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A central question in evolutionary biology concerns the developmental processes by which new phenotypes arise. An
exceptional example of evolutionary innovation is the single-celled seed trichome in Gossypium (‘‘cotton fiber’’). We
have used fiber development in Gossypium as a system to understand how morphology can rapidly evolve. Fiber has
undergone considerable morphological changes between the short, tightly adherent fibers of G. longicalyx and the
derived long, spinnable fibers of its closest relative, G. herbaceum, which facilitated cotton domestication. We
conducted comparative gene expression profiling across a developmental time-course of fibers from G. longicalyx and
G. herbaceum using microarrays with ;22,000 genes. Expression changes between stages were temporally protracted
in G. herbaceum relative to G. longicalyx, reflecting a prolongation of the ancestral developmental program. Gene
expression and GO analyses showed that many genes involved with stress responses were upregulated early in G.
longicalyx fiber development. Several candidate genes upregulated in G. herbaceum have been implicated in
regulating redox levels and cell elongation processes. Three genes previously shown to modulate hydrogen peroxide
levels were consistently expressed in domesticated and wild cotton species with long fibers, but expression was not
detected by quantitative real time-PCR in wild species with short fibers. Hydrogen peroxide is important for cell
elongation, but at high concentrations it becomes toxic, activating stress processes that may lead to early onset of
secondary cell wall synthesis and the end of cell elongation. These observations suggest that the evolution of long
spinnable fibers in cotton was accompanied by novel expression of genes assisting in the regulation of reactive oxygen
species levels. Our data suggest a model for the evolutionary origin of a novel morphology through differential gene
regulation causing prolongation of an ancestral developmental program.
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Introduction

One of the central questions in evolutionary biology
concerns the developmental and genetic processes by which
new phenotypes arise. The recent merger of genomic
technologies with phylogenetics has generated important
insights into the evolution of developmental transformations
in maize [1,2], rice [3,4] and other taxa, e.g., [5,6]. These
studies demonstrate that morphological change in complex
organs can often be initiated by relatively few mutations,
most often in regulatory regions [7], although the genetic
underpinnings of most evolutionary change remains un-
known. An exceptional example of evolutionary innovation
involving a single-celled structure is the cotton seed
trichome, present in all 50 species in the genus Gossypium
and colloquially termed ‘‘cotton fiber’’ in the domesticated
species. On the day of anthesis (flower opening), approx-
imately one in four cells of the ovular epidermis has already
been fated to become a trichome, initially appearing as a
spherical protrusion and subsequently elongating through
stages of primary wall synthesis, secondary wall synthesis,
maturation and cell death. Representing one of most distinct
single cell types in the plant kingdom, cotton fibers may
attain a final length of 6 cm in some cultivars, with a length/
width ratio of more than 2000 [8]. A single cotton ovary
contains ;500,000 elongating cells representing a single cell
type.

The long, strong and fine fibers of modern cotton cultivars
were wrought through a long history of both natural and
human-mediated selection [9–11]. Following its origin about
10 MYA [12,13], Gossypium diversified into approximately 50
species in the warmer, arid to semi-arid regions of both
hemispheres. This radiation was accompanied by cytogenetic
differentiation, which now is reflected in the recognition of
eight, monophyletic ‘‘genome groups’’ (A to G and K) (Figure
1A). Remarkably, four wild Gossypium species were independ-
ently domesticated by aboriginal domesticators ;5000 years
ago, or more, and transformed into fiber and seed-oil plants
[10,14]. Two of these (G. arboreum and G. herbaceum) are A-
genome diploids from the Old World, while the other two (G.
hirsutum and G. barbadense) are AD-genome allotetraploids
from the New World.
In contrast to the cultivated diploids and tetraploids, wild
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diploid species have short (mostly ,5mm), coarse and tightly
adherent trichomes that would not be recognized as ‘‘cotton’’
by a casual observer. The only exception is the wild form of G.
herbaceum (G. herbaceum subsp. africanum), which has sparse but
elongated and spinnable fiber. Both wild and cultivated
cottons produce fiber on the seed coat, but there are striking
morphological and structural differences between these
fibers, the most obvious of which is their size. Some species
(e.g., G.thurberi, G. trilobum, G. davidsonii, and G. klotzschianum)
do not possess obvious seed hairs, but they actually are
present as developmentally repressed structures not visible to
the unaided eye [15]. The duration of the elongation phase
and the timing of onset of secondary wall synthesis appear to
be key determinants of the final length of the fiber in both
wild and cultivated plants [15–18]. This trait of prolonged
elongation was passed on to the allopolyploids, which in turn
was a key component of their eventual domestication [15].

