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The concept of central nervous system (CNS) inflammation has evolved over the last decades. Neuroinflammation is the response
of reactive CNS components to altered homeostasis, regardless of the cause to be endogenous or exogenous. Neurological diseases,
whether traumatic, neoplastic, ischemic, metabolic, toxic, infectious, autoimmune, developmental, or degenerative, involve direct
and indirect immune-related neuroinflammation. Brain infiltrates of the innate and adaptive immune system cells appear in
response to an infective or otherwise noxious agent and produce inflammatory mediators. Mediators of inflammation include
local and recruited cells and signals. Processes derived from extrinsic and intrinsic CNS diseases also elicit the CNS
inflammatory response. A deeper understanding of immune-related inflammation in health and disease is necessary to find
potential therapeutic targets for preventing or reducing CNS damage. This review is aimed at discussing the innate and adaptive
immune system functions and their roles in regulating brain cell responses in disease and homeostasis maintenance.

1. Introduction

The cardinal signs of acute inflammatory diseases involve
cellular and molecular events, typically self-limiting, unlike
autoimmune and neurodegenerative lesions, which are due
to the failure in chronic inflammation resolution. Unresolved
inflammatory conditions typically lack the proinflammatory
to proresolving phase switch. This implies sustained recruit-
ment and persistence of inflammatory cells at the site of
inflammation because of lacking apoptosis and dead cell
clearance, macrophages not switching to an anti-inflamma-
tory/regenerative phenotype, no way out for the effector cells,
and partial tissue regeneration.

Some of these unsuccessful resolution phase scenarios
appear common to acute and chronic diseases.

Both in chronic inflammation with unsuccessful resolu-
tion and acute inflammation with a self-limited resolution,
making sense of the interaction interlayer between paren-
chyma cells and immune cells is key to understanding the
inflammation-repair process.

Both the immune and central nervous (CNS) systems
produce and use immune factors and neuroendocrine medi-
ators. Immune cells and mediators play a regulatory role in
the CNS, participating in neurodevelopmental synaptic plas-
ticity and removal and synaptic plasticity in adulthood. Far-
distance talk of immune cells with the CNS allows the
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immune system to engage the body in fighting infection by
pathogenic microorganisms and the nervous system to regu-
late immunity.

Cross-talk between the immune, nervous, and endocrine
systems involves a great variety of mediators, including cyto-
kines, neurotransmitters, and hormones.

The nervous system lays out functional connections with
the immune system directly innervating the lymphoid system
with adrenergic, peptidergic, and catecholaminergic fibers
and via receptors for neuropeptides (substance P (SP),
somatostatin, and vasointestinal peptide, (VIP)) and neuro-
transmitters (noradrenaline, acetylcholine, enkephalin, and
endorphin) on immune cells. These mediators can modulate
the synthesis and release of cytokines, including the chemo-
kines, chemotactic cytokines. Chemokines are low molecular
weight cytokines that recruit secondary proinflammatory
leukocytes and might act as central neuromodulators [1].
Neuropeptides and neurotransmitters reach the immune
cells by nerve-terminal nearby diffusion (nonsynaptic trans-
mission) and bloodstream circulation. Hormonal receptors
in lymphoid tissues allow the neuroendocrine mediators to
interact with the immune system. In the last years, the consis-
tent characterization of receptors and hormones in lymphoid
tissues has brought out interesting information on the cross-
talk between the immune and neuroendocrine systems and
the involved mechanisms.

Brain tissue is a particular target of immune-
inflammatory reactions. In the past, the CNS was believed
immune-privileged, v.g., not prone to undergo strong inflam-
mation, and lacking lymphatic drainage. Accrued evidence
on neuroimmune interactions has questioned the historical
idea of the brain, isolated by the blood-brain barrier (BBB),
immune-privileged. This intrinsic characteristic of the CNS
is conferred by constitutive and reactive components includ-
ing the BBB, microglial cells, astrocytes, oligodendrocytes,
and infiltrating myeloid and lymphoid cells. Astrocytes appear
to protect the CNS from T cell-mediated neuroinflammation
[2]. This review offers an update on the key inflammatory
mediators and the role of inflammatory cells in infectious
and noninfectious conditions on neuroinflammation. We dis-
cuss the relationship between neuroinflammatory processes,
hypoxia, and oxidative stress and how innate and adaptive
immunity shape up an integrative network to regulate immu-
nological processes, affecting brain homeostasis.

2. Neuroinflammatory Diseases

The BBB-derived immune privilege of the brain is, at least,
questionable by now. Central nervous system cells are reac-
tive to peripheral inflammatory factors, and peripheral
immune cells can infiltrate the brain. In encephalitis, menin-
gitis, encephalopathy, hypoxia, and other conditions, the
inflammatory response of brain cells evidences neurological
involvement. Neurologic manifestations of infective (para-
site, virus, bacteria, and fungi) and not mutually exclusive,
noninfective agents (traumatic, neurodegenerative, and auto-
immune) result in morbidity and mortality. The best treat-
ment for these neurologic complications, with varying
degrees of recovery and sequelae, is yet unclear.
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Inflammation is emerging as a pivotal mechanism com-
mon to different neuropathological conditions [3-10].

2.1. Neuroinfectious Diseases. Innate immunity offers a rapid
response to infections, often called the first line of host
defense, enhancing adaptive immune responses. During neu-
roinflammatory infections, specific types of innate immune
molecular and cell pathways seem activated. Their functional
effectiveness to limit brain injury spread is crucial.

Neurologic dysfunction with acute alteration in mental
status due to inflammation is a hallmark of CNS infections
by neurotropic pathogens [11]. Postinfectious neurologic
dysfunction has been attributed to irreversible damage
caused by pathogens on their own [12-15].

Neurologic involvement and manifestations were reported
in some parasitic infections, v.g., Chagas disease, toxoplasmo-
sis, human African and American trypanosomiasis, echino-
coccosis,  cysticercosis, leishmaniasis, onchocerciasis,
schistosomiasis, food-borne trematodiasis, dracunculiasis,
filariasis, and soil-transmitted helminthiasis [16].

Chagas disease is associated with brain atrophy indepen-
dent from structural cardiac disease related to cardiomyopa-
thy. Brain atrophy, rather than multiple infarcts, may
represent the main anatomical substrate of cognitive impair-
ment in Chagas’ disease [17].

An important determinant of brain inflammation is the
delicate balance between proinflammatory and counterin-
flammatory mediators. In mouse models of human African
trypanosomiasis, proinflammatory mediators like the tumor
necrosis factor (TNF-«), interferon-gamma (IFN-y), and
CXC ligand 10 (CXCL10) have been crucial to parasite
CNS invasion. The administration of IL-10, a prototypical
counterinflammatory molecule, reduces the CNS parasite
burden, the severity of the neuroinflammatory response,
and the clinical symptoms associated [18].

Viral infections associated, or not, with acquired immu-
nodeficiency like dengue, rabies, infections by Epstein Barr
virus (EBV), herpes papillomavirus (HPV), human immu-
nodeficiency virus (HIV), and others could cause neurolog-
ical complications.

Human immunodeficiency viruses infect the CNS during
primary infection and persist in resident macrophages, lead-
ing to low-grade chronic inflammation. Various CNS viral
infection-mediated inflammations take place in perivascular
inflammatory infiltrates of the CNS parenchyma [19].

Malignant and nonmalignant tumors are rare. Based on
serologic findings and literature, the pathogenetic mecha-
nism of this rare intracranial tumor is believed a chronic
reactive response to EBV infection [20].

