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Abstract: Maintenance of genome stability is a crucial priority for any organism. To meet this
priority, robust signalling networks exist to facilitate error-free DNA replication and repair.
These signalling cascades are subject to various regulatory post-translational modifications that range
from simple additions of chemical moieties to the conjugation of ubiquitin-like proteins (UBLs).
Interferon Stimulated Gene 15 (ISG15) is one such UBL. While classically thought of as a component
of antiviral immunity, ISG15 has recently emerged as a regulator of genome stability, with key roles
in the DNA damage response (DDR) to modulate p53 signalling and error-free DNA replication.
Additional proteomic analyses and cancer-focused studies hint at wider-reaching, uncharacterised
functions for ISG15 in genome stability. We review these recent discoveries and highlight future
perspectives to increase our understanding of this multifaceted UBL in health and disease.
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1. Ubiquitin and Ubiquitin-Like Proteins (UBLs)—An Overview

Ubiquitylation is one of the most studied post-translational modifications (PTMs) and involves the
conjugation of ubiquitin (8.5 kDa), a highly conserved 76 amino-acid protein, primarily onto lysines of
target proteins via a three-step ATP-dependent enzymatic cascade formed by an E1-activating enzyme,
an E2-conjugating enzyme and an E3 ligase [1]. Ubiquitylation and conjugation with UBLs (UBLylations)
are commonly reversible processes catalysed by deubiquitylating enzymes (DUBs) and UBL-specific
proteases (ULPs), respectively [1–3]. Following the discovery of ubiquitin in 1975, >10 human UBLs
have been identified, including several paralogues of small ubiquitin-like modifier (SUMO), neural
precursor cell expressed and developmentally down-regulated 8 (NEDD8), interferon-stimulated
gene 15 (ISG15, aka G1P2), human leukocyte antigen F locus adjacent transcription 10 (FAT10),
ubiquitin-fold modifier 1 (UFM1), ubiquitin-related modifier 1 (URM1), autophagy-related protein 12
(ATG12), autophagy-related protein 8 (ATG8), Finkel-Biskis-Reilly murine sarcoma virus (FBR-MuSV)
ubiquitously expressed (FUBI) and ubiquitin-like protein 5 (UBL5) [1,2]. Ubiquitin-like domains also
exist as integral parts of proteins with functions often linked to the proteasome (Figure 1A) [4,5].
Importantly, ubiquitylation and UBLylation are key for regulating essential cellular processes including
responses to different cellular stimuli, such as genotoxic stress. It is therefore not surprising that
deregulation of ubiquitin and UBL systems are linked to a wide variety of human diseases, including
cancer and neurodegenerative disorders as well as immune and inflammatory diseases [6–8]. As a
consequence, components of the ubiquitin/UBL systems represent attractive drug targets for treating
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these diseases [9]. Although the involvement of ubiquitin, SUMO and NEDD8 in genotoxic stress
responses is well established [3,10,11], the roles of the remaining UBLs in this regard are only
starting to emerge [12,13]. Indeed, while ISG15 has primarily been associated with antiviral immune
responses [14,15], additional non-canonical roles are starting to be uncovered. Herein, we review the
emerging roles of the ISG15 system in DNA damage repair/signalling and associated pathways.

2. ISG15 and ISGylation

ISG15 was the first UBL to be discovered in 1979, four years after ubiquitin [16,17]. Initially termed
ubiquitin cross-reactive protein (UCRP) after its ability to cross-react with ubiquitin antibodies [14],
it was later renamed to ISG15 [18,19]. ISG15 bears key features found in all UBLs, namely a β-grasp fold
partially wrapped around a short and flexible C-terminal tail terminating in a diglycine by which ISG15
can be conjugated onto substrates (Figure 1B). An aspect of ISG15 distinct from ubiquitin is that, similar
to FAT10, it is comprised of two UBL domains [1]. While the N- and C-terminal UBL domains of ISG15
possess only ~30% sequence homology with ubiquitin, they share strikingly similar tertiary structures
and display comparable as well as distinct areas of electrostatic surface potentials with ubiquitin
(Figure 1C) [8,20–23]. Interestingly, the two ISG15 UBL domains differ in molecular function, with the
solvent-exposed N-terminal domain facilitating ISG15 transfer from E2 to substrate and the C-terminal
domain being crucial for E1-mediated ISG15 activation and transthiolation [20,22]. ISG15 orthologues
can be found in various organisms although cross-species conservation of amino-acid sequences is
relatively low even amongst mammals (Figure 1D) [24,25]. Moreover, the orientation of the two
ISG15 UBL domains varies considerably across species [26–28], contrasting with the almost 100%
cross-species conservation of ubiquitin [29], suggesting that ISG15 is an evolutionarily diverse and
non-essential gene.