When viewed in a phylogenetic context (Figure 1A), the
origin of spinnable fibers is diagnosed to have occurred once
in the history of Gossypium, following divergence of the A-
genome and F-genome clades. This ‘‘pre-adapted’’ A-genome
ancestor later contributed this genome and its propensity for
the development of elongated cotton fibers to the allote-
traploid cottons that colonized and diversified in the New
World, ultimately giving rise to the modern, annualized forms
of G. hirsutum that account for .90% of contemporary world
cotton commerce.

To gain insight into the genetic factors that led to the
evolution of long, spinnable cotton fibers, we performed
global gene expression analysis, comparing the A-genome
taxon G. herbaceum to its closest wild relative, G. longicalyx. The
latter species was described relatively recently, following its
discovery in eastern Africa [19], and is cladistically resolved as
the sister taxon to the A-genome in molecular phylogenetic
analyses of both plastid and nuclear gene sequences (13)
(Figure 1A). We used a newly designed long oligonucleotide
microarray and ovular trichome isolation procedures to
analyze gene expression over a time-course of trichome
development in both species. This analysis revealed major

differences in genes related to stress responses and cell
elongation, as well as a prolonged developmental profile in
wild G. herbaceum. We suggest that the evolution of spinnable
fiber was accompanied by prolongation of an ancestral
developmental program, mediated through avoidance of
stress-like processes in the developing fiber cells. This
suggests that the evolutionary origin of a novel cell
phenotype was facilitated by hypermorphosis.

Results

The A-Genome Shows a Prolonged Fiber-Cell
Developmental Program
We used an experimental loop-design system to compare

mRNA expression levels in developing fiber-cells derived
from A- and F-genome cotton species (Figure 1B). RNAs
isolated from four developmental time-points, 5, 10, 20 and
25 days post-anthesis (DPA), were amplified and hybridized to
cotton oligonucleotide microarrays containing 22,827 probes
derived from deep EST sampling of diverse tissues and organs
[20]. A summary of the number of genes differentially
expressed between adjacent time-points during fiber devel-
opment in both species is presented in Figure 2. Within each
genome, many genes were found to be differentially ex-
pressed during fiber development (FDR , 0.05), but the
distribution of the number of genes differentially expressed
between adjacent time points was different for the two
species. In G. herbaceum, the distribution was relatively even
throughout the developmental stages studied (notice that the
interval 10–20 DPA is twice the duration of 5–10 and 20–25
DPA), whereas in the F-genome species, G. longicalyx, ;80% of
significant expression changes occurred between the two
adjacent time points 10 and 20 DPA. Also, in the transition
from 20 to 25 DPA only 4 genes were differentially expressed
in G. longicalyx, in comparison to 493 genes that were
differentially expressed during this same interval in the A-
genome species G. herbaceum. Because longer, spinnable fiber
is phylogenetically derived [15], these results indicate that the
fiber-cell developmental program in the A-genome has
become prolonged during its evolution.

F-Genome Fiber Development Is Linked with Early
Expression of Stress-Related Genes
To better appreciate changes in global expression during

fiber development and evolution, we tracked differences in
expression between A- and F-genomes for all genes at all
developmental stages. For each comparison upregulated and
downregulated genes were tabulated, from which we derived
categories of statistically overrepresented biological pro-
cesses (Table S1). As expected from an inter-specific
comparison, hundreds of genes were found that were differ-
entially expressed between fibers from A- and F-genome
plants. Inspection of the gene lists revealed that, among genes
which previously had been described as regulating fiber
elongation [21], some did indeed show significant expression
differences, while others did not. An example of the
developmental expression patterns for 5 differentially ex-
pressed and 5 non-differentially expressed, well-described
genes, between F- and A- genomes, is provided in Figure S1.
A major difference in the developmental programs of fiber

cells in the two taxa was revealed by GO family representa-
tion analyses (Table S1). Most noteworthy is the observation
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Author Summary

