 

containing lipids and proteins that transport water-insoluble 

fats in blood. A phospholipid (PL) monolayer containing 

free cholesterol (FC) and apolipoproteins (Apo) surrounds 

a non-polar lipid core containing FC and TG. Apo AI and 

AII are the major protein components of HDL-C. Apo AI 

is produced by the liver and intestines and constitutes 70% 

of HDL-C protein content. Apo AII is produced only by the 

liver and constitutes 20% of HDL-C protein content. While 

Apo AI is ubiquitously associated with HDL-C, Apo AII is 

found in about 60% of HDL-C molecules (Lewis et al 2005). 

Apolipoproteins serve as receptor ligands and enzymatic 

catalysts for all circulating liporoteins.

Clinical observations of premature CHD in patients with 

inherited disorders of metabolism resulting in low circulating 

HDL-C levels, such as homozygous Apo AI/CIII defi ciency 

and hypoalphaproteinemia support the association between 

low serum HDL-C levels and atherosclerosis (Forte TM 

1984). Conversely, individuals with inherited defects result-

ing in low serum HDL-C levels have variable or no premature 

CHD (eg, Tangier disease, Apo AI Milano, and familial 

lecithin:cholesterol acyltransferase (LCAT) defi ciency), 

highlighting the complexity of HDL-C metabolism (Miller 

et al 1990; Elkhalil et al 1997). Characterized in 1968 by 

Glomset, RCT can be divided into four phases (Glomset 

1968) (Figure 1).

Phase one: nascent HDL-C acquires 
free cholesterol
The nascent form of circulating HDL-C rich in Apo AI, 

termed discoidal pre-β HDL, removes FC and PL from 

peripheral cells throughout the body by interacting with 

a membrane associated protein ubiquitously expressed in 

peripheral tissues, known as ATP-binding cassette transporter 

1 (ABCA1). Pre-β HDL is rich in Apo AI and serves as a tem-

plate for the generation of lipid-rich HDL-C (Sviridov et al 

2002). Pre-β HDL is generated by either de novo secretion 

from hepatocytes or the intestinal mucosa, direct dissociation 

from chylomicrons and very low density lipoprotein (VLDL) 

mediated by lipoprotein lipase (LL), or as a by-product of 

HDL-C particle interconversion (Kwiterovich 1998).
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Once generated, pre-β HDL receives PL and FC from 

peripheral cells by associating with the surface protein ABCA1 

(Oram and Lawn 2001), which is expressed by the liver and 

intestinal mucosa. Patients with Tangier Disease, an autoso-

mal recessive disorder characterized by two non-functional 

ABCA1 alleles and extremely low levels of HDL-C, exemplify 

the signifi cance of ABCA1 in HDL-C metabolism (Bodzioch 

et al 1999). Heterozygous individuals with a partial reduction 

in functional ABCA1 have a corresponding 50% decrease in 

serum HDL-C levels (Marcil et al 1999).

Animal models further support the critical role of ABCA1 

in RCT. ABCA1-defi cient mice generated by targeted gene 

ablation in DBA-1J embryonic stem cells demonstrated a 

99.5% and 99.8% reduction in serum HDL-C and Apo AI 

levels, respectively. In this model, loss of ABCA1 correlated 

with increased accumulation of lipid-laden macrophages, an 

integral component of atherosclerotic plaque (McNeish et al 

2000). Conversely, overexpression of ABCA1 in transgenic 

mice is associated with increased TC, HDL-C levels, and Apo 

AI with enhanced cholesterol effl ux and reduced levels of 

atherogenesis (Brewer et al 2004). Finally, crossing trans-

genic mice overexpressing ABCA1 with athero-susceptible 

transgenic mice, such as LDL receptor (LDLr) or Apoli-

poprotein E knockout (KO) models, reduced atheromatous 

progression (Joyce et al 2003).

ABCG1 is another member of the ATP-binding cassette 

family that promotes effl ux of PL and FC from macrophages 

to mature HDL-C rather than pre-β HDL (Kennedy et al 2005) 

Macrophages defi cient in ABCG1 also have impaired FC effl ux 

and accumulate excess cholesterol (Out R 2006). Taken together, 

these data suggest that both ABCA1 and ABCG1 are potential 

therapeutic targets to raise HDL-C and promote RCT.

Transcription of both ABCA1 and ABCG1 is regulated by 

members of a steroid superfamily of nuclear receptors known 

as the Liver X receptor/Retinoid X receptor (LXR/RXR) 

heterodimer. When activated by oxysterols from FC this 

heterodimer stimulates ABCA1 and ABCG1 gene expression, 

thereby enhancing cholesterol effl ux (Vaughan and Oram 2005; 

Venkateswaran et al 2000). The heterodimer is also regulated 

by the activity of peroxisome proliferator-activated receptors 

(PPAR) α and γ, which are closely linked to insulin resistance 

and the metabolic syndrome (Anderson et al 2004). PPAR-α 

and PPAR-γ agonists have been shown to upregulate LXR and 

ABCA1 expression and promote macrophage cholesterol effl ux 

Figure 1 HDL-C mediated reverse cholesterol transport. Reverse cholesterol transport (RCT) can be divided into four phases. 1) transfer of free cholesterol (FC) to pre-b 
HDL via ABCA1, 2) esterifi cation of surface-associated FC by the enzyme Lecithin:acyl CoA Transferase (LCAT), 3) transfer of FC and triglycerides (TG) between HDL-C 
and Apo B-containing lipoproteins mediated by the enzyme cholesteryl ester transfer protein (CETP), and 4) uptake by the scavenger receptor B1 (SR-B1) and catabolism of 
mature HDL-C into bile or small HDL-C particles by hepatic lipase (HL). Apo B-containing lipoproteins can be acquired by the LDL-receptor (LDLr) for hepatic catabolism.
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(Schmitz et al 2002; Chawla et al 2001). Synthetic LXR agonists 

also promote cholesterol effl ux in vivo and promote regression 

of atherosclerosis in mice (Bruemmer and Law 2005).

Phase two: lecithin: acyl CoA 
transferase (LCAT) esterifi es free 
cholesterol
As FC is acquired from peripheral tissues, pre-β HDL 

matures from an incipient discoidal form into a larger 

spherical molecule. Newly acquired FC undergoes 

esterfi cation to form cholesteryl esters (CE) which migrate 

to the center of the discoidal pre-beta HDL molecule. The 

spherical morphology of mature α-HDL-C promotes further 

HDL-C metabolism and cholesterol effl ux (Wang and Briggs 

2004). Cholesterol esterifi cation prevents transfer of FC back 

to the periphery, thereby potentiating further RCT.