Bacterial infections of the CNS can cause meningitis,
granulomatous infections like tuberculosis, syphilis, spiro-
chete infections, and others, cerebral and epidural abscesses,
and bacterial exotoxin-related diseases like diphtheria, teta-
nus, and botulism, affecting the CNS.

Certain mycoses can affect the brain causing neuroin-
flammation and neurodegeneration [5, 7, 8] or toxicity [21].
Coccidioidal meningitis (CM) often affects immunocompro-
mised people [22]. Cerebral aspergillosis is a highly fatal
infection [23], and mucormycosis is an opportunistic fungal
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infection with a poor prognosis among generalized fungal
infections that promote brain degeneration.

The past years have established a key role for infectious
pathogens in certain neurological autoimmune-associated
diseases. Certain systemic and organ-specific autoimmune
diseases, rheumatic mainly, can cause neuroinflammation.
Fibromyalgia [4], destructive joint diseases [6], and systemic
lupus erythematosus [3] are a few examples. Neurodegen-
eration studies suggest that peripheral infection might be
related to onset and progression of age-related neurode-
generation [24]. Aged patients appear more vulnerable to
infection-related cognitive changes associated with Alzhei-
mer’s disease (AD). This may occur from typical infectious
challenges like respiratory tract infections, although some
specific viral, bacterial, and fungal pathogens have been
associated with disease development as well. To date,
whether these microorganisms are directly related to AD
progression or are opportunistic pathogens colonizing
dementia patients and exacerbating the preexisting ongo-
ing inflammation [8, 25] is unclear.

Neuroinflammation with altered synaptic plasticity fol-
lowing perinatal infectious-inflammatory challenges is of
concern. The effects of congenital infection on neural cell
proliferation and survival, axonal damage, and myelination
have been studied in different experimental settings [26].
Microglia, as an antigen-presenting cell (APC), exerts a
special role during neuroinflammation-associated injury
to the immature brain [27]. However, microglial activation
also participates in the immunoregulation-triggering
response, although the evidence suggests that the microglia
critically influences brain plasticity in the healthy develop-
ing brain [28].

2.2. Not Pathogen-Associated CNS Diseases. Neurodegenera-
tive diseases progressively affect cognitive and motor func-
tions and interfere with daily tasks’ performance. Advances
in genetics and animal models are showing an unexpected
role of the immune system in the pathogenesis and onset of
diseases. The role of cytokines, growth factors, and immune
signaling pathways in disease pathogenesis is still being
examined [29].

Traumatic brain injury (TBI) elicits a robust immune
response within hours and days [30]. Peripheral immune cell
infiltration to the damaged tissue with activation of brain
resident astrocytes and microglia has been observed in
patients and TBI animal models. Regulatory T cell-reduced
neuroinflammation, T lymphocyte brain infiltration, reactive
astrogliosis, interferon-y gene expression, and transient
motor deficits have been observed in an acute TBI murine
model [31].

Postmortem brain and cerebrospinal fluid of Parkinson’s
disease (PD) patients had a high concentration of proinflam-
matory cytokines, indicating ongoing neuroinflammation
beyond pathology. Inflammation might lead to oxidative
stress promoting dopaminergic neuron degeneration [9].
Several studies have reported inflammation and immune
responses as determinant factors in disease progression,
responsible for pathogenic processes in familial and sporadic
PD onset [10]. One study reported activated microglia in the

substantia nigra (SN) and putamen of patients diagnosed
with PD [32]. In 2005, another study suggested microglia-
mediated inflammation presenting at an early stage of par-
kinsonism [33]. Several authors suggested pathogenic muta-
tions in the a-synuclein (SNCA) gene and the leucine-rich
repeat kinase 2 (LRRK2). Alpha-synuclein accumulation, a
major stimulant of microglial activation, participates in PD
progression [34-36]. Both central and peripheral inflamma-
tion is responsible for the sustained progression of PD.
Degeneration of dopaminergic neurons occurs with the infil-
tration of T cells and activation of microglia, with increased
production of inflammatory cytokines and chemokines due
to pathological SNCA accumulation [34, 37, 38].

In addition, the CNS is an autoimmune disease target.
Multiple sclerosis (MS) is one of the most ravaging disorders,
presenting with spontaneous onset, remitting-relapsing
periods sometimes, and a progressive disease pattern in
genetically predisposed hosts. Experimental autoimmune
encephalomyelitis (EAE) is the traditional animal model for
MS. However, despite its similarities with MS, most treat-
ments for EAE have failed in translation to humans. Adaptive
and innate, systemic, and resident in the CNS immune com-
ponents contribute to neurodegenerative and neurobehav-
ioral disorders’ progression as found in animal models and
correlated with human studies.

Environmental triggers affecting the CNS during the pre-
natal and postnatal periods trigger microglia activation and
astrogliosis, upregulate proinflammatory cytokines, and are
critically associated with neuroinflammation [39, 40]. It is
not only a hallmark of infections but secondary to not-
infective insults as well, like cerebral hypoxia-ischemia [41].
Noteworthily, inflammatory brain glial cells appear pivotal
in regulating synaptic structure and function. Synaptic phys-
iology and pathophysiology studies suggest that the immune
system dynamically affects neurodevelopmental synapse
organization [42, 43].

Though seldom exposed to harmful agents, brain tissue
has limited restorative ability to repair damaged cells. The
expanding molecular biology findings offer increasing
insights into immune glial system interactions, including
innate and adaptive immune molecules and receptors medi-
ating tissue injury and repair [44].

3. Key Components of the
Neuroinflammatory Process

Newly evolving neuropathology evidence offers proper inter-
pretations of a plethora of diverse disorders. Microglia
response, infiltrating immune cells, generation of oxidative
stress species, and proinflammatory cytokines offer a com-
mon background to neuroinflammatory and neuroimmune
responses.

Neuroinflammation is often harmful yet contributes to
normal brain development [42] and homeostasis and is actu-
ally necessary for brain plasticity during critical developmen-
tal periods [45]. Perpetuating inflammatory processes lead to
progressive chronic inflammatory conditions, mainly derived
from autoimmune or neurodegenerative disorders. Adaptive



immune-mediated neuroinflammation is a frontier grey zone
between injury and healing in chronic diseases in particular.

In homeostasis, the neuronal function requires glial cells
and BBB integrity. Accumulating evidence suggests that neu-
roinflammation targeting glial cells is implicated in neurode-
generative disorders [46].

3.1. Inflammatory Mediators in the CNS

3.1.1. Cytokines and Chemokines at the Neuroinflammation
Border. Chemokines and cytokines are bioactive proteins
and peptides involved in feedback activation of protein sig-
naling cascades. Peripheral macrophages and lymphocytes
and central astrocytes and microglia produce and release
cytokines and chemokines. These are necessary for neuronal
metabolism, immune surveillance, leukocyte trafficking, and
uptake of other inflammatory mediators. They participate
in neurodevelopment and synaptic transmission and are the
main inducers of neuroinflammation. Cytokines and chemo-
kines bind to specific membrane receptors at the extracellular
ligand-binding region, activating the intracellular region
which triggers signal transmission to the nucleus [47].

Cytokines and chemokines are neuroprotective and neu-
roinflammatory, and their dysregulation is decisive for neu-
roinflammation, neurodegeneration, and demyelination in
the central and peripheral nervous systems [48].

