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Summary

Glucosamine (GlcN) is a widely utilized dietary supplement that is used
to promote joint health. Reports that oral GlcN supplementation at usual
doses adversely affects glucose metabolism in subjects with impaired glucose
tolerance have raised concerns that GlcN should be contraindicated in
individuals with diabetes and those at risk for developing it. This review
addresses its potential, when used at typical doses, to affect glucose
metabolism and insulin sensitivity in healthy individuals and those with
diabetes or ‘pre-diabetes’. Publicly available scientific information and data
on GlcN were systematically compiled using the electronic search tool,
Dialog, and reviewed with special emphasis on human studies. In long-
term clinical trials, including those containing subjects with type 2 diabetes
or ‘pre-diabetes’, GlcN produced a non-significant lowering of fasting blood
glucose concentrations in all groups of subjects treated for periods of up to
3 years. Owing to limitations in study design, conclusions based on studies
that report adverse affects of GlcN on insulin sensitivity and glucose tolerance
in pre-diabetic subjects are suspect. However, no definitive long-term studies
of GlcN use for individuals with pre-diabetes are available. Nevertheless,
based on available evidence, we conclude that GlcN has no effect on fasting
blood glucose levels, glucose metabolism, or insulin sensitivity at any oral
dose level in healthy subjects, individuals with diabetes, or those with
impaired glucose tolerance.
Copyright  2010 John Wiley & Sons, Ltd.
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Introduction

Glucosamine (GlcN) is one of the most widely used over-the-counter dietary
supplement products for the management of osteoarthritis [1]. In a recent
US survey, 5% of the general population in the United States reported using
GlcN in the previous week, and up to 9% of elderly men and 7% of elderly
women were identified as GlcN users [2]. Given GlcN’s widespread use
and popularity, particularly in the elderly, it is expected that a significant
percentage of users would have diabetes or pre-diabetes. On the basis
of this incidence of GlcN use, and the current prevalence of diabetes in
the US population [3], it can be estimated that GlcN is used by almost
400 000 elderly diabetic subjects, and in as many as 2.7 million pre-diabetic
individuals. With the ageing population, increasing incidences of diabetes,
and increased popularity of dietary supplement use in this population group,
the safety of GlcN supplementation in patients with diabetes and those with
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undiagnosed diabetes warrants consideration as infusion
of GlcN in animal models or incubation of GlcN with
tissues induces insulin resistance and glucose intolerance.

Mechanistically, it has been hypothesized that the
diabetogenic effect of GlcN observed in animal infusion
studies is mediated by GlcN augmenting hexosamine
biosynthesis in insulin-sensitive tissues, a metabolic
pathway that has been implicated in the development
of type 2 diabetes [4,5]. Recent investigations have
reported that oral GlcN consumption in humans worsens
insulin resistance in subjects at risk of developing type 2
diabetes [6,7]. To date, these observations have not been
critically appraised and, as they have raised concerns
among clinicians and the general public that GlcN is
contraindicated in people with diabetes and those at
risk of developing it [8], we have herein critically and
comprehensively reviewed the published literature.

Methods – literature review

A comprehensive package of publicly available scientific
data on GlcN in relation to its effect on glucose
metabolism was compiled from the literature and other
published sources through December 2009. The data
were collected using the electronic search tool, Dialog,
consisting of several databases, including MEDLINE,
TOXFILE, AGRICOLA, JICST-Eplus, BIOSIS Previews,
and EMBASE. To identify all available literature relevant
to the safety assessment of GlcN in normal, pre-diabetic,
and diabetic individuals, GlcN linked with the following
terms were used in the search criteria: diabetes, glucose
metabolism, glucose tolerance, glucose intolerance,
impaired glucose tolerance, insulin resistance, insulin
sensitivity, oral glucose tolerance test, hyperglycaemia,
and high blood sugar. All potentially relevant clinical
trials, whether controlled or uncontrolled, without regard
to route of administrations or duration of exposure, were
included in the review.

Data abstraction

Amongst clinical studies, research papers in which the
route of administration was oral were reviewed separately
from research papers in which the route of administration
was not oral. Moreover, results in diabetic and pre-
diabetic subjects were reviewed separately from results in
normoglycaemic subjects. Clinical studies in which GlcN
was administered orally were summarized in tabular
format. The following information was collected for
each clinical study: dose, study design, duration, net
effects on fasting glucose, and other results relevant to
glucose metabolism. The net effect on fasting glucose was
calculated by subtracting the change from baseline in
fasting glucose in the control group from that in the GlcN
group; to permit comparisons between studies, net effects
on fasting glucose were expressed as percents.