As with ubiquitylation, ISGylation involves a three-step enzymatic cascade (Figure 2). Initially,
an inactive 17-kDa precursor of ISG15 is transcribed before being proteolytically cleaved into its
15-kDa mature form [30,31], exposing a highly conserved, C-terminal LRLRGG motif required for
canonical conjugation [32]. Initial activation is carried out in an ATP-dependent manner by the ISG15
E1 enzyme UBA7 (aka UBE1L) [33]. ISG15 is then transferred to the active cysteine of the E2 UBE2L6
(aka UBCH8) before being conjugated onto substrates by one of three identified E3 ligases: HERC5 [34],
EFP (aka TRIM25) [35] or HHARI (aka ARIH1) [36]. Unlike the ISG15-specific UBA7, UBE2L6 and all
three E3s can participate in ubiquitylation events [24,37–40]. However, while UBE2L6 is capable of
ubiquitin E2 activity in vitro [41], a significantly higher affinity for UBA7 over the ubiquitin-specific
E1, UBA1 (aka UBE1), suggests that UBE2L6 is ISG15-specific in cells [42]. Removal of ISG15 from
substrates and processing of pro-ISG15 [43] can be catalysed by USP18 (aka UBP43) [43,44], which has
been confirmed as the major deISGylase in vivo [45,46].
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ELOB (aka TCEB2) [60], USP48 [61,62], ATG12 [63], BAG6 [64], RBCK1 [65], BAG1 [66,67], 
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Figure 1. ISG15 comparison with selected ubiquitin/UBLs, ubiquitin-like domains and across species.
(A) Phylogeny of ubiquitin (Ub), ubiquitin-like proteins (UBLs) and Ub/UBL domains fused to
human proteins. Genome stability associations are highlighted in green and apply to the following
in addition to ISG15: Ub [3,10], Parkin [47–50], NEDD8 [11], UBTD1 [51], FAT10 [12], SF3A1 [52],
RAD23A and RAD23B [53], TMUB1 (aka HOPS) [54–56], UBL5 (aka HUB1) [12], UHRF1 [57–59], ELOB
(aka TCEB2) [60], USP48 [61,62], ATG12 [63], BAG6 [64], RBCK1 [65], BAG1 [66,67], HERPUD1 [68],
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UFM1 [12], UBQLN4 [69], SUMO1, SUMO2 and SUMO3 [70]; sequence similarity to ubiquitin is
highlighted in the outermost ring ranging from GABARAP (9.59%) in red over a white midpoint to
NEDD8 (58%) in blue. Ub/UBL domains are limited to curated UniProt entries. For proteins with
multiple Ub/UBL domains, each domain is listed as D1 or D2 with D1 being the closest to the N-terminus
except for ISG15. For ISG15, the N-terminus and C-terminus are denoted as NT and CT, respectively
(both highlighted in purple boxes). Tree was generated using Phylogeny.fr [71] and visualised with
Interactive Tree of Life (iTOL) [72]. (B) 3D structures of ISG15 (PDB 1Z2M; lacks C-terminal diglycine),
Ub (PDB 1UBQ) and NEDD8 (PDB 1NDD) and their alignment to the N- and C-terminal UBL domains
of ISG15. Secondary structures for ISG15 have been highlighted. (C) Aligned electrostatic surface
potentials of ISG15 and Ub (generated using APBS [73–78]). Units are as follows: k (Boltzmann’s
constant), T (temperature of calculation: 300 K), e (charge of electron). (D) Multiple sequence alignment
of the indicated ISG15 orthologues. Bold lettering and yellow boxes represent conserved residues
(>70%) considering physicochemical properties of residues whereas red boxes represent residues
conserved across all species (100%). Secondary structure (α: alpha helix; η: 310 helix; β: beta-strand;
TT: beta-turn) and predicted solvent accessibility (dark blue: accessible; light blue: intermediate;
white: buried) of human ISG15 (PDB 1Z2M) is detailed above and below. Percentage of sequence
homology to human ISG15 is listed following the sequence. Sequences used are as follows: Homo sapiens
(AAH09507.1), Mus musculus (house mouse; AAB02697.1), Myotis davidii (vesper bat; ELK23605.1),
Bos taurus (cattle; NP_776791), Monodelphis domestica (opossum; XP_001372717.2), Chelonia mydas
(sea turtle; XP_027689314.1), Notechis scutatus (tiger snake; XP_026543804), Danio rerio (zebrafish;
NP_001191098.1) and Cynoglossus semilaevis (tongue sole; NP_001287935). Alignments were generated
using T-Coffee [79] and visualised with ESPript 3 [80].
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Figure 2. ISG15 conjugation cascade. Expression of ISGylation components is induced by different
stimuli as indicated. After processing into its mature form, ISG15 can be conjugated to proteins
via a three-step enzymatic cascade comprised of UBA7 (aka UBE1L) as the E1 activating enzyme,
UBE2L6 (aka UBCH8) as the E2 conjugating enzyme and either HERC5, EFP (aka TRIM25) or HHARI
(aka ARIH1) as the E3 ligase (note that these ligases are diverse in nature encompassing HECT-type,
RING-type and HECT-RING hybrid E3 ligases, respectively). The ubiquitin-like protease (ULP) USP18
(aka UBP43) acts as an ISG15-specific protease, cleaving ISG15 from substrates and processing pro-ISG15
into its mature form. Figure created using BioRender.com (2020).
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3. ISG15: More Than an Antiviral Protein

All components of the ISGylation cascade are transcriptionally induced by type-I/III
interferons (IFNs), lipopolysaccharides, retinoic acid, genotoxic stress or other immune activators
(e.g., references [18,24,81–90]). As one of the earliest induced proteins following type-I IFN
signalling [18], ISG15 has been investigated extensively regarding its effects on countering viral
and bacterial infections. In this regard, ISGylation of viral and host proteins can directly inhibit the
functions of viral proteins (Figure 3, Section 1) [15,24]. Additionally, free extracellular ISG15 can act as
a cytokine, stimulating IFNγ secretion in natural killer cells [91,92] (Figure 3, Section 2). Moreover,
components of the ISGylation cascade such as USP18 can modulate JAK-STAT immune responses in
an ISGylation-independent manner (Figure 3, Section 3) [93].

However, ISG15 also displays broader functions in a variety of cellular processes, such as
proteasomal degradation. ISGylation was first linked to the proteasome because of a marked increase
in ISG15 conjugates upon proteasomal inhibition [94]. ISG15 can inhibit proteasomal degradation by
outcompeting ubiquitin for conjugation sites [95–98], by directly inhibiting ubiquitin E3 ligases [99,100]
or by ISGylation of ubiquitin at K29, forming mixed chains, which are ineffective as degradation
signals [101]. However, ISG15 can also act in a similar fashion to ubiquitin by targeting certain proteins
for proteasomal degradation [102–106]. Furthermore, ISG15 can enhance overall ubiquitylation and
substrate degradation [107,108] e.g., by ISGylation of CHIP (aka STUB1), a key E3 ligase in protein quality
control [109], which accelerates CHIP activity, thereby increasing activation of the ubiquitin-proteasome
system (UPS) (Figure 3, Section 4) [110]. Taken together, these findings closely tie ISG15 to ubiquitin
and the proteasome, and suggest complex roles for ISG15 in proteasomal degradation depending on
the exact circumstances.

In addition to roles in the UPS, ISG15 has recently emerged as a key modulator of
autophagy. For example, several crucial facilitators of selective autophagy interact with free and
conjugated ISG15, potentially promoting autophagy of ISG15-conjugates (Figure 3, Section 5) [111].
HyperISGylation can even induce aberrant autophagy under genotoxic stress, at least in certain
pathological circumstances [112,113]. By contrast, ISG15 can also have a negative effect on
autophagy e.g., by ISGylation, and subsequent inhibition, of positive autophagy regulators (Figure 3,
Section 5) [114–116]. In certain circumstances ISGylation can also protect proteins from lysosomal
degradation, challenging the notion that ISG15 simply serves as a tag for selective autophagy [117].
These studies suggest a sophisticated role for ISG15 in autophagy that varies depending on the
cellular context.