(1) Chemokines. Chemokines comprise two categories based
on their expression. One of them, constitutively expressed,
is responsible for the maintenance of homeostasis, surveil-
lance, and immune system monitoring. The other one,
inducible by inflammation following damage, amplifies the
innate and adaptive immune system responses.

Chemokines act via chemokine-unspecific G protein-
coupled receptors (GPCR). They can attract or activate
immune cells and affect neuronal activity and survival [49].
They may induce neuronal death directly, activating neuro-
nal chemokine receptors, or indirectly, activating microglial
killing mechanisms. Some chemokines are neuroprotective
and act as pro- or anti-inflammatory mediators [48]. One
of the most important neuroinflammatory chemokines is
the monocyte chemoattractant protein-1 (MCP-1), also
known as C-C motif ligand 2 (CCL2) or C-X3-C motif ligand
1 (CX3CL1). It regulates the migration of monocytes, T lym-
phocytes, and “natural killer” cells towards the affected area.
In its soluble form, MCP-1 participates in the interaction
between neurons and other inflammatory cells.

The MCP-1 acts via the CCR2 receptor and is expressed
in neurons and glial cells. The astrocytes are the major source
of MCP-1 after neuronal damage or infection. It plays an
important role in neuroinflammation linked to various dis-
eases involving neuronal degeneration. Neuronal MCP-
1/CCL2 induction during mild impairment of oxidative
metabolism caused by microglial recruitment/activation
exacerbated neurodegeneration in thiamine deficiency-
(TD-) induced neuronal death. Knockout mice lacking
CCL2 were resistant to TD-induced neuronal death, suggest-
ing that CCL2 mediated microglial recruitment and neurode-
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generation in this model [50]. However, several studies show
that suppressing MCP-1 may be beneficial, reducing inflam-
mation in some diseases. In patients with complications asso-
ciated with inflammatory processes, a high blood level of
CCL2 contributes to ischemic cerebrovascular disease and
myocardium infarct. Brain overexpression of CCL2 aggra-
vates ischemic injury [51], while CCL2 deficiency confers
neuroprotection against permanent carotid artery oblitera-
tion [52]. Mice lacking CCR2 showed reduced cerebral
edema, infarct size, and BBB disruption and decreased leuko-
cyte, monocytes, and neutrophil infiltration. They also had
decreased expression of a variety of proinflammatory cyto-
kines (IL-1p, TNF-a, and IFN-y) and endothelial cell adhe-
sion molecules preventing leukocyte-endothelial cell
interaction during reperfusion [53, 54]. Interestingly, MCP-
1-deficient mice showed reduced neuroinflammatory
responses and increased peripheral inflammatory responses
to peripheral endotoxin insult [55]. In the hypoxia-
ischemia model, CCR2 knockout mice had impeded transen-
dothelial diapedesis in response to CCL2, showing that CCR2
was required for stem cell migration to promote CNS regen-
eration via CCL2 chemotaxis [56]. Likewise, CCL2 protected
cultures of human neurons and astrocytes from glutamate
toxicity and HIV-transactivator of transcription- (HIV-tat-)
induced apoptosis [57]. Rat dorsal hippocampal neurons in
culture treated with kainic acid (KA) showed increased
CCL2 and macrophage inflammatory protein-2 (MIP-2)
levels, both inducers of basic fibroblast growth factor (bFGF)
and astrocyte activation. Astrocytes stimulated with CCL2
facilitated bFGF-dependent neuronal cell differentiation
and induced H19-7 neurons’ survival in vitro, suggesting a
supporting trophic role for chemokine-activated astrocytes
[58]. Astrocytes produce chemokines in response to proin-
flammatory cytokines like IL-18 and TNF-a and synthesize
MCP-1 via nuclear factor-kappa B (NF-«B) [55]. Primary
astrocytes treated with lipopolysaccharide (LPS) and inter-
leukin- (IL-) 1/3 were responsible for the exacerbated cyto-
kine response observed in vivo in the absence of CCL2
postinjury. Evidence of CCL2-induced inhibition of IL-6
and TNF-« produced by astrocytes following IL-1f stimula-
tion suggests a novel CCL2 immunomodulatory role in acute
neuroinflammation [59].

Other chemokines like CXCL9, CXCL10, and CXCL11
and their receptor (CXCR3) are crucially involved in AD
and MS. They are implicated in the Th1-type response in var-
ious diseases. Their expression is induced by IFN-y, the most
typical Th1 cytokine associated with tissue T cell infiltration
[60]. Accordingly, MCP-1 might have a dual neuroinflam-
matory or neuroprotective role in neurodegenerative dis-
eases, depending on the neuroinflammatory milieu.

(2) Cytokines. The small proteins known as cytokines are sig-
naling molecules released in response to a variety of stimuli
under physiological and pathological conditions. Present in
up to picomolar concentrations, they regulate inflammation
and the duration of the immune response and modulate cel-
lular activities like growth, survival, and differentiation. The
large and diversified group of pro- or anti-inflammatory
cytokines comprises different families based on their



Mediators of Inflammation

structural homology and that of their receptors [48]. The
main proinflammatory cytokines are TNF-«, IL-1f, and IL-
6 interleukins and IFNs. Anti-inflammatory cytokines are
IL-10 and IL-4, among others. Cytokines act as neuromodu-
lators and regulate neurodevelopment, neuroinflammation,
and synaptic transmission. They are crucial to brain immu-
nity comaintaining immune surveillance, facilitating leuko-
cyte traffic, and recruiting other inflammatory factors. The
role of cytokines in neurodegenerative diseases is compli-
cated by their dual roles in neuroprotection and neurodegen-
eration [48].

To illustrate, IL-6 has dual roles in brain injury and dis-
ease. It is essential in regulating inflammation, balancing
between pro- and anti-inflammatory responses, and partici-
pating in neurodegenerative and neuroprotective processes
[61]. The peripheral nervous system and the CNS, v.g., neu-
rons, microglia, and astrocytes, in particular, show IL-6
[60]. In neuroinflammatory processes, IL-6 promotes astro-
gliosis and microglial activation. During reactive astrogliosis,
IL-6 acts as a neurotrophin, promoting neuronal survival in
response to neuronal damage. A high level of IL-6 has been
associated with brain disease [61]. Interleukin-6 is upregu-
lated upon neuroinflammation as observed after CNS infec-
tion or injury, viral meningitis, experimental encephalitis,
and acute viral infections. In all these conditions, its cerebro-
spinal fluid (CSF) level rises in patients [62]. Other examples
of high IL-6 level conditions are mouse experimental cerebral
malaria [63], TBI [64], and advanced stages of patients with
HIV infection [65]. Conversely, studies in IL-6 knockout
mice show a compromised inflammatory response, increased
oxidative stress, impaired neuroglial activation, decreased
lymphocyte recruitment, and a slower rate of recovery and
healing [61]. In physiological conditions, TNF-« participates
in homeostasis regulation, synaptic plasticity, learning and
memory, and sleep/wake cycles. However, a high TNF-« level
is related to neuroinflammation and neurodegenerative dis-
eases [66]. Its major source is the microglia, along with astro-
cytes and neurons during neuroinflammation [66]. Together
with the interferon-gamma protein (IFN-y), TNF-« is proin-
flammatory during acute brain inflammation and is immu-
nosuppressive upon chronicity [67].