Results

Typical use of GlcN and oral
bioavailability

GlcN is mainly sold in one of two commercial forms as
a salt of GlcN hydrochloride (GlcN·HCl) or GlcN sulfate
(GlcN·SO4). When ingested, both salts dissociate fully
yielding free GlcN, and the bioavailability of GlcN derived
from either source is expected to be the same. GlcN is
typically used at a dose of 1500 mg/day (21 mg/kg body
weight), but higher doses of 3200 mg/day (45 mg/kg
body weight) have been used in some clinical trials [9].
Although the limited absorption of orally administered
GlcN is not widely acknowledged, it has long been
known that the active transport of GlcN in the small
intestine does not occur [10]. Numerous early studies
using ex vivo everted sac models and Tris-disrupted brush
border preparations (hamster jejunums) have shown
that high concentrations of D-GlcN competitively inhibit
glucose absorption, and that transport of GlcN is highly
inefficient, effects that have been attributed to differences
in the equatorial position of the second carbon atom of
these sugars [11–13]. Recent experiments using Xenopus
oocytes expressing various mutant forms of the human
sodium-dependent glucose transporter-1, have further
confirmed these early observations as the authors show
that GlcN is a poor substrate for the transporter, with a
K0.5 value �100 mM [14].

As the absorption of orally administered GlcN is limited,
usual doses result in plasma concentrations in the range
of 3–8 µmol/L [7,15–18]. The limited bioavailability
of GlcN is highlighted by two studies where large
oral doses of GlcN were administered: Persiani et al.
[19] showed that when an oral dose of GlcN·SO4 was
doubled from 1500 to 3000 mg, there was no significant
increase in plasma concentrations of GlcN; and in six
healthy volunteers who consumed in excess of five times
(7540 mg) typical supplemental doses, plasma GlcN levels
measured over a 180-min period did not increase above
the detection limit of the assay (15 µmol/L) [20].

Direct measurements of the oral bioavailability of
GlcN have been reported for a number of species.
The bioavailability of GlcN has been reported to be
10% in dogs [21], in the range of 2.5–6% in horses
[22,23], and as high as 20% in rats [24]. Furthermore,
as reported by Aghazadeh-Habashi et al. [24], no
differences in the intravenous versus intraperitoneal 8-h
GlcN plasma concentration–time profiles was observed
in male Sprague-Dawley rats administered GlcN at
a dose of 350 mg/kg body weight, which indicates
that the low bioavailability of GlcN in animals is a
function of the limited absorption of intact GlcN in the
gastrointestinal tract. The true bioavailability of oral GlcN
in humans is unclear although numerous articles cite GlcN
bioavailability as 26%. This value was incorrectly derived
from the study by Setnikar et al. [25], in which the 14C
label rather than the intact 14C GlcN-labelled molecule
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was measured. No qualitative measurements of intact
GlcN were made during this study, and, as shown by
Aghazadeh-Habashi et al. [24,26], the apparently almost
complete absorption of GlcN over the 120-h period
reported by Setnikar et al. [25] could be attributed to
the absorption of bacterial metabolites of GlcN from
the large intestine. For example, GlcN is one of the
most commonly fermented substrates among human and
animal Bifidobacteria [27], and numerous Bacteroides spp.
found in the colon are known to ferment GlcN [28]. The
limited oral bioavailability of GlcN over a large dose
range (1000–7540 mg) is due to its exclusion by the
gut and indicates that the liver is not exposed to high
concentrations of GlcN in portal venous blood even when
consumed at several times the typical amount. Thus,
the many observations obtained from animals infused
with GlcN, and following the exposure of cells to high
concentrations of GlcN in culture in which concentrations
of GlcN in the millimolar rather than in the micromolar
range are used, must be interpreted with caution.

GlcN infusion

High plasma GlcN concentrations, which can only be
achieved using intravenous infusions, produce insulin
resistance and impair glucose tolerance in a number of
species, including rats, dogs, and sheep [29–39]. During
the comprehensive literature search, two studies reporting
the effects of GlcN infusion on glucose tolerance and
insulin sensitivity in humans were identified [40,41].
In a randomized, placebo-controlled study involving
ten healthy subjects, Monauni et al. [40] assessed
the effects of GlcN on insulin secretion and action.
An intravenous glucose tolerance test (IVGTT) and a
euglycaemic insulin clamp during either a saline infusion
or a low (1.6 µmol/min/kg) or high (5.0 µmol/min/kg)
GlcN infusion were performed. The authors reported
that high-dose GlcN infusion was associated with a
modest worsening of glucose tolerance following IVGTT.
At GlcN plasma concentrations of approximately 570
and 1150 µmol/L, there was a slight dose-responsive
increase in fasting plasma glucose concentration of
0.3 and 0.5 mmol/L, respectively (p < 0.05). Plasma
glucose concentrations following IVGTT were similarly
affected but only at the higher of the two plasma GlcN
concentrations. Mechanistically, the authors concluded
that the slight vertical upward shift in the plasma
glucose concentration curve during high-dose GlcN
infusion was likely to be a function of GlcN’s well-
established capacity to inhibit pancreatic glucokinase
[42,43]. Further analysis of beta-cell function revealed no
effect of GlcN on readily reversible, or glucose-stimulated,
insulin secretion, suggesting that inhibition of the enzyme
was weak at this plasma concentration. At a plasma
concentration of 1150 µmol/L, GlcN increased the IVGTT-
derived plasma glucose threshold (∼10%; p < 0.05), and
decreased IVGTT-derived insulin sensitivity and glucose
effectiveness (p < 0.05). These observations confirm

the ability of GlcN, at high concentrations, to inhibit
glucokinase activity, which in turn attenuates the glucose-
sensing capacity of the beta cells and is the cause of the
increase in glucose plasma levels under these conditions.
No significant changes in glucose tolerance were observed
at a lower, though still very high (570 µmol/L), plasma
GlcN concentration.