Mediating this necessary step in HDL-C maturation is the 

enzyme LCAT, which is synthesized by the liver. Circulating 

LCAT esterifi es lecithin and FC on both HDL-C and Apo B 

lipoproteins. The phospholipid component of HDL-C appears to 

mediate binding to LCAT, while the apolipoprotein component 

activates the enzyme (Furbee et al 2002). Recent evidence 

suggests that increased glycation of Apo A1 in subjects with 

diabetes progressively decreases the rate of LCAT-mediated 

cholesterol esterifi cation (Nobecourt et al 2007).

Familial LCAT defi ciency (FLD) and fi sh-eye disease 

(FED) are distinct inherited syndromes associated with absent 

or impaired LCAT expression, respectively. Low HDL-C lev-

els and corneal opacifi cation characterize both diseases, while 

individuals with FLD also suffer from anemia and renal fail-

ure. Variable degrees of premature atherosclerosis have been 

observed in these populations (Funke et al 1991). Conversely, 

over expression of human LCAT in transgenic animal models 

correlates with a 7-fold increase in serum HDL-C, increases 

in Apo AI levels, and a marked reduction in atheromatous 

plaque burden (Francone et al 1990). These fi ndings suggest 

that LCAT over expression may serve as a novel therapeutic 

target in the prevention and treatment of CHD.

Phase three: cholesterol ester 
transfer protein (CETP) mediates 
exchange of cholesterol esters 
between HDL-C and Apo B 
lipoproteins
The enzyme cholesteryl ester transfer protein (CETP) 

exchanges CE from HDL-C for TG in LDL-C and VLDL. 

Newly acquired CE in VLDL and LDL-C is then taken up by 

the hepatic LDLr for excretion as bile (Morton and Greene 

1997). Found predominantly in the liver, spleen, and adipose 

tissue, expression of CETP is enhanced by hypercholester-

olemic diets via activation of a sterol regulatory protein and 

through binding of oxysterols to the LXR/RXR receptor 

(De Grooth et al 2004).

Heritable CETP defi ciencies in the Japanese population 

are associated with signifi cant increases in large HDL-C 

particles and smaller LDL-C particles with a lower affi n-

ity for LDL-C receptors (Inazu et al 1990). Heterozygotes 

with a 40% decrease in CETP levels had a mean increase in 

HDL-C of 30% and no signifi cant change in LDL-C levels, 

while homozygotes with complete loss of CETP levels had 

a greater than 100% increase in HDL-C and 40% decrease 

in LDL-C and Apo B levels (Inazu et al 1990; Koizumi 

et al 1991). Despite these fi ndings the correlation between 

low CETP levels and reduced CHD risk remained elusive 

as heterozygotes defi cient in CETP continue to manifest 

atherosclerotic coronary disease (Hirano et al 1995).

Two population studies have associated high CETP levels 

with an increased risk of CHD. A nested case control study 

known as the European Prospective Investigation into Can-

cer and nutrition (EPIC)-Norfolk cohort study suggested an 

increased CHD risk in patients with elevated TG and elevated 

CETP levels (Boekholdt et al 2004). Data from the Regres-

sion Growth Evaluation Statin Study (REGRESS) (Klerkx 

et al 2004) study also associated high CETP levels and 

rapid progression of established CHD in men. In this study, 

treatment with pravastatin signifi cantly improved lipid and 

angiographic parameters in patients with high baseline CETP 

independent of baseline lipids, suggesting plasma CETP 

levels may be a marker of response to statin therapy.

The role of CETP in modulating atherogenesis is complicated 

by dual pro-atherogenic and anti-atherogenic effects of 

transferring CE and TG between lipoproteins (Figure 2).

Potential proatherogenic properties of CETP activity 

include: 1) TG-laden HDL-C particles may undergo enhanced 

renal excretion thereby reducing total circulating HDL-C 

levels and RCT, 2) CE-laden VLDL and LDL-C particles 

may be acquired by peripheral macrophages and promote 

atherosclerosis, and 3) CETP also transfers TG from VLDL 

to LDL-C thereby generating small atherogenic LDL particles 

(Hirano et al 2000; Barter et al 2003).

However, complete abolition of CETP activity results in 

large, cholesterol-laden, dysfunctional HDL-C with reduced 

cholesterol effl ux RCT capacity (Yamashita et al 1988; Sakai 

et al 1991; Ikewaki et al 1995). Furthermore, CETP activity 
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may be anti-atherogenic if CE-laden lipoproteins are bound by 

the LDLr for hepatic uptake and excretion. CETP activity may 

promote RCT by stimulating LCAT activity and regenerating 

pre-β HDL (Brewer et al 2004). For this reason, partial inhibi-

tion of CETP activity has been the focus of novel therapeutic 

strategies employing CETP inhibition as discussed below.

Phase four: HDL-C catabolism
As CE accumulate in its central core, pre-β HDL-C matures 

into larger HDL-C particles known as HDL-3 and HDL-

2. These larger molecules undergo hepatic catabolism 

and excretion in bile. HDL-C catabolism is mediated by 

4 mechanisms: 1) hepatic uptake of larger HDL-C particles 

via hepatic scavenger receptor B1 (SR-B1) receptors for 

excretion as bile, 2) metabolism of mature HDL-C by hepatic 

lipase (HL) to smaller particles devoid of lipid and rich in Apo 

AI, 3) renal uptake of smaller HDL-C particles mediated by 

apo-E receptors such as cubulin, or 4) LDLr-mediated hepatic 

uptake of LDL-C and VLDL-C after acquiring CE via CETP 

activity (Moestrup and Koz 2000; Lewis 2006).

Pleiotropic effects of HDL-C: 
beyond RCT
The vasoprotective properties of HDL-C extend beyond 

its ability to initiate RCT (Figure 3). Substantial evidence 

supports the contention that HDL-C and Apo AI prevent 

oxidative damage, inhibit systemic infl ammation, promote 

vascular reactivity and integrity, and prevent thrombosis 

(Hayek et al 1995; Watson 1995; Navab et al 1996; 

Bonnefant-Rousselot et al 1999; Mineo et al 2006).

Antioxidant effects of HDL-C
The major anti-oxidant effects of HDL-C are mediated 

by two associated enzymes paroxonase (PON) and 

platelet-activating factor acetylhydrolase (PAFAH) (Graham 

et al 1997). PON, an arylesterase enzyme carried by Apo AI, 

inhibits oxidation of LDL-C (Mackness et al 2000). LDLr-

null mice lacking PON are susceptible to organophosphate 

toxicity and manifest accelerated atherosclerosis (Shih et al 

1998). In epidemiologic studies, genetic polymorphisms of 

the PON gene may be associated with an increased risk of 

CHD (Hegele 1999).

Platelet activating factor (PAF) is a potent phospholipid 

released by activated endothelial cells. PAF promotes cell 

adhesion, platelet aggregation, and vascular permeability. 