Interferon-gamma (IFN-v) is a multifunctional cytokine
that participates in inflammation onset and consolidation,
in innate and adaptive immune responses, induced in many
cell types, including neurons [68]. It is a potent inducer of
TNF-a gene expression in microglia, having complementary
roles during neuroinflammation [66]. TNF-« induces neuro-
toxicity by high glutamate production, leading to neuronal
excitotoxicity and death [69]. Inactivating IL-1? and TNF-«
with neutralizing antibodies reduced neuronal death in SK-
N-SH cells, a neuroblastoma cell line induced by the West
Nile virus [70]. Deleting the TNF-« gene reduces neurode-
generation in Sandhoff disease (SD), a lysosomal storage dis-
order [71]. However, TNF-a receptor-1-deficient mice
showed severe experimental autoimmune neuritis suggesting
an anti-inflammatory role for TNF-« at least in this model
[72]. Two surface receptors, TNFR1 and TNFR2, recognize
TNF-a. They differ in their expression, signaling cascade

transduction, and TNF-« binding affinity [73]. Downregulat-
ing TNFR1 reduced JNK activation and attenuated neuroin-
flammation, neurovascular damage, and brain injury in the
LPS-sensitized hypoxic-ischemia mouse model [69]. Upreg-
ulating TNFR2 protected neurons from excitotoxicity and
promoted neuronal survival, activating the PI3K/NF-«B sig-
naling pathway in a glutamate-induced cell death model
[74]. Different receptor-related signaling pathways account
for TNF-a dual effects [75, 76].

IL-1p is a very potent signaling molecule of the family of
pleiotropic cytokines, expressed at low levels usually, but
induced rapidly in response to local or peripheral insults. It
coordinates the host defense response to pathogens and
injury, not surprisingly, not only systemically but in the
CNS as well. Upon injury or in brain disease, IL-1 presence
has been correlated with effects on neurons and nonneuronal
cells [77]. It is also involved in neuroinflammation, fever,
appetite, learning, and memory [78]. It is synthesized by
macrophages, microglia, astrocytes, T and B lymphocytes,
or neutrophils, among others [77]. Binding to the IL-1R
receptor induces the production of other inflammatory cyto-
kines like IL-6 and TNF-a, and the increase in the PLA2,
COX-2, and iNOS enzymes which produce arachidonic acid,
prostaglandins, and NO, respectively [79, 80]. Studies in IL-
IR1 receptor-deficient mice found decreased activation of
microglia and astrocytes and of IL-6 and COX-2 production
in brain injury, indicating the key role of IL-1§3 [79, 81].
Interleukin-1 was rapidly induced in experimental stroke,
while a low IL-1p level protected from ischemic injury and
neuronal loss, reducing infarct volume [79, 82]. Multiple
sclerosis patients had high IL-1p levels in CSF and demyeli-
nated lesions [83]. Oppositely, IL-1/ induced the production
of fibroblast growth factor-2 (FGF-2), transforming growth
factor-S1 (TGF-f1), and nerve growth factor (NGF), pro-
moting neurite growth in vitro [84]. Taken together, IL-18
appears important in the initiation and development of the
inflammatory cascade and in neuronal survival in a variety
of neurodegenerative diseases.

Neuropoietic cytokines are a group of immune mediators
that participate in normal brain development, promoting
neural precursors’ proliferation, fate determination and dif-
ferentiation, neuronal and glia migration, cell survival, and
activity-dependent changes in synaptic function. Inflamma-
tion during development may cause widespread injury, inter-
fering with the normal balance in cytokine signaling and
developmental processes, or increase neurological vulnera-
bility later in life [85].

3.1.2. The Role of the Complement Cascade in
Neuroinflammation. The complement system comprises
around 30 proteins, nearly 5% of total whey protein and a
low proportion of membrane proteins. It participates in the
recognition, trafficking, and elimination of pathogens and
any unfamiliar material to the host as a powerful arm of the
innate immune system. In normal conditions, its compo-
nents do not pass through the blood-brain barrier. Glial cells
and neurons produce complement components, largely in
response to neural damage or inflammatory signals [86].
The complement cascade is also expressed during



physiological development when neuron-derived comple-
ment proteins tag synapses for pruning by microglial cells
[87, 88]. Astrocytes and microglia are the largest producers
of complement elements in both normal and pathological
conditions. The microglia expresses high complement recep-
tor levels, crucial at inducing phagocytosis of complement-
labeled structures, regulating cytokine signals and chemo-
taxis. Astrocytes, oligodendrocytes, and neurons express high
levels of the C3 complement fraction and other members of
the complement cascade [89, 90]. The complement system
is implicated in several neurological disorders. Complement
mRNAs have been found in the cerebral cortex and the hip-
pocampus in man. The postmortem examination of samples
from patients with AD showed an increased level of these
mRNAs in pyramidal neurons. This finding along with reac-
tive oxygen species and proteases portrays a local inflamma-
tory nest compatible with neuronal dysfunction and
cognitive decline [91-93]. Products of the activation cascades
are generated in human AD, MS, Huntington’s disease,
Parkinson’s disease, spinal cord injury, TBI, and cerebral
ischemia [94-102]. In addition, C3™'~ mice showed reduced
brain edema in intracerebral hemorrhage [102]. Comple-
ment overactivation, associated with glial activation and the
release of proinflammatory compounds, appears implicated
in synaptic loss concomitant with aging physiological, cogni-
tive decline, and brain diseases [103]. The complement sys-
tem role in the pathology of neurodegenerative diseases
opens new avenues for understanding its involvement in
neuroinflammatory processes and as a promising target for
future therapeutic strategies.

3.2. Inflammatory Cells in the CNS. Neurons and glial cells
produce cytokines either constitutively or by induction in
appropriate culture media.

Glial cells, unlike neurons, are not excitable and comprise
the microglia and the macroglia (astrocytes, oligodendro-
cytes, and ependymal cells). Some of them are involved in
the isolation, support, and supply of substances to maintain
neuronal metabolism. The microglia are considered brain
resident macrophages able to migrate to the inflammatory
foci. Glial cells release cytokines, which establish functional
connections with each other and with neurons. Upon inflam-
matory stimuli, they can participate in the pathogenesis of
neurological diseases.

3.2.1. Microglia. Microglia, the resident immune cells of the
CNS, are derived from yolk sac macrophages arising during
the first wave of primitive hematopoiesis and populating
the developing CNS via the bloodstream once embryonic cir-
culation is established [104]. Central nervous system glia and
a mononuclear phagocyte are involved in physiologic pro-
cesses, inflammatory and immune responses, and in the
pathogenesis of several CNS disorders [46]. These cells share
innate immunological functions with other mononuclear
phagocytes like monocytes, macrophages, and dendritic cells,
mostly related to phenotypic characteristics and lineage-
related immunological properties, including the ability to
secrete cytokines common to immune antigen-presenting
cells, described over two decades ago [105].
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Surveillant microglia cells contribute to maintaining CNS
homeostasis [106]. In response to inflammation challenge,
microglia promptly becomes ameboid and upregulates cell
surface receptors involved in innate immune responses, pro-
inflammatory type (classical or M1 activation). This is
because they have pattern recognition receptors (PRRs) like
the toll-like receptors (TLR), the nucleotide-binding oligo-
merization domain-like (NOD) receptors, receptors for
advanced glycation end products (RAGE), scavenger recep-
tors (CD36, CD91), phagocytic receptors like the CR3 and
CR4, and triggering receptor expressed on myeloid cells
(TREM). These receptors are involved in the innate immune
response, increasing the expression of various cytokines, che-
mokines, surface receptors, and metabolic enzymes [107].
The microglia can take on an anti-inflammatory profile
(M2 microglia), promoting healing, tissue regeneration, and
angiogenesis. The M2 microglia has been subdivided into dif-
ferent M2 subtypes depending on the expression of specific
markers and secreted cytokines and chemokines [82, 108].