Human domestication of plants has resulted in dramatic changes in
mature structures, often over relatively short time frames. The
availability of both wild and domesticated forms of domesticated
species provides an opportunity to understand the genetic and
developmental steps involved in domestication, thereby providing a
model of how the evolutionary process shapes phenotypes. Here we
use a comparative approach to explore the evolutionary innovations
leading to modern cotton fiber, which represent some of the more
remarkable single-celled hairs in the plant kingdom. We used
microarrays assaying approximately 22,000 genes to elucidate
expression differences across a developmental time-course of fibers
from G. longicalyx, representing wild cotton, and G. herbaceum, a
cultivated species. Expression changes between stages were
temporally elongated in G. herbaceum relative to G. longicalyx,
showing that domestication involved a prolongation of an ancestral
developmental program. These data and quantitative real time-PCR
experiments showed that long, spinnable fiber is associated with a
number of genes implicated in regulating redox levels and cell
elongation processes, suggesting that the evolution of spinnable
cotton fiber entailed a novel metabolic regulatory program



that at the beginning of fiber development in F-genome
fibers, many genes involved with stress-response processes
were highly upregulated. Comparison of statistically over-
represented biological processes at 5 DPA, for example,
showed that in A-genome fibers, processes important for
elongation, such as ‘‘respiration’’, ‘‘energy’’ and ‘‘ribosome
biogenesis’’ are overrepresented (Table 1). At the same time-
point, however, genes upregulated in F-genome fibers belong
to biological processes such as ‘‘response to stress’’, ‘‘tran-
scription regulatory activity’’ and ‘‘flavonoid biosynthesis’’.
Moreover, analyzing the 60 most-differentially expressed
genes at 5 DPA, representing the top 2% of the upregulated
genes in the F-genome in comparison to the A-genome,
showed that more than a third were related to ‘‘response to
stress’’ processes (Table S2). The expression pattern of some
of these highly upregulated ‘‘stress response’’ genes in

developing fiber-cells of the F-genome in comparison to the
A-genome are presented in Figure S2.

Overexpressed Genes in A-Genome Fibers Are Associated
with H2O2 and ROS Regulation
A possibility that emerged from differences in gene

expression between A-genome and F-genome fibers was that
high levels of H2O2 and other reactive oxygen species (ROS)
may be responsible for the stress-like processes evident in F-
genome fibers early in fiber development. Hydrogen peroxide
has previously been shown to be important for cell
elongation, as it is required for cell wall loosening and
expansion [22–25]. At high concentration, however, H2O2

becomes toxic, leading to stress processes that may lead to
early onset of secondary cell wall synthesis and the end of cell
elongation [22,26]. These observations suggest the hypothesis

Figure 1. Evolutionary History of Cotton in Relation to the Current Study

(A) Evolutionary history of diploid and tetraploid Gossypium species groups (n¼ 13 and 26, respectively), as inferred from multiple molecular datasets
[11,13], indicating sister-taxon relationship between the F- and A- genomes. F-, G. longicalyx (short fibers); A-, G. herbaceum (long fibers).
(B) Microarray experimental loop-design for detecting gene expression changes during the development of A- and F-genome fibers. Arrows denote
dyes that were used in each of the hybridizations (tails, Cy3; arrow heads, Cy5).
doi:10.1371/journal.pgen.0040025.g001
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that the evolution of long spinnable A-genome fibers was
accompanied by novel expression of genes that assist in
regulating H2O2 and other ROS levels.

To evaluate this possibility, we examined the microarray
data for genes that may control ROS and cell stress in
elongating cells (Table 2). Three genes shown in other systems
to regulate H2O2 levels by functional or regulatory means
were investigated further. GAST1-like is a member of the
gibberellin-induced, cysteine-rich protein family previously
shown to be induced by H2O2. In transgenic Petunia,
suppression of GAST1-like homologs inhibits elongation,
whereas upregulation stimulates H2O2 scavenging, perhaps
via redox-active cysteines, and cell elongation [27]. GAST1-like
was previously shown to be expressed mainly in cotton fibers
[21] (Figure S3). Cop1/BONZAI is part of a calcium-dependent,
membrane-binding protein family, shown to promote growth
and development in addition to repression of cell death by
inactivation of stress-promoting R-genes [28]. Pex1 is a gene
that encodes a protein important for the biogenesis of the
peroxisome, an organelle that rids the cell of toxic substances
such as H2O2 [29]. Both Cop1/BONZAI and Pex1 genes are only
detected in fiber-specific EST libraries, out of more than 30
EST libraries that exist for cotton from a diverse set of tissues
and organs (http://cottonevolution.info/).