Pouwels et al. [41] investigated the effects of intra-
venous GlcN·SO4 on insulin-stimulated forearm skeletal
muscle glucose uptake and whole body glucose uptake
in 20 healthy normoglycaemic volunteers (10 men and
10 women; mean age 24 ± 4 years; body mass index
22.3 ± 1.9 kg/m2). The authors employed a double fore-
arm balance technique (infused arm versus control arm),
with insulin sensitivity monitored via euglycaemic hyper-
insulinaemic clamping (insulin 60 mU/m2/ min + glucose
20%). During clamping, GlcN was administered to one
of the two groups at an infusion rate of 40 µmol/L/min
for 150 or 300 min (n = 6 per group), and six subjects
were infused with saline representing the placebo con-
trol. Following GlcN infusion, plasma GlcN concentrations
increased to 420 ± 140 µmol/L and to 810 ± 460 µmol/L
during the 150- and 300-min infusion periods, respec-
tively. The authors reported that under these conditions,
infusion of GlcN into the brachial artery for up to 300 min
did not affect total body insulin sensitivity. They con-
cluded that GlcN had no effect on insulin-induced glucose
uptake, and that a role for the hexosamine biosynthesis
pathway in regulating insulin sensitivity in humans was
not supported under their study conditions.

Oral GlcN supplementation in humans

Studies conducted in diabetic or pre-diabetic subjects
In total, six studies were identified from the literature in
which GlcN was administered to subjects with confirmed
diabetes and or subjects with poor glucose tolerance and
apparent insulin resistance [7,15,44–47]. Two of these
studies were uncontrolled interventions [45,47], and the
remaining four studies were controlled interventions con-
sisting of two randomized placebo-controlled investiga-
tions [7,10,44,46]. These studies involved the administra-
tion of GlcN at typical supplemental quantities (1500 mg),
for treatment periods of between 1 and 90 days. Three
studies conducted glucose tolerance testing and one
study measured insulin sensitivity using hyperinsuli-
naemic–euglycaemic clamping [7,15,45]. These studies
are described in detail below, and a summary of the fast-
ing glucose concentrations, results of glucose tolerance
testing, and clamping analyses are presented in Table 1.

In an uncontrolled study, Yu et al. [45] investigated the
effects of 4 weeks of oral GlcN·SO4 use (1500 mg/day)
on insulin sensitivity and glucose response in seven lean
and seven obese subjects. Two of the lean and three of the
obese subjects displayed impaired glucose tolerance. After
4 weeks of GlcN administration, there were no differences
in fasting plasma glucose or insulin levels in either the
lean or obese subjects, and the pooled (lean + obese)
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results from the glucose challenge and insulin sensitivity
analyses did not differ between baseline and week 4. Sub-
group analyses of the data based on body mass index or
glucose tolerance showed no GlcN effect.

The administration of GlcN to diabetic subjects was
reported as part of a large multi-centre uncontrolled
intervention study carried out by 252 doctors across
Portugal [47]. In total, 1208 osteoarthritis subjects
received GlcN·SO4 (1500 mg/day) for 6–8 weeks, and
included 92 subjects with reported diabetes, of whom
74 were on hypoglycaemic medication. The authors
reported that no variation intolerability was observed
among the GlcN users with diabetes, whether they were
using hypoglycaemic medication or not.

Four controlled intervention studies investigating the
effect of oral GlcN use on diabetes outcomes as primary
endpoints were identified [7,15,44,46].

Albert et al. [44] investigated the effects of GlcN
consumption on a number of diabetes-related endpoints in
subjects with type 1 or 2 diabetes. Three females and nine
males were enrolled in the study. Two had type 1 diabetes,
and ten type 2 diabetes. Subjects were randomized
to a double-blind placebo-controlled cross-over study
where each subject was administered placebo or GlcN
capsules three times daily, resulting in the consumption
of 1500 mg of GlcN per day during the treatment interval.
The treatment and placebo intervals were 2 weeks in
duration separated by a 4-week washout period. Fasting
plasma glucose and haemoglobin A1c (HbA1c) values were
measured serially. There were no statistically significant
changes or non-significant trends in any measured
parameter following 2 weeks of GlcN treatment relative
to baseline or placebo controls. The authors concluded
that ‘GlcN at doses commonly consumed does not have
significant effects on glycaemic control of diabetic subjects
after 2 weeks of supplementation’. Some of the caveats
to this study are the small sample size, short duration of
treatment, and use of insensitive glucose tolerance and
insulin response monitoring.