Microglia is crucial in restricting neuroinflammation.
In osteopetrotic (op/op) mice, defective in producing func-
tional colony-stimulating factor (M-CSF), a decrease in the
number of tissue macrophages and microglial cells led to
neuropathology exacerbation [109, 110]. All the same, res-
ident glial cells can turn into aggressive effectors, attacking
healthy neurons by phagocytosis, or secreting factors on
their own, or in coordination with infiltrated immune cells
[111]. This rich repertoire of responses may account for
the dichotomic microglia reactivity in promoting neuronal
survival or degeneration.

The presence of activated microglia in nearly every neu-
rological insult leads to possibly oversimplifying in vitro
study design. Assuming that activated microglia and associ-
ated inflammatory responses are harmful to the brain should
be cautious [112]. The reactive response of the microglia
might be interpreted mostly as beneficial. The regulatory
control of neuroinflammation is normally imposed, and
interfering with homeostatic regulations may be detrimental.
Unfortunately, the way to reaching a healthy balance and its
modulation under psychological distress and neurological
diseases is still unclear [107].

3.2.2. Astrocytes. Astrocytes have been traditionally consid-
ered supportive cells for neurons, responsible for brain
homeostasis and neuronal functions. They are the largest cell
population in the CNS, even compared with neurons [107].
Astrocytes give metabolic support to the neuron, generate
neurovascular coupling, and control BBB permeability. They
are essential in recapturing several neurotransmitters, K*
damping, and other functions. They express a wide variety
of cytokine receptors like the PRRs, contributing to brain
immunity [113]. The expression kinetics indicates that che-
mokines contribute to amplifying the inflammatory reaction
or that astrocytes can promote recruitment and proliferation
of regulatory T cells (Tregs) via the anti-inflammatory cyto-
kine transforming growth factor 8 (TGF-f) and chemokine
CXCL12 (stromal cell-derived factor-1 (SDF-1)) [107].
Astrocytes secreting other anti-inflammatory cytokines like
IL-10 might exert important immunoregulatory functions
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in the CNS, reducing microglia and astrocytes’ presenting
capacity and interfering with antigen-specific T lymphocyte
proliferation.

Activated T lymphocytes (Th1 and Th17) in the second-
ary lymphatic organs cross the BBB and are locally reacti-
vated upon surface antigen recognition on the antigen-
presenting cells. They secrete cytokines that stimulate
microglia and astrocytes, increasing cell recruitment in a
variety of neurological disorders. Astrocytes act as a source
of cell surface receptor/ligands and cytokines to modulate
both innate and adaptive immune cell system in the neurop-
athy, and the way around, immune cells regulate astrocyte
activity [114, 115].

Microglia and astrocytes play an active dual role in brain
inflammatory diseases. Not only can they boost immune
responses and promote neurodegeneration but can also pro-
tect and restrict CNS inflammation. What factors or scenar-
ios determine whether a beneficial or detrimental response
follows remains a matter of research.

3.2.3. Oligodendrocytes. The oligodendrocytes are glial cells
that start myelinization, allow electric potential propagation,
and give metabolic support to neurons. From an immunolog-
ical point of view, oligodendrocytes were classically thought
of as inert and merely representing bystander victims of
immune responses. This view has now changed in the light
of accumulating evidence that oligodendrocytes actively pro-
duce a wide range of immune-regulatory factors and express
the corresponding receptors [115].

Neuroinflammatory responses can be deleterious for cell
survival, leading to irreversible and extensive brain damage,
if long-sustained in particular. Oligodendrocytes are the
main target of the immunoinflammatory response in the
CNS. This occurs due to deleterious cytokines released by
infiltrating macrophages and microglia, T lymphocyte cyto-
toxicity, or antibodies triggering antibody-mediated cytotox-
icity (antibody-dependent cellular cytotoxicity).

Oligodendrocytes produce immune mediators that mod-
ulate microglia activity in response to stress. Chemoattrac-
tants like CXCL10, CCL2, CXCR2, and CCL3, CXCR2
expressed on oligodendroglia, in particular, have been impli-
cated in the pathogenesis of neuroinflammatory demyelinat-
ing diseases and in amplifying the migration, proliferation,
and myelin production by the oligodendroglia [116]. Oligo-
dendrocytes express receptors to IL-4, IL-6, IL-10, IL-12,
and other cytokines and markers like the CD200 during
inflammation and infection, suggesting that they recruit
microglia to damaged tissues [115]. A wide range of proin-
flammatory cytokines, including IL 1, 2, and 3, IFN «, f3,
and y, TNF-a, and lymphotoxin, released by microglia, have
been detected in demyelinating pathologies like MS, suggest-
ing that microglial activity and oligodendrocyte damage may
be associated [116, 117]. In vitro stimulation with IFN-y
induced MHC-I expression, making them susceptible to
death caused by CD8+ T cells (often called cytotoxic T lym-
phocytes) [118]. Likewise, oligodendrocytes express both IL-
18 and IL-18R receptors during the active MS period. The
large amount of IFN-y observed in these circumstances adds
to oligodendrocyte damage [119]. Human oligodendrocytes

are susceptible to MHC class I restricted CD8+ T cell medi-
ated cytotoxicity in vitro [120, 121], to non-MHC restricted
cytotoxicity mediated by y8 T cells [122], and to cytokine-
activated natural killer (NK) cells [123]. The cytotoxic activ-
ity of killer (K) cells in enriched cultures of bovine oligoden-
drocytes (BOL) was investigated in MS. Human K cells
mediated cytotoxicity to primary cultures of BOL, where
the antibody-dependent cell-mediated cytotoxicity (ADCC)
to BOL was mediated by large granular lymphocytes [124].

Oligodendrocytes play a central role in the pathogenesis
of a wide spectrum of neurological disorders encompassing
various neurodegenerative diseases, besides the classical
demyelinating disorders. The interaction between oligoden-
drocytes and other glial cells like microglia offers an insight
into the neuroinflammatory dynamics in different neurolog-
ical conditions. More studies are needed on the communica-
tion between microglia and oligodendrocytes. The outcome
will help to develop new approaches to treat disorders with
myelin damage associated with innate immune activation,
promoting repair and reducing inflammation in the CNS.
This is summarized in Figure 1.

3.3. CNS Immune-Mediated Inflammation, Hypoxia, and
Oxidative Stress Crossovers. The CNS is sensitive to periph-
eral inflammatory events and peripheral immune cell and
cytokine infiltration. Unfortunately, unsuccessful repair leads
to lasting cellular damage. Any insult to the CNS involves
immune-mediated inflammation-hypoxia and oxidative
stress. Often, there is a massive epithelial cell loss and inter-
stitial fibroblast proliferation with an extracellular collage-
nous matrix deposition known as fibrosis because of a
failure in repairing injured parenchyma cells [125]. This
interpretation is not conclusive. Fibroblast expansion is
intrinsic to damage due to tissue-resident macrophage acti-
vation and macrophage-like cell influx rather than paren-
chyma repairing attempt by macrophages. Whether fibrosis
benefits or aggravates damage is not clear [126]. Clarifying
this issue applies to whether the intervention should point
against fibrosis development (fibroblasts’ expansion and col-
lagen deposition) or not if the repair strategy avoids axonal
loss and brain damage.