In protein synthesis ISG15 can inhibit translation of individual proteins through modification
of RNA-binding partners [118], as well as by suppressing global or mRNA-specific translation via
ISGylation of key translational regulators (Figure 3, Section 6) [36,119,120]. This activity is largely
thought to be an antiviral mechanism whereby translation of newly synthesized viral proteins is
restricted via translational suppression following IFN stimulation. In addition, ISG15 may function
as a co-translational modifier, targeting nascent viral or misfolded proteins for degradation. Indeed,
HERC5 localises to polyribosomes and can broadly target newly synthesized proteins [121], which may
also enhance the presentation of antigens on MHC class 1 molecules by bolstering co-translational
antigen processing [122]. Further research is required to understand if and how ISG15-mediated
inhibition of translation occurs outside of an antiviral context.
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Figure 3. Canonical ISG15 functions in key cellular processes. (1) Inhibition of viral proteins.
ISG15 modifies numerous viral proteins and is capable of disrupting their oligomerisation, function
and interaction with host pathways. (2) Extracellular cytokine activity. Free ISG15 can be secreted as a
cytokine and stimulate IFNγ release through interaction with the LFA-1 receptor. (3) Regulation of
IFN signalling. The ISG15-protease USP18 interferes with type-I IFN signalling via direct interaction
with the INFAR2 subunit of the IFN receptor. This displaces JAK1 and prevents JAK/STAT signal
transduction. Non-conjugated ISG15 binds and stabilises USP18. (4) Inhibition of proteasomal
degradation. ISGylation can interfere with ubiquitin-mediated proteasomal degradation through
inhibition of E3 ligases, competition for lysine conjugation sites and formation of mixed chains.
Alternatively, ISG15 can promote proteasomal degradation through stimulation of CHIP (aka STUB1)
activity. (5) Selective autophagy. ISG15 can promote selective autophagy of target proteins. In the case of
RIG-1, ISG15 association allows for interaction with LRCC25, facilitating p62-guided RIG-1 degradation
via the autophagosome. Conversely, ISGylation of the autophagy-promoting protein BECN1 prevents
its activity through disrupting its ubiquitin-mediated interaction with PIK3C3. (6) Inhibition of protein
translation. ISGylation of PKR promotes phosphorylation and activation of the translational suppressor
elF2α. Similarly, ISGylation of 4EHP increases its affinity to 7-methylguanosine mRNA cap binding,
displacing elF4F and inhibiting protein translation. Figure created using BioRender.com (2020).

ISG15 can also influence numerous other cellular processes, including inhibition of exosome
secretion [123], attenuation of hypoxia [124], activation of cytokine secretion [89,91,125–128] as well as
modulation of cytoskeleton dynamics [129,130]. For further insights and recent trends into the more
canonical activities of ISG15 we refer the reader to the following reviews [15,131,132]. These findings
illustrate the highly diverse impact of ISG15 on a wide variety of cellular processes and highlight its
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capacity to partake in complex pathway regulation, which also applies to the intertwined processes
that make up the DNA damage response (DDR).

4. The DNA Damage Response (DDR)

Genome integrity is constantly challenged by intrinsic and extrinsic stressors. Reactive oxygen
species (ROS), base pair mismatches—occasionally introduced during DNA replication—and
topoisomerase-generated DNA breaks are examples of endogenous sources of DNA damage.
Exogenous DNA stressors include ionizing radiation (IR), ultraviolet light (UV) and genotoxic agents
such as chemotherapeutic drugs [133,134]. These DNA-damaging agents cause DNA lesions which,
if un- or misrepaired, are capable of interfering with essential cellular processes. For instance, high levels
of DNA damage in S-phase can halt DNA replication fork progression and cause DNA replication
stress [135]. Inaccurate repair of DNA lesions can also give rise to mutations and chromosomal
abnormalities which lead to genomic instability, a hallmark of cancer [136]. For the survival and normal
functioning of a mammalian organism, maintaining genome stability is therefore critical for accurate
transmission of genetic information and to prevent prevalent diseases. In fact, carriers of hereditary
DNA repair deficiencies can be predisposed to tumourigenesis, immunodeficiency, neurodegeneration,
infertility and premature ageing, highlighting the broad importance of genome integrity to human
health [133,134,136].

To maintain genome stability, cells have evolved the DDR, a collection of pathways which
coordinates the detection, signalling and repair of DNA lesions, and arrests cell-cycle progression
to allow time for repair [133,134]. DDR sensors activate the DDR signalling network, which is
orchestrated by phosphoinositide 3-kinase-like kinases (PIKKs) including the master regulator kinases
ataxia telangiectasia mutated (ATM) and ataxia telangiectasia and Rad3 related (ATR; Figure 4).
PIKKs amplify DDR signalling by phosphorylating and activating other DDR factors, such as the
checkpoint kinases CHK1 and CHK2 as well as the downstream tumour suppressor p53 which
regulates the transcription of hundreds of DDR effectors to induce G1 cell-cycle arrest, senescence
and/or apoptosis depending on the type of DNA damage and cellular context [137,138].

The DDR also coordinates DNA replication and repair with cell-cycle progression to
preserve genome stability. S-phase is particularly vulnerable to detrimental effects of bulky
DNA lesions, which cause replication fork stalling. For instance, the S-phase checkpoint elicits
protective ATR/CHK1-mediated responses including the repression of unfired origins of replication,
the stabilisation of replication forks and the inhibition of entry into mitosis if DNA is not fully replicated,
thus constituting the surveillance mechanism that prevents genome instability upon replication stress.
The attenuation of S-phase checkpoint signalling and recovery from DDR-induced cell-cycle delay
is critically dependent on post-replication repair mechanisms to resolve stalled replication forks
and allow for S-phase progression on damaged genomic DNA templates [139]. Translesion DNA
synthesis (TLS), a DNA damage tolerance mechanism, allows cells to bypass DNA lesions that would
otherwise block the replication machinery while tolerating their repair at a later stage, thus avoiding
the collapse of replication forks. One central TLS component is the sliding clamp proliferating cell
nuclear antigen (PCNA), a replication processivity factor that supports the assembly of DNA replication
and repair proteins [140]. Among other replicating factors, the RECQ1 helicase is critically involved
in replication fork restart under replication stress conditions, cell-cycle progression and genotoxic
stress resistance [141,142]. Importantly, PTMs are crucial for coordinating the above processes and
therefore are key to a functioning DDR [3,10,133,143]. In addition to PTMs such as ubiquitin and the
UBLs SUMO and NEDD8, ISG15 has emerged as an important regulator of genome stability through
covalent modification of—or non-covalent interaction with—target proteins involved in key aspects
of the processes described above, ranging from p53 and p63 signalling to TLS and replication fork
progression (Figure 4, sections 1–4) [23,85,86,88,104,144].
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Figure 4. Key aspects of the DNA damage response (DDR) and associated pathways regulated by ISG15.
Following exposure to genotoxic stress, DDR signalling is initiated via the activation of apical DDR
kinases including ATM and ATR and their targets CHK2 and CHK1, respectively, which in turn activate
downstream pathways, such as p53-mediated apoptosis and tumour suppression, or processes that
facilitate DNA replication past lesions including translesion DNA synthesis and regulation of replication
fork progression. ISG15 intersects with these pathways at multiple points: (1) DNA damage-induced
activation of p53 induces the expression of the ISG15 system. ISGylation of p53 in multiple positions can
target p53 for proteasomal degradation to promote tumour growth, or, alternatively, mediate cell-cycle
arrest, apoptotic responses and ultimately tumour suppression depending on the exact circumstances.
ISGylation of p53 has also been linked to oncogene-mediated transformation by targeting p53 for
degradation via the 20S proteasome. (2) In order to prevent tumourigenesis, genotoxic stress caused by
chemotherapeutic drugs can stimulate ISGylation of p63 isoforms independently of p53 through yet
not fully understood mechanisms. In addition, ISGylation of PCNA (3) and non-covalent interaction
of ISG15 with RECQ1 (4) function in translesion DNA synthesis and replication fork acceleration,
respectively, in cells undergoing replicative stress. CPT: camptothecin; DOX: doxorubicin; DSBs: DNA
double-strand breaks; SSBs: DNA single-strand breaks; P: phosphorylation. Figure created using
BioRender.com (2020).