Evidence of impaired glucose tolerance following
GlcN use was suggested by Biggee et al. [7] based on
observations from three subjects who had outlier results
for glucose tolerance tests after GlcN·SO4 administration.
The authors investigated the effect of GlcN·SO4 on
glucose tolerance in 16 patients with osteoarthritis who
had normal fasting plasma glucose values. The study
employed a cross-over study design with treatments
allocated in a non-random manner during three visits,
1–2 weeks apart and a final visit 4 months later. For
each participant, serum glucose and insulin area under
the curve (AUC) values were determined over a 2-
and 3-h period, respectively, immediately following the
consumption of one of the four treatment regimes:
(1) GlcN (1500 mg) only at visit 1; (2) glucose only (75 g)
at visit 2; (3) combined GlcN (1500 mg) and glucose
(75 g) challenge at visit 3; and (4) a control evaluation
in the absence of glucose or GlcN on visit 4. The post hoc
analysis was based on the results of oral glucose tolerance
testing (OGTT) for 3 subjects who had higher serum

glucose values with the OGTT compared with the 13
subjects with lower glucose values during the OGTT. One
of the three outlier subjects had a normal baseline OGTT
but a slightly abnormal value after GlcN consumption.
The authors reported that oral GlcN did not affect glucose
or insulin AUC values in the 13 normoglycaemic patients;
however, in the 3 outlier subjects, the consumption of
GlcN (1500 mg) immediately following the oral glucose
challenge resulted in a 32% (p < 0.05) increase in the
glucose AUC values relative to the standard glucose
challenge. There was no change in insulin AUC values
following a glucose challenge with or without GlcN. It also
was noted that subjects were not allocated to treatment
groups at random; subjects with poor glucose tolerance
tend to worsen over time, and baseline data on fasting
glucose values for the three outlier subjects at visit 1
and 4 are not presented, which confounds interpretation
of the GlcN effect in these subjects. On the basis of
the evidence of worsening glucose tolerance among the
outliers, the investigators concluded that oral GlcN may
decrease glucose tolerance in subjects with ‘undiagnosed’
diabetes. The limitations of this study are the small
numbers of subjects (three in the impaired fasting glucose
tolerance group), use of post hoc analyses to identify the
three outlying ‘responders’, the large variability in glucose
tolerance test results, and failure to allocate subjects to
the treatments in a randomized fashion.

Muniyappa et al. [15] conducted a randomized,
double-blind, placebo-controlled cross-over study to
assess the effect of 6 weeks of oral GlcN·HCl use
(1500 mg/day) on insulin resistance in 20 lean and
20 healthy obese subjects. Insulin resistance was
assessed using euglycaemic–hyperinsulinaemic clamp
methodology. At baseline, the obese subjects displayed
significant insulin resistance (p < 0.0001) relative to lean
subjects. Therefore, this study allows the effect of GlcN on
subjects with and without apparent insulin resistance
to be assessed. There were no significant differences
between groups for the various diabetes-related analytical
endpoints. No within-group differences from baseline
were reported. The authors concluded that GlcN neither
worsens insulin resistance in lean healthy subjects nor in
obese ‘pre-diabetic’ subjects.

Scroggie et al. [46] administered GlcN·HCl (1500 mg/
day) and chondroitin sulfate (1200 mg/day) to 26 male
and female patients with type 2 diabetes for 90 days
and 12 others received placebo. Percent HbA1c rose by
0.05% in subjects administered GlcN for 90 days, and
was reduced by 0.16% at day 90 in the placebo group.
Although the authors reported that the between-group
differences were not significant (analysis of variance,
p = 0.2), it must be noted that the study is underpowered
to detect a significant change of the magnitude observed
by the authors.

Thus, of the six intervention studies identified, two
of which were uncontrolled, deleterious effects of GlcN
on glucose metabolism were reported only in one
study and only in a post hoc analysis involving three
‘outlier’ subjects. The totality of scientific evidence,
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including a study employing the gold-standard eugly-
caemic–hyperinsulinaemic clamp methodology, does not
indicate any adverse effects of GlcN, at therapeutic doses
normally consumed, on glucose metabolism in subjects
with poor glucose tolerance or in subjects with type 2
diabetes.

Studies conducted in normoglycaemic individuals
The glycaemic response of non-diabetic subjects to GlcN
administration has been examined in 13 clinical trials
involving 1973 subjects with a duration of exposure from
21 to 1095 days (median, 250 days; Table 2).