For each of these three genes, we conducted real-time PCR
using elongating and non-elongating fibers from several
additional cotton accessions and species with either short
or long fiber. As shown in Figure 3, GAST1-like, Cop1/BONZAI
and Pex1 were highly upregulated in A-genome relative to F-
genome fibers. Paralleling this result, all three genes were
expressed in additional taxa having long fibers (G. arboreum,
and both cultivated and wild forms of G. hirsutum), at the
beginning of fiber-cell development, but were either un-
detected or were only weakly expressed in species with short
fibers (G. raimondii (D clade), in addition to the F-genome
species G. longicalyx). This consistent association between fiber
development and gene expression across divergent clades
suggests a functional association.

Discussion

Transcription profiling of cotton using microarrays has
been the subject of several recent studies, either using ovular
tissue with fibers attached, or the fibers themselves [21,30–33].
These studies simultaneously evaluate mRNA expression

levels for thousands of genes, providing a powerful tool for
analyzing biological processes important to cotton fiber
differentiation and development. One conclusion is that the
transcriptome of cotton fibers is extraordinarily complex
[21], involving thousands of genes that vary in expression
levels through the stages of cellular initiation, primary wall
synthesis, secondary wall deposition, maturation, and death.
Here we provide the first comparative evolutionary analysis
of fiber cell development, focusing on the initial phylogenetic
steps implicated in the natural transformation of epidermal
seed trichomes into long, spinnable fibers prior to and during
human domestication. In this regard, the accession we used in
this study is a domesticated form of G. herbaceum. Thus, our
study reflects the evolution of either species-level differences,
human selection (domestication), or both. The above-
described qPCR analysis, however, was performed using other
domesticated and wild species, showing that for this set of
genes the changes occurred prior to domestication. In
addition to its relevance to the evolutionary transitions in
morphology and to cotton crop improvement, to our knowl-
edge this study is the first to characterize the evolutionary,
developmental genomics of a single cell type in any
eukaryotic organism.
Our proposed model describing the developmental and

evolutionary processes that led to the formation of spinnable
fiber is presented in Figure 4. Previous ultrastructural
characterization of various developing cotton fibers, includ-
ing those of F- and A- genome species, demonstrate that the
earliest stages of fiber initiation and development are
phenotypically similar for species with either short or long
fibers [15]. At 2 DPA, for example, fiber cells appear as the
same spherical protrusion both in F- and A- genomes. This
stage is followed by a period of rapid cell elongation, a

Table 1. Biological Processes Overrepresented in A- and F-
Genomes at 5 DPA

Genome GO Number GO Name FDR

A-genome GO:0003735 Structural constituent of ribosome 0.003955

GO:0006119 Oxidative phosphorylation (respiration) 0.009092

GO:0044445 Cytosolic part 0.009208

GO:0042773 ATP synthesis (energy) 0.017917

GO:0006471 Protein amino acid ADP-ribosylation 0.051009

GO:0003950 NADþ ADP-ribosyltransferase activity 0.051009

GO:0044429 Mitochondrial part 0.066977

F-genome GO:0030528 Transcription regulator activity 0.027910

GO:0048507 Meristem development 0.034394

GO:0009813 Flavonoid biosynthetic process 0.034394

GO:0009753 Response to jasmonic acid stimulus 0.034394

GO:0016711 Flavonoid 39-monooxygenase activity 0.052324

GO:0016702 Oxidoreductase activity 0.067616

GO:0006012 Galactose metabolic process 0.067616

GO:0051213 Dioxygenase activity 0.067616

GO:0010035 Response to stress 0.067616

GO:0009723 Response to ethylene stimulus 0.074224

GO:0009725 Response to hormone stimulus 0.074224

GO:0009699 Phenylpropanoid biosynthetic process 0.097733

Blast2GO was used to infer a putative function for each gene. Subsequent statistical
analyses revealed classes of genes overrepresented in particular genome relative to gene
classes represented by the total microarray probe set. Gene classes are ordered from the
most significant to the least. Processes involved with stress-response are indicated in
bold. FDR, false discovery rates.
doi:10.1371/journal.pgen.0040025.t001

Figure 2. Summary of the Number of Genes Differentially Expressed

between Adjacent Time-Points during Fiber Development (FDR , 0.05)

doi:10.1371/journal.pgen.0040025.g002
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process known to involve cell-wall relaxation, which itself has
been shown to require non-enzymatic reactions mediated by
H2O2 and other ROS that cleave polysaccharides [22–25].
Therefore, H2O2, produced enzymatically by oxidation
reactions, is a necessary molecule for cell elongation. Higher
levels of H2O2, however, may halt elongation through
apparent stimulation of cell wall stiffening [22,26], and can
even promote programmed cell death or necrosis. Accord-
ingly, Cosgrove [34] has suggested that fine regulation of
steady-state levels of ROS are essential for proper cell
elongation.