5. ISG15 System and p53—A Complex Relationship

p53 coordinates cellular responses to stressors, such as DNA damage, telomere erosion, oncogene
activation and hypoxia [138]. Under normal conditions, p53 levels are kept low primarily by targeting
p53 for proteasomal degradation via its interaction with, and ubiquitylation by, the ubiquitin E3
ligase Mdm2 [145–147]. Under stress conditions, the interaction of p53 with Mdm2 is disrupted by
phosphorylation and acetylation leading to p53 stabilisation and activation. Activated p53 then binds
to p53-responsive elements (p53REs) for transcriptional activation of target genes (e.g., BAX, p21 and
PUMA) that modulate cell-cycle arrest, senescence and/or apoptosis [148–150]. ISG15 expression has
been linked in different ways to p53-mediated cellular responses [12,88,104,107,144,151–153].
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5.1. ISG15 as a p53 Degradation Signal

HERC5-mediated ISGylation of p53 has been reported as a proteasomal degradation signal
(Figure 5A) [104]. In non-transformed cells, because of the low expression of the ISGylation
system, the conjugation of ISG15 to p53 is less prominent and primarily targets misfolded/

dominant-negative p53 (Figure 5A, Section 1, left). Indeed, ISG15 deletion results in the accumulation
of misfolded/dominant-negative p53 and suppression of overall p53 activity, leading to decreased DNA
damage-induced senescence, accelerated cell proliferation and lowered p21 expression. ISG15−/− mice
similarly showed increased cell proliferation in vivo, while mice-derived cells displayed reduced p53
target expression and downregulated apoptosis. Likewise, ISG15 deficiency leads to the accumulation
of misfolded dominant-negative p53 in the context of HIV infection [153].

In transformed cells, ISG15 overexpression has been detected in several cancer settings and
has been linked to tumourigenesis [95,100,117,129,154–165]. p53 ISGylation can be upregulated by
oncogenes, such as SRC, RAS and MYC, e.g., via SRC-mediated phosphorylation of p53 positively
regulating HERC5 binding to, and ISGylation of, cytoplasmic p53. In transformed cells, both native
and misfolded p53 are targeted for degradation by ISG15, reducing the overall p53 levels (Figure 5A,
Section 2, right) [144].

As a result, ISG15 deficiency can upregulate p53 transactivity and thus reduce cellular
proliferation/tumourigenic potential of transformed cells and lung tumour formation/growth in a KRAS
cancer mouse model [144]. ISG15 deficiency can also enhance DNA damage-induced transcriptional
activation of p53 in cancer cells exposed to different genotoxic agents. In line with the potential cross-talk
between ubiquitin and ISG15 and a direct role for ISG15 in p53 degradation, simultaneous suppression
of p53 ubiquitylation and ISGylation can potentiate the inhibitory effects on cell proliferation. Therefore,
oncogene-mediated transformation of cells may lead to ISG15-dependent degradation of p53 and
tumourigenesis, highlighting the distinct effects of ISG15-modulated p53 degradation depending on
cellular context [144].

5.2. p53-Mediated Induction of ISG15 System

ISGylation does not only impact p53 levels and function, but p53 itself can regulate the ISG15
system. ISGylation is upregulated by genotoxic stressors, such as UV irradiation, doxorubicin
(DOX) and camptothecin (CPT) because of the presence of p53REs in the ISG15, UBA7, UBE2L6 and
EFP promoters which are induced by p53 independently of IFN-I signalling (Figure 5B) [83–86,88].
Inhibition of ATM/ATR in several p53+/+ but not p53−/− cancer cell lines therefore abrogates the
induction of ISGylation components, consistent with genotoxin-induced ISGylation of p53 being
promoted by PIKKs via their known role of p53 activation [88,137]. However, ATM has also been
suggested to suppress the ISG15 system [97], pointing towards nuanced layers of control depending
on the exact circumstances. It is noteworthy that HERC5 lacks a p53RE in its promoter and is not
induced by genotoxic agents. Since HERC5 is physically associated with polyribosomes and modifies
a wide range of newly synthesized proteins in a co-translational manner, HERC5 may ISGylate newly
synthesized/unstructured p53 in a non-specific manner [88,121].