HDL-C inhibits PAF production by endothelial cells in 

dose-dependent manner (Sugatani et al 1996) via hydrolysis 

of acetyl residues mediated by PAFAH. Genetic polymor-

phisms of the enzyme PAFAH have been associated with 

an increased risk of acute MI (Liu et al 2006). PAFAH also 

Figure 2 Dual nature of CETP activity. By shuttling cholesteryl esters (CE) and triglycerides (TG) between HDL-C and Apo B-associated lipoproteins, the enzyme cholesteryl 
ester transfer protein (CETP) creates substrate for both pro-atherogenic and anti-atherogenic pathways.
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degrades oxidized LDL-C and inhibit oxidation of LDL-C 

(Mackness et al 2004; Arakawa et al 2005).

Anti-infl ammatory effects of HDL-C
The role of infl ammation in atherogenesis has been well-

established by a number of studies demonstrating accumulation 

of macrophages derived from circulating monocytes in 

atheromatous plaques. Anti-infl ammatory effects of HDL-C 

include: 1) neutralization of lipopolysaccharide-induced 

tumor necrosis factor alpha (TNF-α) release, 2) inhibition 

of complement activation, 3) inhibition of vascular cell 

adhesion molecules (VCAM) and monocyte chemotactic 

protein (MCP-1), which are known to mediate monocyte-

endothelial cell interaction, and 4) induced expression of the 

anti-infl ammatory cytokine transforming growth factor-beta 

2 by HDL-3 (Dimayuga et al 1999; Shah et al 2001; Calabresi 

et al 2003; Barter et al 2004; Norata et al 2005).

Effects of HDL-C on endothelial function 
and integrity
In patients with known CAD, elevation of HDL-C 

levels via pharmacologic therapy improves endothelial 

function (O’Connell et al 2001). In patients with 

CHD, HDL-C levels correlate positively with coronary 

vasomotor tone (Zeiher et al 1994). In vitro, HDL-C 

enhances endothelial nitric oxide synthase (eNOS) 

activity (Kuvin et al 2002). The mechanism of HDL-C 

mediated eNOS activation remains unknown, however 

may involve an interaction between endothelial SR-B1 

and Apo AI (Yuhanna et al 2001). In a murine model 

of myocardial infarction, exogenous administration 

of human HDL-C increases myocardial perfusion as 

measured by 99mTc-MIBI uptake via NOS-dependent 

mechanisms (Levkau et al 2004).

HDL-C also enhances endothelial integrity. HDL-C 

inhibits endothelial apoptosis induced by TNF-α in a 

dose-dependent manner by inhibiting caspase 3 activity 

(Sugano et al 2000). HDL-associated lysosphingolipids 

also suppress mitochondrial pathways of apoptosis by 

activating the anti-apoptotic serine/threonine protein 

kinase, Akt (Nofer et al 2001). HDL-C also promotes 

endothelial cell proliferation via a mechanism involving 

increased phospholipase C activity (Darbon et al 1986; 

Honda et al 1999).

Figure 3 Approaches to enhance HDL-C levels and activity.
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Antithrombotic effects of HDL-C
HDL-C is also associated with anti-thrombotic and pro-

fi brinolytic effects. HDL-C inhibits platelet aggregation by 

blocking thromboxane-A2 (TXA2) and PAF activity, while 

stimulating nitric oxide (NO) and PGI2 synthesis (Saku et al 

1985; Naqvi et al 1999). In the Atherosclerosis Risk in Com-

munities (ARIC) study, HDL-C levels inversely correlated 

with circulating von Willebrand factor (vWF) levels, suggest-

ing that HDL-C may prevent synthesis of this pro-thrombotic 

protein. HDL-C also enhances the anti-thrombotic activity 

of protein C and protein S (Griffi n et al 1999). HDL-C may 

also attenuate the activity of tissue factor, a potent stimulant 

of the extrinsic coagulant pathway (Carson 1981).

Taken together, the pleiotropic effects of HDL-C suggest 

that its use either as a supplement or an infusion may not be 

limited to chronic therapy, but may eventually play a role in 

the acute management of vascular disorders. To date, exog-

enous infusions of synthetic HDL-C have been effective in 

animal models of atherosclerosis (Shah et al 2001), restenosis 

after angioplasty (Ameli et al 1994), vascular thrombosis 

(Li et al 1999), myocardial ischemia-reperfusion injury 

(Calabresi et al 2003), and septic shock (McDonald et al 

2003). Approaches to raise HDL-C levels and subsequently 

promote RCT include lifestyle modifi cations, standard phar-

macologic therapy, and several emerging therapeutics based 

on metabolic targets involved in RCT (Figure 3).

Approaches to raising HDL-C levels: 
lifestyle modifi ctions
Exercise and weight loss
Numerous studies associate excess body weight with higher 

TC, LDL-C, and TG levels and lower HDL-C levels. Active 

weight loss improves HDL-C levels, while decreasing 

LDL-C levels (8% decrease for every 1 kg of weight lost). A 

meta-analysis of 70 studies examining the effects of weight 

reduction on lipid profi les published between 1966 and 1989 

demonstrated a 1 mg/dL increase in HDL-C for every 3 kg of 

weight lost (Dattilo et al 1992). A one-year randomized con-

trolled study evaluating weight loss on plasma lipid profi les 

in 131 overweight sedentary men demonstrated a signifi cant 

increase in plasma HDL-C levels (44 mg/dL with exercise, 47 

mg/dL with diet, versus 40 mg/dL in controls; p � 0.01), while 

LDL-C levels remained unchanged (Wood et al 1998).

As a means to reducing weight, regular aerobic exercise 

increases HDL-C by 10%–20% on average in sedentary 

adults (Williams 1997). Previous studies report an increase in 

HDL-C levels by 1 mg/dL for every 4 to 5 miles run per week 

(ie, 49 mg/dL with 5 miles (8 km) run per week, 51 mg/dL 

with 9 miles (15) run per week, 53 mg/dL with 12 miles 

(20 km) run per week, and 57 mg/dL with 31 miles (50 km) 

run per week; p � 0.001 versus non-runners) (Kokkinos et al 

1995). While exercise quantity and intensity differ between 

studies, the duration of aerobic exercise rather than intensity 

appears to have a greater impact on HDL-C levels (Durstine 

et al 2001).