Functional recovery after hypoxic brain damage poses a
complex scenario. Hypoxia impairs gene expression and
downregulates transcription and translation mechanisms
and gene activation as the hypoxia-inducible factor (HIF1-
«) and its target molecules [127]. Hypoxia triggers two main
molecular and cell cascades. One leads to hypoxia-damaged
cell removal via ubiquitination, peroxisome, and caspase
pathway activation, resulting in apoptosis or necrosis, the lat-
ter encompassing proinflammatory effects [128, 129]. The
other is compensatory, reducing cell loss via multiple mech-
anisms, including DNA repair, preserving homeostasis [130].

Eventually, the loss and salvage of cells impact brain
development, neuronal wiring, and neuron-glia interactions.
Whatever further negative impact comes up during develop-
ment will reinforce the sequel of damage, aggravating neuro-
logical deficits and ensuing neurological disorders.

Inflammation and hypoxia are inextricably linked.
Nuclear factor kappa B (NF-«B) regulates the HIF1-« system
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[131]. The concept of hypoxia leading to inflammation has
gained general acceptance after studies on the hypoxia signal-
ing pathway. Mountain sickness increases the circulating
level of proinflammatory cytokines and vascular leakage,
triggering pulmonary or cerebral edema [129, 132-134].

Hypoxia signaling and the NF-xB family of transcription
factors regulate inflammation and orchestrate immune
responses to guarantee tissue homeostasis [135]. The interac-
tion of the NF-«B family with the HIF pathway links inflam-
mation with hypoxia. The NF-«B-independent ATIA- (anti-
TNF-a-induced apoptosis-) thioredoxin 2 (TRX2) axis
inhibits TNF-a- and hypoxia-induced apoptosis irrespective
of NF-«B through TRX2-mediated elimination of excess
reactive oxygen species (ROS) (Figure 2) [136].

Ischemia-reperfusion activates NF-«B in epithelial cells,
releasing proinflammatory tumor necrosis factor « (TNF-a)
while attenuating apoptotic hypoxia-activated pathways
[137, 138].

One study identified an NF-xB-independent ATIA-
thioredoxin 2 axis that inhibits TNF-a- and hypoxia-
induced apoptosis, eliminating ROS directly [139]. Cur-
rently, the paradigm for inhibition of TNF-a-induced apo-
ptosis points to NF-xB, which inhibits caspases and
prevents sustained JNK activation [73]. Besides, the antia-
poptotic effect of NF-«B has been associated with excessive
ROS elimination.

Hypoxic event

TNF-a
TRAF2 TRAF2/ E{IPI
HIF-1« —DA”EIA NF-«B
TRJ)_Q Inflammation
ROS JNK Caspases
L i€
Apoptosis Apoptosis

FIGURE 2: Schematic representation of ATIA as the proposed
inflammation and hypoxia crossover.

The evidence poses a novel paradigm for apoptosis inhi-
bition by TNF-«a and other death signals, controlling ROS
accumulation. The pleiotropic inflammatory cytokine TNF-
« regulates immune responses, inflammation, proliferation,
and cell death (apoptosis and necrosis) and regulates apopto-
sis binding to its membrane receptor 1 (TNF-R1).

Upon TNF-« stimulation, TNF-R1 trimer recruits multi-
ple adaptors like TRAF2, TRAF5, RIP1, cIAPI, and c[AP2
and other modulators or regulators like Mizl and the linear
ubiquitin chain assemble complex [140-143].

Cells of the adaptive and innate immune systems in the
brain parenchyma and meningeal space are relevant in both
brain health and disease.
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FIGURE 3: Schematic representation of parenchyma and macrophage cell fate in hypoxia and oxidative stress-inflammation environment.

The ATIA-TRX2 axis inhibits apoptosis induced by both
TNF-a and a low oxygen level, eliminating excessive ROS in
mitochondria. This rescues parenchyma cells from undergo-
ing apoptosis. The activity of ATTA may be a key regulator in
carcinogenesis because tumor cells often take advantage of
normal tissue under hypoxic conditions.

3.4. Autophagy-Associated Inflammation in the CNS.
Autophagy plays an important role in both innate and adap-
tive immune responses [144]. This lysosome-dependent cat-
abolic process serving to the turnover of proteins and
organelles is crucial in the inflammatory response and cell
survival. Immune and inflammatory signals induce autoph-
agy in macrophages through TLRs, among others [145]. Nev-
ertheless, the physiological role of autophagy and its
signaling mechanisms in microglia remains poorly under-
stood [145]. Autophagy-related genes (Atg) in microglia are
largely suppressed after TLR4 activation by lipopolysaccha-
ride (LPS), inversely as the LPS-mediated stimulation in
macrophages [145].

Microglial cells are activated during various phases of tis-
sue repair in certain CNS pathologies. Spinal cord injury-
(SCI-) associated anoxemia has a key pathogenic effect,
resulting in tissue damage. Besides, HIF-1a protects against
apoptosis and necrosis under ischemic and anoxic condi-
tions, upregulating the expression of downstream target
genes in brain stroke. Both HIF-1a expression and autopha-
gic cell death were described in microglial cells during brain
damage [146]. Autophagy suppression with decreased cell
viability and increased inflammatory cytokines were reported
associated with HIF-1a inhibition or HIF-1« silencing [146].
If confirmed, HIF-1a may lead to minor autophagic cell
death of microglial cells associated with hypoxia-mediated
inflammation and may provide a novel therapeutic approach
for SCI diseases with deleterious microglial cell activation.

Certain bacteria and pathogenic viruses are implicated in
neurodegenerative processes, oxidative stress, decreased
autophagy, synaptopathy, and neuronal death [147]. How-
ever, how infections influence neurological disease progres-
sion is still controversial. Mitochondrial antiviral signaling
(MAVS) protein has an important role in antiviral immunity
and autoimmunity. However, the pathophysiological role of
this signaling pathway, especially in the brain, remains elu-
sive [148]. Autophagy regulated MAVS signaling activity in

mouse embryonic fibroblasts (MEFs) [149]. In addition,
defective autophagy was associated with neurodegenerative
disease development [150-152]. Also, MAVS signaling was
involved in microglial activation in vivo [148]. Inflammation
is concurrent with autophagic activation, and autophagy
inhibition in microglial cells strengthens MAVS-mediated
inflammation [148]. This accounts for a regulation of
MAVS-dependent microglial activation in the CNS, where
autophagy has a key role in microglia-driven inflammatory
brain diseases.

MicroRNAs (miRNAs) have a role in regulating immune
cell development and modulating innate and adaptive
immune responses [153]. Abnormal autophagy occurs dur-
ing infectious and autoimmune diseases associated with cer-
tain miRNAs as novel and potent modulators of autophagic
activity [154]. The deficiency of miRNA 223 has been found
to reduce CNS inflammation, demyelination, and the clinical
symptoms of experimental autoimmune encephalomyelitis
(EAE) and increased resting microglia and autophagy [154]
found that. Taken together, targeting autophagic proteins
may be considered as a potential therapeutic strategy in
neuroinflammation-associated diseases [144].

3.5. Neuroinflammation and Natural Immunity. The innate
immune response is the first line of defense after tissue injury,
hypoxia, or metabolic stress. Activation of innate immunity
in response to tissue injury is crucial to homeostasis restora-
tion and wound healing [155, 156].

A balanced oxygen environment is imperative for sur-
vival, while away from the balance point, it may be harm-
ful (Figure 3). Both oxygen deficit and excess are
detrimental to parenchymal cells and favor macrophage
influx [157-159].