5.3. ISG15 Enhances p53 Transactivity

DNA damage-activated p53 can be ISGylated at K291/K292 by EFP (Figure 5B). These ISGylations
promote p53 transactivity by enhancing p53 phosphorylation and acetylation and consequently,
the affinity of p53 to the p53REs of its own gene and downstream targets (e.g., p21, BAX, MDM2),
ultimately modulating cell-cycle arrest and apoptosis. In a positive feedback loop, the ISG15 conjugation
system is also upregulated by p53 ISGylation to further potentiate p53 transactivity and downregulated
by USP18-mediated deISGylation of p53. In cellular assays EFP-mediated p53 ISGylation increased
p53 stability, while ISG15 or EFP depletion, or expression of K-to-R p53 mutants significantly decreased
the DNA damage-induced p53 responses. Furthermore, p53 ISGylation inhibited cellular proliferation
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and tumour growth in mice via p53 tumour suppressive functions, therefore supporting a role for
ISG15 in preventing tumourigenesis under genotoxic stress [88].
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non-transformed cells, HERC5 (light brown) mediates ISGylation of p53 to primarily remove
dominant-negative/misfolded p53 via the 20S proteasome, thereby increasing native p53 activity.
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(2) In cancer cells, oncogene proteins, such as SRC, RAS and MYC, enhance the interaction between
HERC5 (dark brown) and ISG15, leading to indiscriminate modification of native and misfolded
p53 and an overall reduction of total anti-tumoural p53 activity. (B) EFP-mediated p53 ISGylation.
(1) p53 is associated with Mdm2 under normal cellular conditions. (2) Upon DNA damage, p53
is phosphorylated (orange, P) and acetylated (yellow, Ac) via DNA damage response signalling
pathways, resulting in dissociation of p53 from Mdm2 and subsequent p53 stabilisation. (3) EFP
conjugates ISG15 to stabilised p53 at lysines K291 and K292, which increases the phosphorylation
and acetylation status of p53 (denoted as +), as well as its ability to bind p53 responsive elements
(p53REs). (4) This induces the expression of p53 targets, such as p21, BAX, PUMA, p53 itself and
ISGylation factors. (5) In a positive feedback loop, increased expression of ISGylation factors accelerates
p53 ISGylation and transactivation, leading to tumour growth suppression. This loop is deactivated
by USP18 (aka UBP43) via deISGylation of p53, leading to p53 destabilisation. Note that levels of
Mdm2 are also increased with p53 transactivation, which further contribute to downregulating the
cycle. (C) Abrogation of the oncogenic functions of ∆Np63α, an isoform of p53 family member p63, by
ISGylation. (1) The tumourigenic protein ∆Np63α is overexpressed in human epithelial cancers and in
the absence of external DNA-damaging agents, acts by blocking the transactivation (TA) of p53 family
members, such as TAp63α and TAp63γ, with its transactivation inhibitor domain (TI). (2) DNA damage
caused by doxorubicin (DOX) or camptothecin (CPT) induces the ISG15 and its conjugation system,
and (3) the ISGylation of ∆Np63α at lysines K139 and K324. Under the same conditions, TAp63α is also
ISGylated at lysines K194 and K397. (4) These events lead to CASP2-mediated cleavage of ∆Np63α
at aspartates D452, D469 and D489 and of TAp63α at aspartates D507, D524 and D544, as well as
subsequent cytoplasmic release of their TI domains. (5) Cleaved ∆Np63α can no longer inhibit the
transcriptional activities of other p53 family members, such as TAp63α and TAp63γ, thus facilitating
their anti-tumourigenic functions e.g. via mediating apoptosis. (6) The N-terminal fragment of TAp63α
containing the TA domain, but deprived of the TI domain, is relieved from self-suppression leading
to anti-tumourigenic effects e.g., via the expression of its downstream apoptotic genes (6). CASP2:
caspase 2. Figure created using BioRender.com (2020).

Taken together, these findings reveal a pleiotropic and complex relationship between ISG15 and
p53 that takes place in the presence of a gamut of other PTMs likely to compete for target residues.
It appears that the cellular responses and precise ISGylation sites on p53, as well as the contributing
ISGylation components, depend on various factors including cellular context and extracellular stimuli.
What is clear from the above is that ISGylation plays important and diverse roles in helping cells to
fine-tune and adapt downstream p53-mediated DDR processes to maintain genome stability.

6. ISGylation of ∆Np63 and Tumourigenesis

The p53 protein family comprises the p53, p63 and p73 transcription factors [166].
Alternative promoter usage generates two p63 transcripts, one including an N-terminal transactivation
domain (TA) and the other lacking the TA domain (∆N). Alternative splicing of TAp63 and ∆Np63
generates unique p63 C-termini, namely α, β, γ, δ and ε. Similar to p53, TAp63 isotypes function as
tumour suppressors by inducing cell-cycle arrest and apoptosis via p53-responsive genes. The p63α
isotypes also contain a C-terminal transactivation-inhibitory (TI) domain, which can suppress the
transactivity of p53 family members by binding to their TA domains [166,167]. In cancer cells
with elevated ∆Np63α levels, such as human epithelial cancers, the tumour-suppressive functions
of the TA isotypes are inhibited by the dominant-negative action of ∆Np63α (Figure 5C, step 1).
This suppression makes cells resistant to apoptosis, causing uncontrolled cell proliferation and tumour
formation [166,167].

Upon treatment with DOX and CPT, ∆Np63α is ISGylated at K139 and K324 in various cell lines
(Figure 5C, steps 2–3) [85]. Through an unknown mechanism, caspase 2 (CASP2) is then activated
to specifically recognise ISGylated ∆Np63α and cleave off its TI domain. The N-terminal ∆Np63α
fragment lacking the TI domain subsequently fails to suppress transactivation of the other TA isotypes.
The C-terminal ∆Np63α fragment, although retaining the TI domain, is exported to the cytoplasm,

BioRender.com


Biomolecules 2020, 10, 1557 12 of 30

abolishing its dominant-negative function towards nuclear p53 family members (e.g., TAp63γ; Figure 5C,
steps 4–5, top). In cellular assays, ∆Np63α ISGylation abrogates its ability to inhibit both apoptosis
and RAS-driven senescence as well as to induce cell growth and tumour formation. Conversely, ISG15
depletion, K-to-R mutations of ∆Np63α ISGylation sites, or D-to-A mutations of CASP2 cleavage sites
markedly potentiate ∆Np63α-mediated anchorage-independent cell growth and tumour development
in vivo [85].

TAp63α is also ISGylated at K194 and K397 and cleaved by CASP2, followed by export of
its C-terminal TI domain to the cytoplasm. The N-terminal fragment of TAp63α, containing the
TA domain but lacking the TI domain, becomes unsuppressed and thereby capable of inducing
expression of its downstream apoptotic genes (Figure 5C, steps 2–4,6, bottom). According to this model,
ISG15 conjugation to ∆Np63α and TAp63α plays a critical role in maintaining genome stability and
suppressing tumourigenesis, particularly in epithelial cancer cells under genotoxic stress. The model
also provides a molecular mechanism for the use of chemotherapeutic drugs to treat ∆Np63α-mediated
cancers [85].

Intriguingly, DNA damage-induced ISGylation of ∆Np63α can occur in cells expressing mutated
non-functional p53. Therefore, p53-independent induction of the ISG15 system in these cells is likely
under the control of other signalling pathways, such as those mediated by Notch [85,88]. Alternatively,
a second TA domain present in ∆Np63α lacking the N-terminal TA domain could potentially regulate
the expression of a distinct subset of genes [167]. Therefore, ∆Np63α itself might induce the ISG15
system to mediate its own ISGylation [88].