Variable changes in HDL-C have been observed in 

response to exercise. Some individuals signifi cantly increase 

HDL-C levels after 8 weeks of regular aerobic exercise (run-

ning), while other individuals may not manifest changes in 

HDL-C for nearly 2 years (Durstine et al 2001). In another 

study, no signifi cant change in HDL-C was observed in 

adults with low HDL-C and moderately elevated LDL-C 

after 6 weeks of walking or jogging 10 miles (16 km) per 

week (Stefanick et al 1998). Moreover, women appear to 

experience greater improvement in HDL-C with cardiac reha-

bilitation than men (Savage et al 2004). In general, HDL-C 

increases with exercise supporting the recommendation of a 

program of regular, brisk aerobic exercise program most days 

of the week (US Department of Health and Human Services 

1999). The mechanisms, by which exercise and reduced 

weight increase HDL-C likely involves enchanced lipopro-

tein lipase (LL) activity, increased RCT, and increased levels 

of pre-β HDL (Gupta et al 1993; Sviridov et al 2003).

Dietary modifi cations
Major dietary infl uences on HDL-C levels include total fat 

intake (independent of fat type), trans – fatty acids, and 

alcohol intake (Thornton et al 1983; Rossner and Bjor 1987; 

Lichtenstein 1999). A low saturated fat diet lowers both 

LDL-C and HDL-C. In a recent study, 11 healthy volunteers 

were randomized to either a low fat diet (19% fat) or a high fat 

diet (50% fat) (Meksawan et al 2004). Individuals consuming 

a low fat diet had a signifi cantly (p � 0.05) lower HDL-2 

subpopulation (54 ± 3 vs 63 ± 3 mg/dL) and Apo AI (118 ± 

4 vs 127 ± 3 mg/dL) compared with subjects consuming a 

high fat diet. In addition, reduced dietary fat has been shown 

to signifi cantly decrease HDL-C
2
 fractions, which has been 

linked to antiatherogenic effects of HDL-C (Berglund et al 

1999). This suggests that low fat diets may adversely affect 

the most antiatherogenic HDL subpopulation. However, a 

simultaneous decrease in LDL-C with low fat diets appears 

to be more clinically important than the reduction in HDL-C 

levels.

High consumption of n-3 polyunsaturated fatty acids 

observed in Native Chukot Peninsula residents is associ-
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ated with higher HDL-C/Apo AI ratios and increased 

cholesterol effl ux from cellular membranes to HDL-C 

(Gerasimova et al 1991). Consumption of foods high in 

n-3 polyunsaturated fats (cold-water fi sh, some shellfi sh, 

as well as fl ax seed, canola, soybean oils and walnuts) 

increase HDL-C. However, the ability of n-3 polyunsatu-

rated fats to raise HDL-C maybe infl uenced by TG levels. 

Dietary modifi cation with omega-3 fatty acids (fi sh oil), 

such as eicosapentaenoic acid and docosahexaenoic acid, 

leads to signifi cant reductions in VLDL-C (25%–30%) 

and triglyceride levels, yet exerts only a modest effect 

on HDL-C levels (0 to 3% increase) in patients with TG 

levels above approximately 175 mg/dL (Kris-Etherton et al 

2002). This suggests that optimization of an individuals 

TG must occur before a clinically signifi cant increase in 

HDL-C in response to a diet high in n-3 polyunsaturated 

fats is observed.

Moderate alcohol consumption has been shown to elevate 

HDL-C levels (Ellison RC 2004). Mechanisms by which 

alcohol consumption increases HDL-C may involve changes 

in Apo AI synthesis and transportation, inhibition of CETP 

activity and stimulation of early steps in RCT (Van der 

Gaag et al 2001). A meta-analysis of 25 studies found that 

consumption of 30 g of alcohol per day increases HDL-C by 

about 4 mg/dl, irrespective of the type of alcohol consumed. 

With weighted regression, this represents a 0.133 mg/dL 

increase in HDL-C per gram of alcohol consumed per day, 

an 8% increase from pre-treatment levels (Rimm et al 1999). 

Similarly, in a review of 340 MI patients presenting with MI, 

alcohol consumption was strongly associated with increased 

HDL-C and a signifi cantly reduced relative risk of MI in 

the two highest consumption categories (�1 drink/day and 

3 drinks/day) (Gaziano et al 1993). Mild to moderate alcohol 

consumption (1–2 alcoholic beverages several days a week) 

is reasonable for those individuals with low HDL-C. Cau-

tion should be used, however, when recommending alcohol 

consumption as a therapeutic mechanism in populations at 

risk for alcohol abuse.

A recent study suggests that the greatest improvement in 

HDL-C for both men and women in response to weight loss, 

exercise, and alcohol consumption was seen in individuals 

within the highest percentiles of HDL-C at baseline, with 

lower levels of baseline HDL-C being more resistant to 

lifestyle modifi cations (Williams 2004). Separating the effect 

of one lifestyle modifi cation from another on HDL-C is dif-

fi cult. For instance, increases in HDL-C with exercise may 

be due to the resultant weight loss or gene-environmental 

interactions (Miller et al 2003).

Smoking cessation
Cigarette smoking is associated with lower HDL-C levels 

(Craig et al 1989). The mechanisms by which cigarette 

smoking lowers HDL-C remain unclear. Cigarette smokers 

have signifi cantly lower LCAT activity (Imamura et al 2002) 

and exhibit changes in lipid transfer proteins and CETP 

activity compared to non-smokers (Freeman et al 1998; 

Mero et al 1998). In a meta-analysis of 29 studies HDL-C 

levels were signifi cantly increased after smoking cessation, 

more so in women and to a greater extent in individuals with 

higher baseline HDL-C (�1.2 mmol/L) (Maeda et al 2003). 

Moffatt and colleagues demonstrated women smokers have 

15%–20% lower HDL-C levels compared to non-smokers 

(p � 0.05); the HDL-C values improved to normal levels 

within 30–60 days of smoking cessation (Moffatt 1988). 

Using a comprehensive approach to smoking cessation 

(wellbutrin/nicotine-replacement/counseling) remains an 

important recommendation for those individuals with low 

HDL-C. Despite the complexity of lifestyle modifi cations 

on HDL-C, patients with low HDL-C should be encour-

aged to become physically active on a regular basis, stop 

smoking, obtain stable weight reduction with a BMI �25, 

and increase consumption of polyunsaturated and mono-

unsaturated fats.

Approaches to raising HDL-C levels: 
standard pharmacotherapy
While dietary and lifestyle modifi cations can raise HDL-C 

levels, their effect on cardiovascular outcomes may result 

from benefi cial effects on non-HDL-C lipid components such 

as LDL-C. At present, standard pharmacotherapy to raise 

HDL-C levels includes niacin, fi brates, and statins.

Niacin
Since 1955, the B-vitamin niacin (nicotinic acid) has been 

used in the treatment of dyslipidemia (Altschul et al 1955). 