Following an insult, cell fate depends on the balance
between cell damage and repair, along with oxygen level
restoration.

During hypoxia-driven inflammatory damage and oxida-
tive stress-associated inflammatory injury, cell rescue is pos-
sible, and parenchyma cells survive. In both scenarios, the
immune system orchestrates immune reactive CNS compo-
nents to restore homeostasis, maximizing parenchyma sur-
vival. Provided oxygen level normalizes by homeostatic
immune-mediated compensatory mechanisms, parenchyma
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cells may successfully recover, and the infiltrated macro-
phages die.

Fully restoring altered homeostasis is not possible in
the innate autoimmune response, and inflammation per-
petuates [160]. Studies on the interlinkages between hyp-
oxia, tissue alarm signals, neoangiogenesis, and reactive
tissue repair mechanisms have allowed identifying early
immune response molecules. These are the TLRs, inflam-
matory cytokines, and putative danger signals, among
others, that trigger, sustain, and end the homeostatic
response. Janeway's “recognition of microbial nonself’
hypothesis explains the activation of an immune response
to infection or injury [161]. The “danger model” postulates
alternative mechanisms for inducing an appropriate
immune response unless there is evidence of tissue injury,
termed as “alarm” signals [162]. Innate receptors, like C-
type lectins and TLR, seem involved in neuroinflammation
and might play a crucial role in the pathogenesis of EAE,
an MS animal model [155, 156, 163, 164].

Growing evidence shows that macrophages have vari-
ous functions in the CNS. Understanding the mechanisms
governing the reparative and pathological properties of
activated macrophages is at the forefront of neuroscience
research. Both  macrophage-mediated repair and
macrophage-mediated injury occur. Two innate immune
receptor subtypes participate in developmental processes
and neurological diseases. Danger-associated molecular sig-
nals released from dying cells in the injured spinal cord
appear to activate different subtypes of macrophage pattern

recognition receptors, including TLRs and fungal C-type
lectin receptors (e.g., dectin-1) causing neuroprotection or
neurotoxicity [165].

Oxidative stress and hypoxic stress trigger divergent
pathways to restore homeostasis, resulting in survival or
death according to the cell type. Hypoxia often amplifies
inflammation and has a prosurvival effect on neutrophils,
monocytes, and eosinophils. Complete restoring of oxygen
homeostasis ensues macrophage apoptosis and wound heal-
ing (Figure 4).

3.6. Neuroinflammation and Adaptive Immunity. Adaptive
immunity makes use of immunological memory to recognize
specific pathogens, adding up to the innate immunity
response, overall achieving an amplified response. Adaptive
immunity is typically initiated after innate immune cells
like dendritic cells, macrophages, or microglia via their pat-
tern recognition receptors (PRRs) recognize broad specific-
ities of pathogen-associated molecular patterns (PAMPs)
and damage-associated molecular patterns (DAMPs). These
are associated with microbial pathogens, cellular stress, or
cell components of damaged tissues [166]. In addition,
adaptive immunity includes a plethora of effector T cells
(Thl, Th17, Th3, Th2, and T regulatory), effector B cells,
and antibodies that, in turn, infiltrate the brain during neu-
roinflammation. Macrophages can act during innate and
adaptive immune responses.

During brain hypoxia, the NF-«B pathway is amplified,
upregulating TLRs, which enhance antimicrobial factor
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production and stimulate phagocytosis, leukocyte recruit-
ment, and adaptive immunity. Besides, HIF-1a increases,
influencing adaptive immunity. Patients with a rheumatic
disease showed HIF-1a-deficient lymphocytes and high
serum levels of anti-double-stranded DNA antibodies and
rheumatoid factor [167].

Brain hypoxia depends on signaling mediated by T cell
HIF-1a receptors [168]. In vivo and in vitro experiments
have suggested that immune responses mediated by T cells
and HIF-1lw« are key downregulators in vascular inflamma-
tion and remodeling tissue, contributing to vascular remod-
eling modulation together with B lymphocytes [169]. The
deletion of HIF-1a in T cells impairs differentiation of CD4+
Th17-producing cells in vitro and in MOG/CFA-induced
EAE [168]. In a brain hypoxia-ischemia (H/I) mouse model,
the expression of TIM-3 (a member of the T cell immuno-
globulin that downregulates the TH1-dependent immune
response) increases in activated microglia and astrocytes
(brain resident immune cells) depending on HIF-1w& [170].
Blocking of TIM-3 reduces infarct size, neuronal death,
edema formation, and neutrophil infiltration in H/I mice
[170]. Other studies suggest that HIF-1a modulates T cell
differentiation towards a Th17 cytokine-secreting phenotype.
A decrease in HIF-1a resulted in reduced Th17 but enhanced
T regulatory cell differentiation, protecting mice from auto-
immune neuroinflammation [171]. Others reported that
HIF-1a induced FoxP3+ Tregs during inflammation [172].
Likewise, in the EAE model, CD4+ cells decreased, and
the CD4+CD25+FoxP3 Treg subset increased in the spinal
cord of EAE mice exposed to chronic mild hypoxia com-
pared with normoxic counterparts [173]. The increase in
Trx-1 contributes to reducing Treg sensitivity to oxidative
stress. Along with inflammatory stimuli, especially TNF-q,
this dynamic negative feedback promotes Tregs in the
inflammatory milieu to prevent a sustained or excessive
immune response [145, 174]. Inflammatory mediators like
cytokines dependent on the Thl, Th17 lymphocyte sub-
population [175], NO, or free radicals [176, 177] have
been observed during clinical relapse phases in MS. Con-
versely, suppressive cellular activity by Th2, Th3, and
Trl cells, in particular, has been reported during remission
periods [178]. The increase in CD4+ and CD8+ T cells
found in mouse models of AD [179] suggests an impor-
tant contribution of T cells to disease pathogenesis [180].
Depleting Tregs enhanced T cell infiltration and reactive
astrogliosis in a model of TBI, suggesting tissue damage
modulation by Tregs following injury [181].

The evidence of the role of innate and adaptive immunity
in neuroinflammation is conclusive. The key events trigger-
ing the pathology or charting the chronology of the early
changes upon disease is yet to be clarified, even considering
the vast literature available. The infiltration of immune cells,
T cells, in particular, prompts further examining the role of
adaptive immunity [179].

4. Fibrotic Reaction to Inflammation

The regulation of fibrotic processes in the CNS is little
known. After an inflammatory response, the fibrotic reaction
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ensues the increase in extracellular matrix components. Dif-
ferent chronic inflammatory diseases with MS-resembling
traits like psoriasis or rheumatoid arthritis present severe
and intermittent progression with phases of acute exacerba-
tion and remission. They show an influx of inflammatory
cells (macrophages, granulocytes, and T cells) and increased
expression of proinflammatory mediators, including those
locally released by parenchyma cells. These diseases may nev-
ertheless differ in their pathogenesis [182].

Eventually, inflammation rests, but massive fibrosis
prevents fully restoring tissue integrity. Even three decades
after identifying the master cytokine in immune regulation
and fibrosis, we find it hard to ascribe only one role to
TGF-f 183, 184].

Regulatory T cells (Tregs) release TGF, a potent cytokine
that downregulates immune responses and is involved in
tissue-specific repair and homeostasis [185].

Most responses to brain injury involve reactive gliosis,
resident astrocyte hypertrophy, and neuron cell loss with
fibrosis. Fibrosis engages fibrocytes and macrophages derived
from the bone marrow. Fibrocytes and activated macrophage
type 2- (M2-) microglia cells may act as profibrotic in the
CNS as well [186].