7. Translesion DNA Synthesis (TLS)—A New Terminator Model

In order to maintain faithful transmission of genetic information, cells need to replicate their
genome accurately and facilitate efficient and faithful repair of DNA damage, such as nucleotide
mismatches occasionally introduced during DNA replication [168]. PCNA is a critical processivity
factor and a scaffold for recruiting the replication machinery. Moreover, PCNA is important for DNA
lesion bypass in the TLS pathway by serving as a platform for recruiting DNA damage tolerance
factors, making PCNA a key regulator of genome stability [140].

When replicating cells encounter DNA damage, PCNA undergoes multiple PTMs including
RAD6/RAD18-mediated monoubiquitylation at K164 to initiate TLS by exchanging replicative
polymerases, such as Pol δ, with DNA damage-tolerant polymerases, such as Pol η [140,169–171].
TLS polymerases then bypass damaged DNA, allowing replication fork progression to occur without
immediate damage removal and risk of fork collapse [87,140,171]. However, TLS polymerases lack
proofreading activity, can introduce nucleotide mismatches and, as a result, are potentially mutagenic.
Consequently, error-prone TLS polymerases need to be promptly released from PCNA after DNA
lesion bypass to prevent excessive mutagenesis [171].

ISGylation of PCNA plays a key role in TLS termination (Figure 6A) [86]. Upon DNA damage
by e.g., UV light, PCNA is first monoubiquitylated at K164 in one of its three identical subunits to
promote recruitment of Pol η and initiate TLS (Figure 6A, steps 1–2) [171]. After DNA lesion bypass,
EFP ISGylates a different subunit of monoubiquitylated PCNA at K168 (Figure 6A, step 3).
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Figure 6. ISG15 in DNA synthesis—replicating past lesions. (A) Termination of translesion DNA
synthesis (TLS) by ISGylation of PCNA. Under non-stressed conditions, PCNA serves as a processivity
factor for replicative DNA synthesis. In response to certain types of DNA damage (e.g., UV light)
PCNA is key to initiating and terminating TLS as follows: (1) PCNA is monoubiquitylated by the
RAD6/RAD18 E3 ligase complex at K164 in one of its three identical subunits, which (2) recruits the
translesion polymerase Pol η to carry out TLS. (3) After bypass of the lesion, EFP ISGylates PCNA at
lysine K168. (4) ISGylation of PCNA triggers recruitment of the deubiquitylase USP10, which in turn
deubiquitylates PCNA and releases Pol η to avoid UV-induced mutagenesis. (5) A further ISGylation
step of PCNA by EFP at lysine K164 likely prevents additional cycles of monoubiquitylation. (6) Finally,
USP18 (aka UBP43) deISGylates PCNA and allows reloading of replicative DNA polymerases as well as
resumption of replicative cell replication. (B) ISG15 accelerates replication fork progression. Association
of ISG15 with the DNA helicase RECQ1 accelerates replication and promotes stalled replication fork
restart. While multiple mechanisms of replication fork restart and reversal exist, single-stranded DNA
(ssDNA) is typically exposed to and bound by RPA, which triggers events leading to DNA loading of
PCNA and its polyubiquitylation by UBE2N (aka UBC13). Upon fork reversal complementary nascent
DNA strands can be used as a template to bypass DNA lesions, such as those caused by camptothecin
(CPT). Reversed forks are stabilised by different factors before being restarted by RECQ1 although
the exact mechanisms behind this are unclear [172]. ISG15 accelerates RECQ1 activity leading to
increased rates of DNA synthesis, potentially interfering with coordination of fork restart, thereby
promoting genome instability. In cancer cells overexpressing ISG15, this increased genome instability
has the potential to create a positive feedback loop mediated by cGAS/STING signalling whereby
type-I interferons are upregulated following DNA damage, although the exact underlying mechanisms
remain to be determined e.g. in light of recently described effects of cGAS/STING on replication fork
progression [173]. Ub: Ubiquitin. Figure created using BioRender.com (2020).
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ISGylated and ubiquitylated PCNA is subsequently deubiquitylated by USP10 which, in turn,
triggers the release of Pol η from PCNA for TLS termination (Figure 6A, step 4). EFP is able to conjugate
an additional ISG15 to PCNA at K164, thus forming diISGylated PCNA with two ISG15 molecules in
the same subunit, likely for preventing additional cycles of PCNA monoubiquitylation and subsequent
recruitment of Pol η (Figure 6A, step 5) [86,87]. The exact order of some of these events and their duration
of functioning are not entirely clear. Moreover, it will be interesting to see how ISGylation of PCNA
integrates with potential additional/alternative pathways to help terminate TLS [174,175]. Eventually,
ISG15 expression is downregulated and PCNA is deISGylated by USP18 for reloading of replicative
DNA polymerases and resumption of DNA replication (Figure 6A, step 6). Therefore, the sequential
modification of PCNA (monoubiquitylation, ISGylation, deubiquitylation, and deISGylation) occurs
in a timely manner after UV irradiation. ISGylation-defective K-to-R PCNA mutants or depletion of
any of ISG15, EFP, or USP10 leads to persistent recruitment of monoubiquitylated PCNA and Pol η to
UV-induced DNA damage sites, causing an increase in UV-mediated mutation frequency and reducing
PCNA interaction with the Pol δ catalytic subunit in vitro [86]. These findings establish a crucial role
for PCNA ISGylation in termination of error-prone TLS after DNA lesion-bypass and in preventing
excessive mutagenesis to maintain genome stability.

8. ISG15 in Replication Fork Progression

Error-free DNA replication is a central pillar in the preservation of genomic integrity. As new DNA
is synthesised, cells must carefully balance speed and accuracy of replication against the distribution
and availability of key replication factors. Any disruptions in this delicate process can lead to replication
stress, often presenting as slowed or stalled replication forks [176].

Recently, a role for ISG15 in replication processivity has been revealed (Figure 6B) [23,177].
Increased levels of ISG15 resulted in, or were representative of, accelerated fork progression and
reduced sensitivity to CPT-induced fork slowing. The phenotype was largely independent of ISGylation,
primarily relying on non-covalent interaction between ISG15 and the DNA helicase RECQ1 [23].

This study complements the role of ISG15 in translesion synthesis, with both mechanisms
acting as a means of replicating past genomic stress. Moreover, it offers an additional perspective
regarding the effects ISG15 can have on genome stability. RECQ1 is a key helicase responsible for
restarting stalled replication forks, a process that if underregulated promotes DSB formation [142].
ISG15 seemingly encourages this activity as its increased expression, when uncoupled from the
induction of its conjugation system, can induce DSBs and chromosomal aberrations as a likely result of
replication fork acceleration. Interestingly, similar effects have previously been observed following
the inhibition of poly(ADP-ribose) polymerase (PARP) [178], a key negative regulator of RECQ1 and
common drug-target in the treatment of HR-deficient cancers. Given that ISG15 overexpression and
PARP inhibition were reported to have no additive effect on fork acceleration, it is possible that the
two may operate through similar mechanisms. Additionally, elevated ISG15 sensitised cancer cells to
both CPT and the PARP inhibitor olaparib, raising intriguing possibilities regarding the treatment and
stratification of cancer patients.