In an uncontrolled intervention study, Pham et al.
[6] reported that ‘oral GlcN in doses used to treat
osteoarthritis worsens insulin resistance’. This study was
conducted in 38 male and female subjects in the age group
of 23–67 years with an average age of 43.9 years. The
treatment consisted of GlcN administration (1500 mg;
type not stated) once daily for a period of 42 days. On
days 0 and 43, subjects had blood sampled to determine
fasting blood glucose, insulin, and serum lipid levels.
Fasting glucose and insulin levels were used to calculate
a homeostasis model assessment of insulin resistance and
quantitative insulin sensitivity check index quantitative
insulin sensitivity check index. Unfortunately, data on
fasting plasma glucose values (mean and range) at
baseline and final visits are not provided. After consuming
GlcN for 42 days, the mean post-trial body mass index,
fasting insulin, and HbA1c level were not significantly
different from day 0. Thirty-eight subjects were enrolled
in the study but the number of subjects included at
each endpoint analysis varied substantially and no details
of the number of subjects completing the study, and
subjects unavailable for specific endpoint analyses were
provided. The authors reported that evidence of insulin
resistance was observed in the group post-treatment as the
homeostasis model assessment of insulin resistance values
were increased by 20% from baseline (n = 35; p = 0.04).
HbA1c values decreased, but non-significantly, during
the study from 5.54 ± 0.74 at baseline to 5.45 ± 0.51
at day 43, an observation that is inconsistent with the
authors’ conclusion that glucose tolerance worsened in
subjects with poorer insulin sensitivity. Several additional
post hoc correlations between baseline measurements of
homeostasis model assessment relative to changes in
quantitative insulin sensitivity check index, low-density
lipoprotein, and small artery elasticity are presented as
worsening over time in subjects with higher baseline
homeostasis model assessment values, an effect the
authors attribute to GlcN. Because of the unavailability of
vital fasting plasma glucose data, failure to report data
on intent-to-treat basis, use of post hoc comparisons, and
uncontrolled study design the authors’ conclusion are not
supported.

The recent GlcN/Chondroitin Arthritis Intervention
Trial commissioned by the National Institutes of Health
(United States) investigated the safety of GlcN·HCl use
in a large number of osteoarthritic subjects (average age

59 years). The study utilized a randomized double-blind
placebo-controlled design and evaluated the exposure
to GlcN supplementation over a 6-month period [48].
A total of 242 subjects were randomized to receive
GlcN treatment (1500 mg/day) and 313 to the placebo
group. The study included diabetic subjects (number not
reported), who had their fasting plasma glucose or HbA1c

monitored during the study. There were no significant
GlcN-induced changes in these parameters on conclusion
of the study nor was there an increase in cardiovascular
disease risk factors in the diabetic patients who received
GlcN.

In a double-blind placebo-controlled study by Tannis
et al. [49] conducted in 19 healthy male and female
subjects, daily GlcN·SO4 (1500 mg) for 12 weeks had no
effect on fasting glucose or insulin levels and no change in
glucose tolerance following glucose challenge. Changes in
fasting plasma glucose levels in the placebo- (P) and GlcN-
treated (GlcN) groups after 6 weeks were +6.6% (P) and
−15.8% (GlcN), respectively, with net difference, −22.4
favouring GlcN. After 12 weeks, the corresponding figures
were +5.4% (P) and −3.7% (GlcN) with net difference,
−9.2% favouring GlcN.

The effects of acute high-dose oral GlcN administration
were investigated by Laferrère et al. [59] in 20 healthy,
non-obese subjects with normal glucose tolerance. Six
subjects received 3000 mg of GlcN·SO4, five received
6000 mg of GlcN and nine received an inert placebo
in the morning following an overnight fast. Neither of the
high doses of oral GlcN affected plasma glucose or insulin
levels.

A preliminary report – published only as an abstract –
was identified in the literature in which oral GlcN·SO4

was reported to adversely affect glucose metabolism [53].
This was a secondary analysis of a study investigating the
effect of GlcN on back pain in which the effects of GlcN
on glucose metabolism was evaluated in 15 subjects (6
GlcN, 9 placebo) consuming GlcN (1500 mg) or placebo
treatments for a period of 12 weeks. There were no
differences between groups in fasting plasma glucose
or insulin levels at week 12 but there was a significant
(p < 0.01) increase in fasting plasma insulin level relative
to baseline in those receiving GlcN.

Finally, a number of additional studies (Table 2)
were identified during the literature search in which
glucose measurements were obtained and/or clinical
chemistry monitoring was conducted [50,54–58,60–62].
No evidence of GlcN-related effects on fasting glucose
concentrations were reported by the authors.

Long-term GlcN use
The long-term safety of GlcN has been evaluated in
two studies for which diabetes-related endpoints were
monitored as secondary endpoints [51,52]. Pavelká et al.
[51] conducted a double-blind placebo-controlled study
that randomized 202 subjects with osteoarthritis of the
knee to receive either daily placebo or GlcN·SO4 treatment
(1500 mg) for a period of 3 years. The mean age of
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subjects randomized to the placebo and control groups
was 64 and 61 years, respectively. Standard secondary
safety endpoints involved adverse event reporting and
routine laboratory testing was performed on a yearly
basis. During the study, four patients developed diabetes;
three of them were from the placebo group and one from
the GlcN group. No GlcN-related effects were reported
for the results of the yearly laboratory monitoring, which
presumably included fasting plasma glucose levels.