Niacin is the most useful pharmacologic therapy for raising 

HDL-C levels; it has been shown to increase HDL-C by 35%, 

while lowering TG levels by 20%–50% and LDL-C levels by 

5%–25% (Szapary and Rader 2004). Niacin raises HDL-C 

levels by reducing the fractional catabolic rate of Apo AI 

containing HDL-C particles, decreasing hepatic removal of 

lipoprotein A-I (LpA-I) (a cardioprotective subfraction of 

HDL-C without Apo AII), and inhibiting removal of Apo 

AI without affecting HDL cholesterol ester (Jin et al 1997); 

resulting in an increase of Apo AI enriched, pre-β HDL 

particles (Ganji et al 2003). Using carotid intima-medial 

thickness (CIMT) as a measure of subclinical atherosclerosis, 
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a randomized, placebo-controlled study of extended release 

niacin in addition to statin therapy in 167 patients with 

known CAD and low serum HDL-C (�45 mg/dL) showed a 

signifi cantly reduced rate of IMT progression in individuals 

without insulin resistance (p = 0.026) (Taylor et al 2004). An 

upcoming study known as ARBITER 6-HALTS (HDL and 

LDL Treatment Strategies) will randomize 400 subjects with 

coronary heart disease to HDL-C (extended-release niacin) 

and LDL-C (ezetimibe) focused strategies of lipid therapy 

and will measure changes in mean CIMT after 14 months 

(Devine et al 2007).

Fibrates
Fibric acid derivatives (fi brates) reduce CHD risk in patients 

with baseline LDL:HDL-C ratios of �5.0 (Huttunen 1991). 

Fibrates slow the progression of coronary atherosclerosis 

and reduce coronary events (Ericsson et al 1996; Frick et al 

1997). Fibrates induce a 5%–20% increase in HDL-C, with 

generally modest reductions in LDL-C and a pronounced 

reduction in triglyceride-rich lipoproteins (Despres 2001).

Fibrate therapy increases HDL-C levels by activating 

PPARα and by enhancing expression of Apo AI and AII, LL, 

and ABCA1, which collectively enhance RCT (Tilly-Kiesi 

et al 1992). By inducing LL activity, fi brates also increase 

hepatic fatty acid uptake, enhance removal of LDL particles, 

and reduce lipid exchange between VLDL and HDL (Staels 

et al 1998). The hypotriglyceridemic effects of fi brate therapy 

result from enhanced LL activity and inhibition of Apo CIII 

gene expression by fibrate-mediated PPARα activation 

(Staels et al 1995; Motojima et al 1997).

Depending on baseline lipid profi les and the potency of 

individual fi brates, variable effects on HDL-metabolism have 

been observed. Despite a greater than 15% increase in HDL-C 

levels with bezafi brate therapy, the Bezafi brate Infarction 

Prevention (BIP) failed to demonstrate a signifi cant reduc-

tion in the primary composite end point of fatal or nonfatal 

MI or sudden death (Goldbourt et al 1993). In contrast, in 

the VA-HIT study, gemfi brozil increased HDL-C on average 

by 7.5% with a 2% reduction in risk correlated with every 

1% increase in HDL-C (Rubenset al 2001). Similarly, in the 

Lopid Coronary Angiography Trial (LOCAT), gemfi brozil 

slowed progression of coronary atherosclerosis and the for-

mation of bypass graft lesions.

Statins
Statins inhibit HMG-CoA reductase, the rate-limiting step in 

cholesterol biosynthesis, resulting in increased LDLr density 

with decreases in LDL, IDL, and VLDL particle synthesis 

(Farnier 1998; Segrest et al 2000). Subsequent reductions in 

LDL-C and TG concentrations are the primary antiatherogenic 

properties of statins (Harper and Jacobsen 1999). Statins reduce 

LDL-C levels by 25%–35% at low to moderate doses, which 

correlates with a reduction in relative risk of coronary events 

by 25%–37% (Sacks et al 1996; West of Scotland Coronary 

Prevention Group 1996; Long-Term Intervention with Pravas-

tatin in Ischaemic Disease (LIPID) Study Group 1998).

Statins increase HDL-C by 5%–15% and decrease TG 

levels by 7%–30% (Belalcazar et al 1998). The mechanism 

of statin-induced increases in HDL-C remains incompletely 

understood. Some studies suggest increased HDL-C results 

from a decreased fractional catabolic rate of Apo AI and an 

increased production of Apo AI induced by inhibiting HMG-

Co A reductase (Schaefer et al 1999). Statins have also been 

shown to increase Apo AI levels by inhibiting the Rho-A 

kinase signal transduction pathway, resulting in activation 

of PPARα (Martin et al 2001).
Statins may also reduce hepatic lipase activity, resulting 

in enhanced synthesis of mature HDL-C. Another potential 

mechanism for increased HDL-C levels in response to statin 

therapy is by inhibiting CETP activity. A study of patients 

with the “B1” variant of the CETP gene showed high levels 

of baseline CETP activity and low levels of HDL-C with 

corresponding progression of atherosclerosis. Treatment with 

pravastatin abolished the progression in atheromatous burden 

and non-signifi cantly increased HDL-C levels in patients with 

the “B1” variant (Kuivenhoven et al 1998).

Of the available statins, simvastatin, rosuvastatin, and fl u-

vastatin more effectively raise HDL-C levels compared with 

atorvastatin at doses that lead to similar reductions in LDL-C. 

In a 36-week, multicenter, double-blind, dose titration study, 

826 patients with LDL-C �160 mg/dL and triglyceride 

�350 mg/dL were randomized to receive titrated doses of 

simvastatin (maximum 40 mg/day) or atorvastatin (maximum 

40 mg/day) over 6–12 weeks. Signifi cantly greater increases 

in HDL-C and Apo AI with simvastatin compared to atorv-

astatin (HDL-C: 9% vs 7% p � 0.001; Apo AI: 6% vs 3%, 

p � 0.001) were observed (Kastelein et al 2000). Independent 

clinical studies have shown that 40 mg/day of simvastatin 

increase HDL-C by approximately 7%–9% versus a 4%–5% 

increase with 20 mg/day of atorvastatin (Heinonen et al 1996; 

Crouse et al 1999). Generally niacin is more effective than 

statins alone in raising HDL-C levels.

Combination therapy
Combination therapy using statins with niacin or fi brates has 

been evaluated in a number of small clinical trials (Davidson 
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2002). The HDL Atherosclerosis Treatment Study (HATS) 

studied the combination of statin plus extended-release 

niacin in 160 patients with known CAD, low serum HDL-C 

levels (�35 mg/dL in males and �40 mg/dL in females), 

LDL-C levels �145 mg/dL, and TG levels �400 mg/dL. 

After 3 years of follow-up, combination therapy increased 

HDL-C levels by 26%, reduced LDL-C levels by 42%, 

induced regression of the average coronary stenosis by 0.4% 

(p � 0.001) and reduced cardiovascular events by greater 

than 60% (Brown et al 2001).