Our model suggests that the curtailed developmental
duration of the F-genome, relative to the A-genome, is
caused by an insufficient control of cellular H2O2 and other
ROS levels, eventually arresting elongation and leading to an
induction of secondary cell wall synthesis. In cotton, H2O2 has
been suggested to function as a developmental signal in the
differentiation of secondary walls in cultivated G. hirsutum
fibers, evidenced by the fact that inhibition of H2O2

production or scavenging existing H2O2 from the system
prevents cell wall differentiation [35]. Similarly, exogenous
addition of H2O2 prematurely promotes secondary cell wall
formation in young fibers [35]. Our data are consistent with
this interpretation and with earlier secondary cell wall
formation in the F-genome, as indicated by expression
differences between F- and A- genomes for the cellulose
synthase A1 (CeSA1) gene. CeSA1 is a well-characterized gene
involved in fiber secondary cell wall synthesis, and CeSA1 RNA
expression levels have been suggested as a marker for
secondary wall cell synthesis [30]. In our study, CeSA1
increases its expression earlier in the F-genome than in the
A-genome (Figure S1–S1J).

Similar to the F-genome, early elongating fibers of the A-
genome are exposed to increasing levels of H2O2. A-genome
fibers, however, did not show increased RNA levels of stress-
related genes, suggesting that this lineage evolved a metab-
olism to modulate ROS levels by either functional or
regulatory means. At the functional level, genes controlling
antioxidant levels, including ascorbate peroxidase, gluta-
thione peroxidase and lipolic acid synthase, are all upregu-
lated in A-genome fibers relative to those of the F-genome.
These proteins scavenge and detoxify H2O2 and other ROS.

Recently, comparative proteomic analysis between regular
and mutant cotton fibers showed the involvement of a cotton
ascorbate peroxidase in H2O2 homeostasis during cell
development [36].
An additional example of possible functional modulation

of H2O2 levels is offered by the protein GAST1, which we
studied further. GAST1 is a cysteine-rich, gibberellin-induced
gene, initially identified in tomato, which is suppressed in the
GA-deficient mutant gib-1 and for which expression coincides
with stem elongation [37]. It belongs to a protein family,
identified in many plant species, that is suggested to play a
role in many biological processes, including cell division, cell
elongation (promotion and inhibition), transition to flower-
ing, root development, fruit development and defense
(summarized in [27]). RNAi suppression of expression in
one member of this family, GIP2, was shown to inhibit stem
elongation under low-temperature conditions in transgenic
Petunia [38]. Wigoda et al. [27] have shown that GIP2
overexpression promotes stem and corolla elongation. In
the same study they showed that GAST2 is expressed in the
cell-wall and suggested that its putative redox-active cysteines
may act as antioxidants that control H2O2 levels at this site.
The fact that our cotton GAST1 has the same conserved 12
cysteine residues as other GAST-like proteins (data not
shown), is expressed mainly in the fiber [21] (as shown in
Figure S3), and is not expressed in the fuzz-like F-genome
fibers and the D-genome fibers make it a promising gene for
further investigation.
At the regulatory level, we explored two candidate genes

further using quantitative RT-PCR and a broader sampling of
species and accessions having either short or long fibers. The
first is the Cop1/BONZAI (Cop1) gene. Cop1 is a calcium-
dependent, membrane-binding protein isolated from a
mutant with a temperature-dependent growth defect and
an enhanced disease resistance phenotype in Arabidopsis
[39,40]. Further study revealed that Cop1 acts as a repressor
of a disease resistance (R) gene and as such it prevented
programmed cell death (PCD) processes (i.e. hypersensitive
response) [28]. It is unclear if the F-genome fiber is under-
going early ‘‘classical’’ PCD processes, indicated by the fact
that ‘‘cell death processes’’ was not a statistically over-
represented biological process in our study. Cop1, however,
was ranked in our microarray analysis as the single most
upregulated gene in the A-genome, relative to the F-genome,
among thousands of differentially expressed genes, making it
as a strong candidate for controlling stress-like processes.
Further quantitative RT-PCR analyses using a broader
sampling of species with short and long fibers yielded
comparable results (Figure 3), lending additional support to
the hypothesis of a role for Cop1in fiber elongation.
A second regulatory gene studied further is Pex1. This gene