Reginster et al. [52] evaluated the effect of GlcN·SO4

supplementation in 212 male and female subjects
with osteoarthritis of the knee. Participants (mean
age of 66 years) were randomized to receive either
placebo or GlcN·SO4 (1500 mg/day) for a period of
3 years. Diabetes-relevant parameters were monitored
as secondary endpoints and, in addition to standard
adverse event and laboratory monitoring, each subject had
fasting glucose concentrations measured yearly. Drop-out
rates were equal in both groups throughout the trial,
and reasons for dropping out did not differ. Routine
laboratory testing did not show any significant changes in
glycaemic homeostasis although fasting plasma glucose
levels tended to decrease from baseline in the GlcN-
treated group. In a personal communication, the lead
author explained that only subjects with diagnosed type
2 diabetes were excluded from the study and that sub-
group analysis of the subjects who were randomized to
the GlcN group and had above ‘normal’ fasting glucose
concentrations at the beginning of the trial displayed
trends (non-significant) towards lower plasma glucose
concentration throughout the 3 years of daily GlcN use
(Reginster, personal correspondence, 2009).

As the average age of the subjects in these two
studies was above 60 years, a significant proportion of
the patients who participated in these studies might have
been expected to have some degree of glucose intolerance,
the prevalence of which has been estimated by some to be
as high as 52% for Europeans 60–79 years of age [63]. On
the basis of data collected from the International Diabetes
Federation [64] and European census data [65], it has
been estimated that 17% of people recruited between the
ages of 60 and 79 from the Belgian population [52] and
23% of those from the Czech populations [51] would
have evidence of impaired glucose tolerance, and might
therefore be considered potentially pre-diabetic. Although
some of these potentially ‘pre-diabetic’ subjects might
have been excluded from each of the two long-term
clinical trials (e.g. obese subjects) it is not unreasonable
to suppose, given its high prevalence, that a significant
number of individuals with impaired glucose tolerance
would have been included in these studies of long-term
GlcN administration.

Although, to date, no study has specifically addressed
the long-term safety of GlcN in diabetic or pre-diabetic
subjects, the lack of diabetes-related adverse effects, or
increases in the incidence of diabetes among 207 elderly
subjects receiving daily GlcN supplementation for a total
period of 1242 patient years of follow-up suggest that
GlcN does not constitute a specific risk for diabetes.

Figure 1. Glucosamine and the hexosamine biosynthesis
pathway. Glucose transporters are indicated by arrow
and major enzymes are included in ellipses. GLUT1,
GLUT2, GLUT4, glucose transporters; GlcN-6-P, glucosamine-
6-phosphate; Glc-NAc-6-P, N-acetyl-glucosamine-6-phosphate;
UDPGalNAc, uridine diphosphate-N-acetyl-galactosamine; UDP-
GlcNAc, UDP-N-acetyl-glucosamine; HK, hexokinase; GFAT, glu-
cosamine: fructose-6-phosphate aminotransferase; and GNPDA,
glucosamine-6-phosphate deaminase

Overall, data obtained from 12 clinical trials, including
765 non-diabetic subjects receiving standard clinical
doses of GlcN (1500 mg) for periods of up to 3 years
have not suggested adverse effects on glycaemia or the
progression/development of diabetes in older volunteer
subjects (Table 2). Even when infused at high doses of
up to 269 mg/kg body weight, resulting in plasma levels
of 187-fold above those expected under standard oral
dosing, no effects on insulin resistance are observed.

Discussion

GlcN is a widely used dietary supplement that is
described as efficacious and safe for many individuals
with osteoarthritis, especially of the knees [66]. Concerns
that GlcN consumption may worsen glucose tolerance
and induce insulin resistance were not based on
clinical observations, but on in vitro studies by Marshall
et al. showing that exogenous GlcN could increase
the activity of the hexosamine biosynthesis pathway,
a metabolic process that is believed to function as
a nutrient sensor modulating insulin sensitivity and
glucose uptake in peripheral tissues [4] (Figure 1). The
end product of this pathway is UDP-N-acetylGlcN, a
substrate for O-GlcNAc transferase, which mediates the
addition of β-N-acetylGlcN to the hydroxyl groups of
serine and/or threonine residues on a wide variety of
proteins. This post-translational modification regulates
a wide range of biological processes, including signal
transduction/metabolic proteins that modulate glucose
metabolism and insulin sensitivity [5]. As reviewed by
Copeland et al. [5], there are strong associations between
elevated GlcN acylation of proteins with glucose toxicity
and impaired insulin signalling; excessive flux of sugars
through the hexosamine signalling pathway has therefore
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been implicated as a causative factor in the development
of type 2 diabetes.