The capacity for highly expressed ISG15 to promote genomic instability through RECQ1 interaction
contrasts with the protective function of ISG15 as a facilitator of DNA damage tolerance through
covalent modification of PCNA [86]. A possible explanation for these different effects could be that
differential ISG15 functions are dependent on the amount of free ISG15 in the cell available to impact
on RECQ1. The level of free ISG15 is likely influenced by the amount and functionality of ISG15
conjugating/deconjugating factors versus the level of ISG15 itself, which can both be impacted by
the type and quantity of DNA-damaging agents, as well as cell type-specific adaptations. Moreover,
the type of genomic stress caused may also be a contributing factor per se, with the potential for
ISG15-mediated fork restart/acceleration by RECQ1 and TLS termination being directed by the specific
nature of the lesion. Taken together, these findings highlight a nuanced role for how covalent and
non-covalent ISG15 interactions with DDR factors define the responses to genotoxic stress in distinct
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ways under different conditions. These mechanisms may further depend on various other PTMs,
protein–protein interaction crosstalk and/or IFN responsiveness. It will be interesting to see how
these roles can be put in context with other genome stability pathways likely regulated by ISG15,
as outlined below.

9. Further Roles in Genome Stability—Bright Prospects for ISG15

Hints of further roles for ISG15 in various genome stability pathways including the DDR,
cell-cycle regulation and telomere-associated processes are emerging. For example, differing ISG15
conjugates after DNA-damaging agents and IFN induction suggest uncharacterised ISG15 roles
that are independent of an innate immune response [88]. Moreover, ISG15 expression is often
perturbed in cancer cell lines and can impact on drug resistance [179]. Indeed, in concordance with
its role in replication fork progression, ISG15 is a key determinant of sensitivity to topoisomerase
poisons in certain breast, lung and gastric cancer contexts, with higher ISG15 expression being
associated with increased sensitivity [180–183]. By contrast, overexpression of ISG15 can confer
gemcitabine resistance in pancreatic cancer cells [161]. Additional studies investigating IFN-driven
drug resistance signatures also identify ISG15 as a key marker for resistance to genotoxic therapies
involving chemotherapeutic drugs, such as DNA methyltransferase (DNMT) or histone deacetylase
(HDAC) inhibitors, or radiotherapy [118,152,184–188]. While the roles of ISG15 in drug sensitivity are
unclear, these studies not only hint at functions for ISG15 in genome stability, but also touch on the
possibility of interplay between the innate immune system and the DDR.

While telomeres predominantly act as protective chromosome ends to maintain genome
stability, they are also capable of regulating expression of specific genes e.g., through long-range
intrachromosomal loop structures. This phenomenon is termed telomere position effect over long
distances (TPE-OLD) [189]. ISG15 has emerged as a gene regulated by TPE-OLD, with increased
ISG15 expression being observed following telomere shortening independent of DDR or IFN
signalling [189,190]. Additional studies have supported this, reporting an inverse correlation between
ISG15 expression and telomere length [191–193]. The biological purpose of this regulatory mechanism
is not well understood, but it is possible that TPE-OLD-regulated genes act as a means of monitoring
telomere length before the need to initiate the DDR. If this is the case, ISG15 could potentially have
roles in telomere maintenance, adding another layer of how ISG15 may contribute to genome stability.

Multiple studies have suggested the involvement of ISG15 in cell-cycle regulation. For example,
ISGylation of cyclin D1, the primary cyclin involved in G1-phase progression, promotes its degradation
in lung cancer cell lines [103]. ISGylation can also promote degradation of FOXO3a, another key cell-cycle
regulator [106], and UBA7 deficiency in murine haematopoietic progenitor cells increases G2/M-phase
blockage following transplantation, suggesting a role in stress-induced cell-cycle regulation [194].
Moreover, basal levels of ISG15 and USP18 can dynamically regulate the activity of SKP2, a key
ubiquitin E3 involved in S-phase progression [195], and deregulation of ISG15 or USP18 consequently
can lead to considerable changes in cell-cycle distribution [107,196].

Proteomic studies investigating ISG15 interactors have identified a considerable number
of potential targets relevant to genome stability, the majority of which remain uncharacterised
(Table 1) [23,38,85,86,197–199]. DDR-relevant ISG15 substrates include, for example, the helicase XPD
(aka ERCC2) [199], DDB2 [197] and more recently DDB1 [23] with crucial DDR roles in nucleotide
excision repair (NER) [200]. As the ISG15 conjugation system is induced by UV damage [86], it will be
interesting to investigate the potential involvement of ISG15 in NER processes. Another validated
ISG15 target is PML-RARα, an oncogenic fusion protein and hallmark of acute proteolytic leukaemia
(APL) [102,201]. Given that PML nuclear bodies can act as ATM/ATR-regulated DNA damage
sensors [202] and that PML colocalises with the DDR factor TOPBP1 at single-strand breaks (SSBs) [203],
ISGylation of PML could have unidentified impacts on the DDR and genome stability. Overall, these
findings suggest bright prospects for ISG15 in a variety of DDR pathways that remain to be uncovered.
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Table 1. Selected validated/candidate ISG15 interactors relevant to DNA damage response and beyond.

Experimentally Validated Targets/Interactors

Targets/Interactors (Targeted Residues) Roles in DDR/Associated Pathways

CHIP (aka STUB1) (K143) [110] Regulates proteins involved in BER [204] and cell cycle arrest [205]
Cyclin D1 [103] Gatekeeping cyclin for DNA replication/ roles in HR [206]

p53 (K291, K292 among others) [88,104] Master regulator of DNA damage response [207]
p63: ∆Np63α (K139, K324) [85];

TAp63α (K194, K397) [85]
Genome stability/instability, particularly in epithelial cancer cells under genotoxic

stress, and depending on isotype [85]
Parkin (K349, K369) [108] Promotes NER [47] and has important roles in mitosis [49]
PCNA (K164, K168) [86] Facilitates TLS and has roles in mismatch repair [208]

PML-RARα [102] Disrupts of PML nuclear body formation important for HR [209]
PTEN [210] Roles in DSB repair and NER [211]
RECQ1 [23] DNA helicase in replication stress response [212]

UBE2N (K92) [199] Roles in DSB repair, NER and TLS [213]
Ubiquitin (K29) [101] Roles in various DNA repair and signalling pathways [3,10,214]