Refl ecting the ability of statins and fi brates to synergisti-

cally activate PPARα, statin-fi brate combinations have been 

evaluated in a number of clinical trials (Ellen and McPherson 

1998; Papadakis et al 1999; Farnier et al 2000; Athyros et al 

2002; Vega et al 2003; ). A multi-center, double-blind trial 

of 333 patients using fl uvastatin compared to bezafi brate 

versus a combination of the two agents for 24 weeks showed 

a signifi cant decrease in LDL-C levels in treatment groups 

receiving fl uvastatin compared to bezafi brate alone. Further-

more, HDL-C levels were signifi cantly elevated with bezafi -

brate alone or in combination with fl uvastatin compared with 

fl uvastatin alone (p � 0.001). The combination of fl uvastatin 

and bezafi brate was well tolerated and signifi cantly increased 

HDL-C (22%), decreased LDL-C (24%), and decreased TG 

levels (38%) compared with fl uvastatin alone (p � 0.001) 

(Pauciullio et al 2000).

Recently, the Comparative Effects on Lipid Levels 

(COMPELL) trial determined the relative effi cacy of combi-

nation therapy with a statin and niacin or ezetimibe compared 

with a statin alone over 12 weeks. Coadministration of niacin 

(500 mg up-titrated to 2000 mg) with atorvastatin (20–40 mg, 

n = 60) or rosuvastatin (10–20 mg, n = 65) decreased LDL-C 

by 56% and 51% and increased HDL-C by 22% and 24% 

respectively (p = NS). While simvastatin plus ezetimibe 

decreased LDL-C by 57%, HDL-C only increased by 10% 

compared to baseline. Rosuvastatin (10–40 mg) monotherapy 

decreased LDL-C by 53% and raised HDL-C by 7% (Jones 

2006). Future studies involving rosuvastatin/fenofi brate 

combination therapy and the recently announced combi-

nation of rosuvastatin with a next generation fenofi brate 

(ABT-335) will provide further insight into the effi cacy of 

dual-targeted therapy.

Approaches to raising HDL-C levels: 
emerging therapeutics
Based on preclinical data, multiple strategies to enhance the 

benefi cial effects of HDL-C are being considered. HDL-C 

delipidation therapy (Kostner et al 2002), exogenous Apo AI 

mimetics (Navab et al 2004), CETP inhibition (Brousseau 

et al 2004), LXR/RXR agonists (Brewer et al 2004), selective 

and non-selective PPAR agonists (Oliver et al 2001; Schmitz 

et al 2002), and drugs targeting HDL-C catabolism (Mezdour 

et al 1997; Jansen et al 2004) are among some of the novel 

emerging therapies harnessing the anti-atherogenic, anti-

oxidant, anti-infl ammatory, and pro-endothelial functions 

of HDL-C.

HDL-C delipidation therapy
Selective HDL-C delipidation therapy utilizes plasmapher-

esis whereby extracted plasma is mixed with a delipidating 

agent and separated into an inorganic and organic phase. 

The organic component contains a high concentration of 

delipidated HDL, similar to lipid-poor pre-β HDL produced 

by the liver, which is then returned to the circulation. In 

a series of animal studies delipidation therapy has been 

shown to markedly increase circulating pre-β HDL levels 

and subsequently increase ABCA1-mediated cholesterol 

effl ux from peripheral cells without exerting a signifi cant 

effect on LDL-C metabolism Animal studies evaluating 

delipidation therapy followed by intravascular ultrasound 

assessment of vascular plaque progression or regression are 

ongoing (Shah 2007).

Exogenous administration of Apo AI 
and Apo AI mimetics
Exogenous administration of Apo AI directly enhances RCT 

via the ABCA1 pathway (Zhang et al 2003; Navab et al 2004; 

Arakawa et al 2004). Treating normal human LDL-C with 

exogenous Apo AI in vitro reduces levels of oxidized lipids 

by 50%–60% and prevents monocyte chemotactic activity, a 

primary step in atherogenesis (Poon et al 1997). Exogenous 

administration of Apo AI-associated lecithin discs reduces 

the ability of LDL to induce monocyte chemotaxis, increases 

concentrations of pre-β HDL, and stimulates RCT in 

human subjects (Nanjee et al 2001). Apo AI infusions also 

modulate phospholipids transfer protein (PLTP), LCAT, and 

CETP activity, all of which potentially contribute to RCT 

(Kujiraoka et al 2003).

Recently, Tardiff and colleagues administered 4 weekly 

infusions of a mixture of human wild-type Apo AI and 

soybean phosphatidylcholine (CSL-111; 40 mg/kg or 

80 mg/kg) or volume-matched placebo to 183 patients 

presenting with an acute coronary syndrome as part of the 

Effect of reconstituted HDL on Atherosclerosis – Safety 

and Effi cacy (ERASE) study. Two weeks after the last 
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infusion, intravascular ultrasound (IVUS) and quantitative 

coronary angiographic (QCA) measurements were 

compared to baseline. Patients receiving CSL-111 

experienced a –3.4% change in atheroma volume (p = 0.48 

vs placebo; p � 0.001 vs baseline) with an absolute 

change of –5.3 mm3 (p = 0.39 vs placebo; p � 0.001 vs 

baseline). Notable, transient liver function abnormalities 

were observed in the CSL-111 group versus placebo. One 

patient developed a 100-fold increase in ALT levels in the 

high dose (80 mg/kg) infusion group (Tardif et al 2007) 

While the primary endpoint of the study was negative, 

the data presented suggest a potential benefi t for inducing 

plaque regression. This study highlights the complexity 

surrounding exogenous Apo AI therapy.

Based on observations in a family with low HDL-C and a 

lack of atherosclerotic disease from Limone sul Garda, Italy, 

a variant form of Apo AI, known as Apo AI Milano (AIM), 

was identifi ed in 1980 (Franceschini et al 1980). A cysteine-

arginine substitution at position 173 in the amino acid 

sequence allows the mutant protein to form disulfi de bonds 

with other Apo AI molecules and Apo AII. AIM homodimers 

and heterodimers may enhance cholesterol effl ux thereby 

augmenting RCT (Chiesa et al 2002).

Administration of recombinant Apo AI Milano (rAIM) 

reduces plaque cross sectional area compared to saline-

placebo by up to 40% in rabbit carotid models of athero-

sclerosis (Ameli et al 1994; Ibanez 2007). Similar results 

have been demonstrated in balloon injured arteries in 

hypercholesterolemic rabbits, Apo E-defi cient mice, and in 

transgenic mouse models of Apo AI over-expression (Rubin 

et al 1991; Shah et al 1998). Exogenous HDL-C or Apo AI 

administration also enhance fecal steroid excretion, increase 

serum pre-β HDL, and enhance RCT in humans (Westman 

et al 1995; Eriksson et al 1999).