There is a large body of evidence from in vitro
studies using human- and rodent-derived cells that
high concentrations of GlcN in the incubation media
impairs insulin-mediated glucose uptake. This has led
mistakenly to GlcN being described as a diabetogenic
agent. Interference with glucose metabolism occurs only
at concentrations comparable with those of glucose,
i.e. within the 2–50 mmol/L range, concentrations
that are several hundred- to a thousand-fold greater
than plasma concentrations that occur during oral
supplement use. At these concentrations (<10 µmol/L),
GlcN neither augments the hexosamine biosynthesis
pathway nor reduces insulin-mediated glucose uptake
[67,68]. Additionally, in vitro observations in human
adipocytes have shown that in the presence of normal
glucose concentrations, the uptake of GlcN is almost
completely inhibited [67].

Animals-administered high intravenous concentra-
tions of GlcN have shown that rodents are espe-
cially sensitive to its diabetogenic effects. During eug-
lycaemic–hyperinsulinaemic clamping, the infusion of
GlcN in rodents producing plasma GlcN concentrations
of between 800 and 1200 µmol/L results in glucose intol-
erance and insulin insensitivity [32,37]. In contrast, the
consumption of GlcN at doses many times greater than are
used clinically was not associated with any adverse effects
on glucose metabolism. For example, Echard et al. [69]
reported that in strains of rodents that are highly sensitive
to sugar-induced insulin resistance, the consumption of
GlcN in large amounts (9% in the diet; ∼4.5 g/kg body
weight) for 9 months had no effect on fasting glucose
concentrations or glucose tolerance. Similar observations
have been made in other species (dog and rabbit) in which
GlcN was administered orally, at doses greatly exceeding
those used clinically [70,71]. In none of these studies were
sensitive insulin response monitoring methods employed
or plasma GlcN levels measured; nevertheless, the absence
of a diabetogenic effect in animal feeding studies is con-
sistent with its low bioavailability and its lack of biological
effect on glucose metabolism.

In clinical trials investigating the effect of GlcN on
osteoarthritis, GlcN has been administered to many
patients with type 2 diabetes or impaired glucose
tolerance, without specifying the numbers. In long-term
randomized placebo-controlled studies, daily GlcN use
was not associated with increased incidences of type
2 diabetes, and a non-significant fall in fasting blood
glucose values over 3-year periods of daily GlcN use was
reported in one study, an effect that could be explicable by
the concept of regression to the mean as it was observed
only in those with the highest blood glucose values at
the start [51,52]. Overall, the data from randomized
placebo-controlled osteoarthritis trials have not shown
any adverse effects on fasting blood glucose levels, glucose
metabolism, or insulin sensitivity from oral GlcN, at any
dose level.

Six studies that investigated diabetes-related outcomes
as primary endpoints were identified, and included
participants with type 2 diabetes or obese subjects with
apparent insulin resistance [7,15,44–46]. In most short-
term studies, there were no significant changes in fasting
plasma glucose or insulin concentrations or in HbA1c

after consumption of GlcN in usual doses. Nor was
there any change in insulin sensitivity determined by the
use of a hyperglycaemic clamp. One short-term clinical
study [7], which concluded that oral GlcN use in ‘pre-
diabetic’ subjects may adversely affect insulin sensitivity
and glucose tolerance, is flawed by its small sample sizes
(n = 3), the use of post hoc analysis, failure to allocate
subjects to treatment groups in a randomized fashion,
and the inherent limitations of uncontrolled intervention
studies.

The only diabetogenic effect attributed to GlcN in
humans was in response to high-dose GlcN infusion,
which resulted in a slight elevation in plasma glucose
concentrations following an IVGTT [40]. However,
this observation was not due to the development of
insulin resistance, and was consistent with GlcN’s well-
established inhibitory activity towards glucokinase, an
effect that in humans would only occur when plasma
levels of GlcN approach normal glucose concentrations.
This concentration (5 mM) is roughly 500- to 1000-
fold above plasma levels that are reasonably expected
following supplemental GlcN use.

In conclusion, the available evidence implicating GlcN
as a diabetogenic agent are limited to rodent infusion
studies and in vitro observations, experimental models
that were determined not to be relevant to humans. A
comprehensive and critical review of the clinical literature
indicated that the consumption of GlcN at usual doses
was well tolerated by normal, diabetic, and ‘pre-diabetic’
subjects. Thus, based on the overall weight of scientific
evidence, there currently appears to be no reason to
restrict the use of oral GlcN for individuals at risk
for diabetes, or those with type 1 or 2 diabetes, or
normoglycaemics with respect to any adverse effects on
sugar metabolism.
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S, Utriainen T, McClain D, Yki-Järvinen
H. Activation of the hexosamine path-
way by glucosamine in vivo induces
insulin resistance in multiple insulin
sensitive tissues. Endocrinology 1997;
138: 2501–2507.