The glial scar is a structural formation of reactive glia
around a damaged area. Traditionally viewed as a hin-
drance to axon regeneration, beneficial functions of the
glial scar have been recently reported. Discrepancies have
been discussed on the functional heterogeneity of the glial
scar cells, astrocytes, NG2 glia, and microglia (Figure 5).
The NG2 glia regulates brain innate immunity via the
TGF-B2/TGFBR2 axis [187]. After TBI, ischemic stroke,
and neurodegenerative diseases, including MS, newly pro-
liferated reactive astrocytes are observed. The NG2 glia
and microglia round the severely damaged area or lesion
core. This core presents perivascular-derived fibroblasts,
pericytes, ependymal cells, and phagocytic macrophages.
Previous studies have sometimes referred to the entire
CNS lesion as the glial scar, leading to discrepancies. Dif-
ferent glial cells are associated with the lesion or fibrotic
lesion core, rich in extracellular matrix proteins, inhibiting
axonal growth and remyelination. Yet, some glial cell types
counteract, and others regulate scar formation [188].

Immune neuroinflammation involves complex neural
and immune cell interactions, regulating the balance between
neural tissue repair and scar formation. Reactive microglia
(RM) differentiation leads to microglial subpopulations, like
macrophage differentiation pathways (inflammatory type
M1 and anti-inflammatory type M2). M1 microglia induces
Al reactive astrocyte (RA), derived from a common pre-
cursor astrocyte (nervous stem cell abv-NSC-), which
under certain signals differentiates to astrocyte cell pheno-
types Al (Al astroglia are neurotoxic) and A2 (A2 astro-
glia are neuroprotective). The Al astrocytes secrete a
toxin that kills oligodendrocytes (OD). The A2 astrocytes
promote axonal growth. The M2 microglia induces NG2
(neuron-glial antigen 2, also called oligodendrocyte precur-
sor cells) glia differentiation to oligodendrocytes. In addi-
tion, NG2 glia regulates brain innate immunity via the
TGEF-B2/TGFB-R2 axis.
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FiGure 5: Complexity of brain cell interactions in scar formation and repair.

5. Conclusion

Classifying neuroinflammatory and neuroimmune reactions
as beneficial or detrimental is an oversimplification. There
is a myriad of interactions between diverse brain cell types
and the triggered signaling cascades in different disorders.
Various families of cytokines and cytokine receptors, cell-
specific distribution, growth factors, and chemokines influ-
ence the apoptotic or survival pathways of neurons and the
degree of inflammatory processes in the CNS. Even with
the growing knowledge of neuroinflammation in health and
disease, a deep comprehension of the underlying mecha-
nisms in neuropathology remains limited.

Hypoxia interacts with inflammation at the molecular,
cellular, and clinical levels. The immune system reacts to
restore homeostasis in two crucial scenarios. One of them is
hypoxic stress, causing cells to upregulate pathways involved
in increasing oxygen supply. The other one is oxidative stress,
causing cells to upregulate antioxidant pathways. Provided
that oxygen homeostasis is achieved, epidermal cells survive,
and inflammatory leucocytes die. Targeting oxygen-sensing
mechanisms and hypoxia signaling pathways might aid in
reducing inflammation. Oxidative stress and inflammation
underlie most neurological disorders, whether neurodegen-
erative, autoimmune, traumatic, neoplastic, ischemic, meta-
bolic, toxic, infectious, or other. All of them show direct
and indirect immune-related neuroinflammation.

Targeting hypoxia-dependent signaling pathways might
help to attenuate organ failure, reducing hypoxia-driven
inflammation. Chronic and/or sustained inflammation and
hypoxia lead to the survival of macrophages, which further
releases oxidative and inflammatory mediators [189, 190].

Inflammatory conditions like meningeal infiltrations,
meningoencephalitis with perivascular infiltrates, reactive
gliosis, and inflammatory-necrotic lesions showed central
immune interactions in different homeostatic alterations.

Regardless of the infective nature, or not, of the central
insult, the immune-mediated neuroinflammation orches-
trates the response of reactive CNS components to altered

homeostasis. Unsuccessful restoration leads to disease, some-
times perpetuating neuroinflammation, and damage.
Whether fibrogenesis should be disrupted or not is crucial
to understand the pathogenesis and how to go ahead.

There is still a road to walk before a deep insight into
underlying factors in pathogenesis allows for designing better
treatments.
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Hypoxia-inducible factor-1-alpha
Human immunodeficiency virus
Human immunodeficiency virus
transactivator of transcription
Herpes papillomavirus
Interferon-gamma

Interleukin-10

Interleukin-18

Interleukin-1 receptor-1
Interleukin-1 beta

Interleukin-4

Interleukin-6

Inducible nitric oxide synthase
c-Jun N-terminal kinase

Killer

Potassium

Kainic acid

Lipopolysaccharide

Leucine-rich repeat kinase 2
Macrophage type 1
(proinflammatory)

Macrophage type 2 (anti-
inflammatory)

Mitochondrial antiviral signaling
Monocyte chemoattractant pro-
tein-1

Macrophage colony-stimulating
factor

Mouse embryonic fibroblast
Major histocompatibility complex-
I

Macrophage inflammatory pro-
tein-2

MicroRNA

Myc-interacting zinc-finger protein
1

Myelin oligodendrocyte glycopro-
tein/ complete Freund’s adjuvant
Multiple sclerosis

Nuclear factor kappa B
Neuron-glial antigen 2

Nerve growth factor

Natural killer

NO:
NOD:

OD:

op/op:
PAMP:

PD:
PGS:
PI3K:
PLA2:
PRR:
RA:
RAGE:

RIP1:

RM:

ROS:

SCI:
SDF-1:
SK-N-SH:

SN:

SNCA:

SP:

T cells:

TBI:

TD:

TGE-p:
TGF-2/TGFB-R2 axis:

Thl:
Th17:
TIM-3:

TLR4:
TNE:
TNF-R1:
TNE-R2:
TRAF2:

TRAF5:

Treg:
TREM:

TRX2:

VIP:
p0 T cells:
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Nitric oxide

Nucleotide-binding oligomeriza-
tion domain-containing protein
Oligodendrocyte

Osteopetrotic
Pathogen-associated molecular
pattern

Parkinson’s disease
Prostaglandins
Phosphatidylinositol 3-kinase
Phospholipase A2

Pattern recognition receptor
Reactive astrocyte

Receptor for advanced glycation
end products
Receptor-interacting serine/threo-
nine-protein kinase 1

Reactive microglia

Reactive oxygen species

Spinal cord injury

Stromal cell-derived factor-1

A neuroblastoma cell line display-
ing epithelial morphology, growing
in adherent culture

Substantia nigra

Synuclein gene-«

Substance P

A type of lymphocyte

Traumatic brain injury

Thiamine deficiency
Transforming growth factor-f3
Transforming growth factor, beta
receptor 2

T helper 1 cells

T helper 17 cells

T cell immunoglobulin and mucin-
domain containing-3

Toll-like receptor 4

Tumor necrosis factor

Tumor necrosis factor, receptor 1
Tumor necrosis factor, receptor 2
Tumor necrosis factor receptor-
associated factor 2

Tumor necrosis factor receptor-
associated factor 5

Regulatory T cells

Triggering receptor expressed on
myeloid cells

Thioredoxin 2

Vasointestinal peptide

Gamma delta T cells.
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