In 2003 a landmark study using rAIM (ETC-216) quanti-

fi ed coronary plaque volume as a response to pharmacologic 

intervention with intravascular ultrasound (IVUS). This study 

evaluated the effect of exogenous administration of ETC-216 

on coronary atherosclerosis in patients with acute coronary 

syndromes. ETC-216 reduced total atheroma volume by 

1.3% (39.7–38.4) and 0.7% (37.2–36.6) in the moderate 

and high dose treatment groups respectively, while a 0.14% 

(34.8–34.9) increase was noted in the placebo group (Nissen 

et al 2003). This “proof-of-concept” study demonstrated the 

ability of Apo AI mimetic peptides to halt progression and 

potentially induce regression of atheromatous plaque.

A series of Apo AI mimetic peptides are currently 

under investigation. ETC-642 is a second generation Apo 

AI synthetic peptide containing three charged residues in a 

22 amino-acid sequence, rendering the peptide more hydro-

phobic (Navab et al 2005). Within hours of treatment with 

ETC-642 increased HDL-C serum levels have been observed 

in rabbit models. Increased CE content in HDL-C indicates 

concomitant LCAT activation by ETC-642. This rapid eleva-

tion of HDL-C levels suggests a possible future role for Apo 

AI mimetic peptides in the management of acute coronary 

syndromes or in the setting of ischemia-reperfusion injury 

(Marchesi et al 2004).

Another Apo AI mimetic peptide known as D4F reduces 

atherosclerosis in mouse models (Garber et al 2001). Peptide 

D4F contains 18 amino acids in a class A amphipathic helix 

with polar and non-polar faces yielding high lipid affi nity 

(Datta et al 2001). D4F enhances the anti-infl ammatory 

properties of HDL-C, reduces LDL-mediated monocyte che-

motaxis, reduces macrophage migration into atheromatous 

plaques, and reduces atherosclerosis in Apo E KO mice alone 

or in combination with statin therapy. Both oral and intraperi-

toneal administration of D4F signifi cantly reduced evolving 

atherosclerotic lesions in vein grafts but not established 

atherosclerotic lesions in the aortic sinus, suggesting specifi c 

types of atherosclerotic lesions may modulate the benefi cial 

effects of Apo AI mimetic peptides (Li et al 2004).

Taking advantage of the amphipathic helical structure 

common to apolipoproteins, numerous Apo AI mimetic 

peptides are being developed. Unique helical confi guration 

with opposing hydrophobic and hydrophilic faces enhances 

interaction between lipid surfaces and apolipoproteins 

for the removal of membrane bound cholesterol. Some 

novel agents under development include: ETC-588 (large 

unilamellar vesicles – LUV), ETC-1001 (small molecule 

investigational product), helical peptides (Esperion 24218), 

and trimeric Apo-A (Proteopharma/Borean pharma) (Navab 

et al 2006).

Nuclear regulation of RCT: LXR 
and PPAR agonists
Liver X-receptors (LXR) are nuclear receptors that sense excess 

intracellular cholesterol (Wang and Briggs 2004). Hydroxyl-

ated cholesterol stimulates LXR-mediated transcription of 

ABCA1, which subsequently enhances RCT from peripheral 

tissues (Lund et al 2006). Two types of LXR receptors exist, 

LXRα and LXRβ. LXRα has been identifi ed in liver, intestine, 

macrophages and adipose tissues, while LXRβ is ubiquitously 

expressed similar to ABCA1 (Lala et al 2005).

LXR agonists prevent development of atherosclerosis 

by modulating metabolic and infl ammatory gene expression 
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in rodent models. Non-selective LXR agonists increase 

ABCA1 synthesis with a gradual increase in HDL-C serum 

levels (Lund et al 2006). In a mouse LXRα knockout model, 

treatment with a non-selective LXR agonist increased 

HDL-C by day 7 with a less signifi cant increase in hepatic 

TG content (Joseph et al 2002). Similarly, treating LDLr 

KO mice with the LXR ligand, T-0901317, reduced 

atherosclerotic lesion development without affecting 

plasma total cholesterol levels (Terasaka et al 2003). 

Recently administration of the LXR agonist GW3965 to 

mice increased the rate of RCT from macrophages to feces 

in vivo (Naik et al 2006).

A major concern associated with LXR agonists is the 

development of hepatic steatosis. Since LXR agonists 

induce genes that stimulate lipogenesis, including the 

sterol response element binding protein (SREBP1-c) and 

fatty acid synthetase (FAS). The induction of these genes 

in the liver cause increased hepatic triglyceride synthesis, 

hypertriglyceridemia, and hepatic steatosis. Current 

research has focused on selective LXR modulators that may 

circumvent this adverse effect on hepatic function (Miao 

et al 2004).

First identifi ed in rodent models of fi brate-induced hepatic 

peroxisome proliferation, peroxisome proliferators activated 

receptors (PPARs) are another family of nuclear receptors 

closely linked to HDL-C metabolism (Everett et al 2000). Act-

ing as synthetic ligands for PPARα activation, fi brates increase 

circulating levels of HDL-C, enhance RCT and reduce vas-

cular infl ammation and thrombogenicity (Barbier et al 2002; 

Gervois et al 2007). PPARα agonists enhance gene expression 

of SR BI, Apo AI, Apo AII, LPL, and ABCA1 (Toth 2005). 

Statins also enhance PPARα activity and may enhance cho-

lesterol effl ux (Martin et al 2001; Inoue et al 2002).

Agents for the management of Type 2 diabetes such as 

thiazolidinediones are known PPARγ agonists and enhance 

ABCA1 mediated RCT and increase HDL-C levels in pri-

mates (Oliver et al 2001). PPARα and γ mediate activation 

of the LXR/RXR heterodimer, which in turn regulates cho-

lesterol effl ux via ABCA1 and ABCG1 activation (Schmitz 

et al 2002). Unfortunately, the development of novel PPAR 

agonists to date, particularly PPARγ and PPARα/γ,  have 

been halted due to preclinical and clinical adverse effects 

(Rubenstrunk et al 2007).

Cholesterol exchange transfer protein 
(CETP) inhibition
The complex relationship between CETP activity and ath-

erosclerotic disease has been illustrated by several recent 

studies evaluating CETP inhibition therapy. In the past, 

antisense oligodeoxynucleotides and antibodies against 

CETP increased HDL-C levels and reduced aortic athero-

sclerotic burden in cholesterol-fed rabbits (Sugano et al 

1998; Rittershaus et al 2000). In a phase II, randomized, 

placebo-controlled trial, 148 statin-naïve patients with mild 

hyperlipidemia were treated with a CETP inhibitor known 

as JTT-705. In this study, a 37% reduction in CETP activ-

ity correlated with a 34% increase in HDL levels and 7% 

decrease in LDL levels (De Grooth et al 2002).