35. Holmäng A, Nilsson C, Niklasson M,
Larsson BM, Lonroth P. Induction
of insulin resistance by glucosamine
reduces blood flow but not interstitial
levels of either glucose or insulin. Dia-
betes 1999; 48: 106–111.

36. Kim YB, Zhu JS, Zierath JR, Shen HQ,
Baron AD, Kahn BB. Glucosamine infu-
sion in rats rapidly impairs insulin stim-
ulation of phosphoinositide 3-kinase but
does not alter activation of Akt/protein
kinase B in skeletal muscle. Diabetes
1999; 48: 310–320.

37. Patti ME, Virkamaki A, Landaker EJ,
Kahn CR, Yki-Jarvinen H. Activa-
tion of the hexosamine pathway by

Copyright  2010 John Wiley & Sons, Ltd. Diabetes Metab Res Rev 2011; 27: 14–27.
DOI: 10.1002/dmrr



Glucosamine and Diabetes 27

glucosamine in vivo induces insulin
resistance of early postreceptor insulin
signaling events in skeletal muscle. Dia-
betes 1999; 48: 1562–1571.

38. Spampinato D, Giaccari A, Trischitta V,
et al. Rats that are made insulin resis-
tant by glucosamine treatment have
impaired skeletal muscle insulin recep-
tor phosphorylation. Metabolism 2003;
52: 1092–1095.

39. Robertson MW, Dunshea FR, Goddard
ME, Leury BJ. Stimulation of the hex-
osamine biosynthetic pathway by glu-
cosamine in sheep. Asia Pac J Clin Nutr
2005; 14: (suppl): S79.

40. Monauni T, Zenti MG, Cretti A, et al.
Effects of glucosamine infusion on
insulin secretion and insulin action in
humans. Diabetes 2000; 49: 926–935.

41. Pouwels M-J, Jacobs JR, Span PN, Lut-
terman JA, Smits P, Tack CJ. Short-
term glucosamine infusion does not
affect insulin sensitivity in humans.
J Clin Endocrinol Metab 2001; 86:
2099–2103.

42. Oguchi M, Miyatake Y, Ayabe J,
Akamatsu N. Phosphorylation of
D-glucosamine by rat liver glucokinase.
J Biochem 1975; 77: 1117–1121.

43. Agius L, Stubbs M. Investigation of the
mechanism by which glucose analogues
cause translocation of glucokinase in
hepatocytes: evidence for two glucose
binding sites. Biochem J 2000; 346:
413–421.

44. Albert SG, Oiknine RF, Parseghian S,
Mooradian AD, Haas MJ, McPherson T.
The effect of glucosamine on serum HDL
cholesterol and apolipoprotein AI levels
in people with diabetes. Diabetes Care
2007; 30: 2800–2803.

45. Yu JG, Boies SM, Olefsky JM. The effect
of oral glucosamine sulfate on insulin
sensitivity in human subjects. Diabetes
Care 2003; 26: 1941–1942.

46. Scroggie DA, Albright A, Harris
MD. The effect of glucosamine-
chondroitin supplementation on glyco-
sylated hemoglobin levels in patients
with type 2 diabetes mellitus: a placebo-
controlled, double-blinded, randomized
clinical trial. Arch Intern Med 2003; 163:
1587–1590.

47. Tapadinhas MJ, Rivera IC, Bignamini
AA. Oral glucosamine sulphate in the
management of arthrosis: report on
a multi-centre open investigation in
Portugal. Pharmatherapeutica 1982; 3:
157–168.

48. Clegg DO, Reda DJ, Harris CL, et al.
Glucosamine, chondroitin sulfate, and
the two in combination for painful knee
osteoarthritis. N Engl J Med 2006; 354:
795–808.

49. Tannis AJ, Barban J, Conquer JA.
Effect of glucosamine supplementation
on fasting and non-fasting plasma glu-
cose and serum insulin concentrations
in healthy individuals. Osteoarthritis
Cartilage 2004; 12: 506–511.

50. Hughes R, Carr A. A randomized,
double-blind, placebo-controlled trial of
glucosamine sulphate as an analgesic in
osteoarthritis of the knee. Rheumatology
2002; 41: 279–284.

51. Pavelká K, Gatterova J, Olejarova M,
Machacek S, Giacovelli G, Rovati LC.
Glucosamine sulfate use and delay of
progression of knee osteoarthritis: a 3-
year, randomized, placebo-controlled,
double-blind study. Arch Intern Med
2002; 162: 2113–2123.

52. Reginster JY, Deroisy R, Rovati LC, et al.
Long-term effects of glucosamine sul-
phate on osteoarthritis progression: a
randomised, placebo-controlled clinical
trial. Lancet 2001; 357: 251–256.

53. Almada AL, Harvey P, Platt K. Effect of
chronic oral glucosamine sulfate upon
fasting insulin resistance index (FIRI) in
non-diabetic individuals. FASEB J 2000;
14: A750 [Abstract 521.15].

54. Giordano N, Nardi P, Senesi M,
et al. Efficacia e tollerabilità della glu-
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