VCP [198] DSB repair through extraction of ubiquitylated substrates [215]
XPD (aka ERCC2) [199] Helicase for NER [216]

Candidate Targets/Interactors

Targets/Interactors Roles in DDR/Associated Pathways

AHNAK [197] Interacts with NHEJ proteins and may facilitate strand ligation [217]
ARID5B [197] Involved in chromatin organisation and recruited to DNA damage sites [218]
ATXN2 [197] Suggested protection against oxidative stress/potentially harmful R-loops [219]

CBX1 (aka HP1γ) [23] Likely promotes recruitment of repair factors in various pathways
CBX3 (aka HP1β) [23] Likely promotes recruitment of repair factors in various pathways [220]

CBX4 [197] Mediates SUMO conjugation at DNA lesions and facilitates DSB repair [221]
CHD1 [197] Opens chromatin around DSBs to allow for recruitment of HR proteins [222]
DDB1 [23] Part of UV damage recognition complex in NER [223]

DDB2 [197] Part of UV damage recognition complex in NER [223]
DEK [23] Structural modulator of chromatin [224]

PRKDC (aka DNA-PKcs) [23] Canonical factor in DSB repair by NHEJ [137]
DYRK1A [197] Regulates recruitment of 53BP1 to DNA damage sites, inhibiting NHEJ [225]

H2A1B [23] Contributes to higher order chromatin structure [226–228]
HNRNPK [197] Contributes to DNA damage signalling [229–232]

HNRNPU (aka SAF-A) [197] Regulator of DNA-end resection [233]
LMNA [197] Important for DSB repair and telomere maintenance [234,235]

PRDX1 [38,197] Protects telomeres from oxidative damage [236]
RAN [197] Regulates nuclear import of ATM [237,238]

RBBP4 [197] As part of chromatin remodelling complexes regulates DNA repair [239]
RFC2 [23] DNA replication factor involved in PCNA-related repair mechanisms [240]

SENP1 [197] SUMO-deconjugating enzyme that regulates p53 activity [241]
SIN3A [197] Restricts formation of potentially harmful R-loop structures in DNA [242]

SMAD4 [197] Promotes expression of DSB and NER repair proteins [243]
SMARCE1 (aka SMCE1) [23] Chromatin remodelling via SWI/SNF complex [244]

STK38 [199] Facilitates cell cycle arrest [245] and promotes activation of ATM [246]
TOP2A [197] Checkpoint for chromosome decatenation during mitosis [247]
UBE2C [88] Regulator of cell cycle progression and arrest [248]

WDR33 [197] Prevents genome instability caused by unreleased nascent transcripts [249]
XRCC5 (aka Ku80) [197] Essential factor in DSB repair by NHEJ [250]

XRCC6 (aka Ku70) [88,197] Essential factor in DSB repair by NHEJ [250]
ZNF281 [197] Helps recruit XRCC4 to DNA breaks for DSB repair by NHEJ [251]

Abbreviations: BER: base excision repair; DSBs: DNA double-strand breaks; HR: homologous recombination; NER:
nucleotide excision repair; NHEJ: non-homologous end-joining; PML: promyelocytic leukaemia; TLS: translesion
DNA synthesis; UV light: ultraviolet light.

10. Conclusions

Given the emerging roles of ISG15 in genome stability, exciting opportunities for new areas of
study have arisen. For example, the crosstalk between ISG15 and ubiquitin in genome maintenance
represents an interesting avenue for future investigation. Indeed, ISG15 can directly bind and regulate
ubiquitylating enzymes [100,252] and various E2s and E3s relevant to genome stability, such as
UBE2N [213,253] and CBX4 [221,254], have come up as putative or validated ISG15 targets (Table 1).
In fact, ISGylation of UBE2N can inhibit its catalytic ubiquitylation activity [255], and non-canonical
conjugation of ISG15 to UBE2N via disulphide bridging has also been observed [256]. While these effects
could hamper DNA repair, the existence of complex UBL crosstalk may prevent this from happening.
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Future studies are required to investigate the potential interplay between ISG15 and other UBL cascades
in the DDR and associated pathways. In this regard, emerging technologies capable of performing
proteomic studies with improved spatiotemporal resolution will prove beneficial. The advent of new
sensitive platforms, such as inducible proximity labelling, photo cross-linking, E2-thioester-driven and
related approaches, to identify the weak and transient interactions characteristic of the ubiquitin/UBL
systems and the DDR hold considerable promise here [91,257–260].

Perhaps the most prevalently discussed aspect of ISG15 is its inextricable link to type I IFN
signalling. While IFN-independent roles are emerging, to what degree these roles are annexed from
the most biologically relevant functions of ISG15 remains to be determined. In recent years, various
links between the innate immune system and the DDR have been reported. cGAS-STING signalling
in particular has garnered attention, stimulating the innate immune system in response to both viral
infection and DNA damage [261]. This is consistent with crucial DDR proteins displaying dual
functions in innate immunity [262], and vice versa, with type-I IFN signalling promoting the initiation
of the DDR in certain cellular contexts [263]. Future research will shed light on if and how exactly
ISGylation contributes to the interplay of these two systems.

The hugely diverse network of PTMs, critical to the DDR and other genome stability pathways,
makes defining the downstream readers that non-covalently bind to and action the PTMs into
precise cellular activities a high priority for increasing our knowledge of how genome integrity is
maintained in the future. In addition, non-covalent interactions with free ISG15 can regulate important
pathways, such as replication fork progression [23]. Despite this importance, only a few non-covalent
ISG15-binding proteins have been revealed with the most recent, RECQ1, being intricately linked
to the DDR [23,91,111,195,252,264,265]. Given the indications of distinct molecular functions of the
two UBL domains of ISG15 [20,22,132], it will be exciting to see if such specific functions are more
widely mediated by ISG15 interactors binding preferentially to one and/or the other UBL domain.
Moreover, the identification of mixed ubiquitin/ISG15 chains [101] and the possibility of poly-chain
ISGylations (e.g., references [85,86,88,108,266]) in one or multiple positions on target proteins represent
additional opportunities for sophisticated signal integration and recognition via topology-specific
ISG15-binding proteins. Further investigation into non-covalent interactors of ISG15 topologies will
provide mechanistic insights into the multifaceted functions this UBL plays in a wide variety of cellular
pathways. Taken together, it is clear that ISG15 is far more than a simple immunological analogue of
ubiquitin. Indeed, understanding the functions of ISG15 in response to genotoxic stress is fundamental
for enhancing our knowledge of how genome integrity is maintained, and may thus help prevent,
or better treat, the various diseases associated with ubiquitin and UBL defects in the future.
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