Recently, the CETP inhibitor, torcetrapib, has been exten-

sively studied evaluated in a number of human trials. In a 

phase I, multi-dose study, torcetrapib was administered to 40 

normolipidemic individuals in doses of 10, 30, 60, and 120 mg 

per day and 120 mg twice daily. Signifi cant increases in serum 

HDL-C levels ranging from 16% to 91% (10 mg daily versus 

120 mg twice daily) with a decrease in LDL-C from 7% to 

42% (60 mg daily versus 120 mg twice daily) without chang-

ing TC levels was observed. At the highest dosing regimen, 

Apo AI and Apo E increased by 27% and 66% respectively, 

while Apo B decreased by 26% (Clark et al 2004).

Another single-blinded study compared torcetrapib alone 

at variable doses versus torcetrapib in combination with 

20 mg of atorvastatin for one month. HDL-C levels increased 

by 46%, 61%, and 106%, while LDL-C levels decreased 

by 17%, 7.5%, and 17% after treatment with 120 mg daily, 

120 mg daily plus 20 mg atorvastatin, and 120 mg twice 

daily respectively. No major adverse events were reported 

(Brousseau et al 2004).

Based on these promising findings, torcetrapib was 

evaluated in a large international clinical trial known as the 

Investigation of Lipid Level Management to Understand Its 

Impact in Atherosclerotic Events (ILLUMINATE). In this 

study, 15,000 patients at high risk for CHD received torcetra-

pib with atorvastatin versus atorvastatin alone. In December 

2006, this study was prematurely terminated due to an excess 

of deaths in the torcetrapib/atorvastatin versus atorvastatin 

groups (81 vs 51, respectively). Additionally, patients receiv-

ing torcetrapib had a higher incidence of heart failure, angina, 

and revascularization procedures. The adverse outcomes of 

the ILLUMINATE study may have been related to off-target 

effects of torcetrapib, such as an increase in systolic blood 

pressure (limited to 1–2 mmHg) or low levels of CETP inhi-

bition and reduced RCT (Honey 2007). Notably, inherited 

defi ciencies of CETP and other CETP inhibitor formulations 

did not increase systolic blood pressure, suggesting that the 

chemical structure of torcetrapib itself may have contributed 

to poor outcomes (Tall et al 2007).
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Two separate studies evaluated the impact of torcetrapib 

on atherosclerotic progression. The Investigation of Lipid 

Level Management Using Coronary Ultrasound to Assess 

Reduction of Atherosclerosis by CETP Inhibition and HDL 

Elevation (ILLUSTRATE) studied 1,188 patients with coro-

nary disease in a prospective, randomized, double-blinded 

fashion. Patients initially received atorvastatin monotherapy 

until LDL-C levels were below 100 mg/dL, after which time 

they were randomized to either atorvastatin (10–80 mg daily) 

monotherapy or atorvastatin plus 60mg torcetrapib daily. 

After 24 months, the torcetrapib/atorvastatin group had a 

61% relative increase in HDL-C and 20% decrease in LDL-C. 

However, no significant reduction in percent atheroma 

volume was observed between atorvastatin monotherapy 

and torcetrapib combination therapy (0.19% vs 0.12%, 

respectively). Torcetrapib therapy was again associated 

with a mean 4.6 mmHg increase in systolic blood pressure 

(Nissen et al 2007).

Further substantiating these fi ndings, the Rating of Ath-

erosclerotic Disease Change by Imaging with a New CETP 

Inhibitor (RADIANCE 1 and 2) trials, demonstrated no 

further reduction of atherosclerosis progression in carotid 

intima-media thickness after 24 months of therapy with 

atorvastatin versus atorvastatin/torcetrapib combination 

(Bots et al 2007; Kastelein et al 2007).

Summary
A considerable body of evidence supports the correlation 

between HDL-C levels and cardiovascular risk. However, 

trials evaluating HDL-C targeted therapies are limited, 

in part due to a lack of pharmacologic agents specifi cally 

designed to raise HDL-C and our limited ability to measure 

HDL-C effectiveness. As a result, there is not enough data 

to support guidelines recommending aggressive increases 

in HDL-C levels. With this in mind, evaluating the clinical 

effi cacy of emerging HDL-C targeted therapies will be of 

paramount importance.

Given the complexity of HDL-C metabolism, serum 

levels of HDL-C may not be an adequate indicator of 

effi cacy. At present, plasma HDL-C measurements have 

a ± 10% margin of error, which could lead to errors in 

measurement of up to 4 mg/dL (Friedewald et al 2007). 

The functional properties of circulating HDL-C levels, the 

kinetics of HDL-C metabolism, and the variable effects 

of HDL-C subfractions on atherogenesis are ignored 

by current laboratory measures of HDL-C (Forrester 

et al 2005). While measuring HDL-C subfractions are 

not recommended at present, recent data suggests that 

increased Apo AI plasma levels and Apo AI:Apo B ratios 

correlate with a reduced risk of myocardial infarction and 

stroke (Qureshi et al 2002).

As a crude marker of RCT, measuring sterol content in 

fecal matter indirectly refl ects the amount of cholesterol 

excreted by the liver as bile. Emerging therapies such as Apo 

AI mimetics (Eriksson et al 1999) and LXR agonists (Plosch 

et al 2002) increase fecal sterol excretion (FSE), while CETP 

inhibition with torcetrapib fails to affect fecal sterol content 

(Brousseau et al 2005). The clinical signifi cance of FSE as 

a marker of RCT remains uncertain.

At present, volumetric IVUS in combination with 

standard HDL-C measurement is our best measure of 

plaque stabilization or regression. Novel approaches using 

high-speed multislice CT, cardiac MRI, and intracoronary 

MRI may replace IVUS. Clinical trials using both sur-

rogate endpoints such as volumetric IVUS and carotid 

IMT in combination with hard clinical endpoints may 

be required to evaluate the effi cacy of emerging HDL-C 

based therapies.

During the next 10 years, many clinical trials will 

evaluate the effects of HDL-modifi cation therapy. While 

the past decade has focused on lowering levels of LDL-C 

and non-HDL-C to reduce atherosclerotic progression and 

CVD events, the next decade may prove that HDL-focused 

therapy induces regression of luminal atherosclerosis and 

improves CVD outcomes. We eagerly await the completion 

of the ongoing clinical trials employing a variety of novel 

strategies to raise HDL-C and possibly halt the progression 

of atherosclerotic vascular disease.
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