is one of a cascade of peroxisome biogenesis genes that
previously have been shown to be induced by H2O2 in both
plant and animal cells, and have been suggested to assist in
restoration of cellular redox balance in response to wounding
and infection with an avirulent pathogen [29]. Pex1 encodes a
member of the AAA (ATPases associated with diverse cellular
activities) superfamily of ATPases that have been suggested to
mediate lipid and/or membrane addition to peroxisome
membranes, facilitating peroxisome growth [41,42]. As shown
in Figure 3, Pex1 mRNA levels are strongly correlated with
fiber length.

Table 2. Candidate Genes Upregulated in A-Genome Controlling
ROS, H2O2, and Cell Stress in Elongating Cells

Gene ID Gene Name

TC68971 Copine/BONZAI1

TC65230 Peroxisome biogenesis protein PEX1

Cotton12_26164 GAST-like gene product

Cotton12_19167 Peroxisomal targeting signal 1

Cotton12_23763 Heat shock protein

TC63933 Type IIB calcium ATPase

AI725926 Cytosolic ascorbate

CO491588 L-ascorbate peroxidase 4, chloroplast

TC63703 Ubiquitin-protein ligase

TC68077 Putative lipoic acid synthase

Cotton12_00150 Putative serine protease

Cotton12_33370 GASA5-like protein

doi:10.1371/journal.pgen.0040025.t002
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To verify the hypothesized roles of GAST1, Cop1, and Pex1
genes, additional functional analyses are needed in growing
fiber-cells, including in vivo measurements of H2O2 levels and
elongation rates in developing fibers derived from F- and A-
genome species. These studies comprise one focus of our
ongoing efforts. In addition, hundreds of other genes were
differentially expressed between A- and F-genome fibers,
including many known to be involved in fiber development,
suggesting that in addition to cellular redox balance, other
biological processes may be involved in the evolution of
spinnable fibers. Thus, additional work is necessary to reveal
the nature and relative contributions of these additional
processes to fiber transformation during evolution.

The results presented here add perspective to results from
our previous comparative study of fiber development in wild
Gossypium species [15], in which wild A- and F-genome species
exhibited continued fiber elongation up until approximately
21 DPA. One possible reconciliation between this observation
and the present study is that the timing of the period of
maximum fiber elongation is a key developmental difference.
Some species with short fibers showed a nearly linear rate of

elongation over most of the growth period, whereas long-
linted species exhibited more complex growth curves.
Another possibility is that the most important factor in
determining final fiber length is the absolute fiber elongation
rate and not the relative percentage of mature length (as [15]),
suggesting that the effects of H2O2 and other ROS are not
qualitative, but instead are quantitative, operating via effects
on amount of elongation.
The present study implicates several molecular mecha-

nisms as being involved in the evolution of elongated
epidermal seed trichomes, providing the foundation for later
human domestication of an important crop plant. Why
elongated epidermal seed hairs evolved is a matter of
speculation. Perhaps fibers evolved to aid in bird dispersal,
as suggested [43]. This hypothesis gains credibility from
observations by J. Stewart (unpubl.) of a bird’s nest in NW
Puerto Rico that contained numerous seeds of feral G.
hirsutum, as well as a collection of G. darwinii from a finch’s
nest in the Galapagos Islands (J. Wendel, unpubl.). One might
also speculate that fibers serve to inhibit germination unless
there is sufficient moisture to saturate the fibers; should

Figure 3. Quantitative Real-Time PCR Analyses of Three Candidate Genes Controlling H2O2 Levels

Gossypium species investigated were G. herbaceum (A1), G. longicalyx (F) (left panel); G. hirsutum var TM1 (TM1), G. hirsutum var yucatanense (YUC), G.
arboreum (A2), and G. raimondii (D5) (right panel). Each point on the graph represents the mean of three biological replications.
doi:10.1371/journal.pgen.0040025.g003
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germination occur following a light rain, there might not be
sufficient water for subsequent survival of the seedling. A
related possibility is that seed hairs function as ‘‘biological
incubators’’ to facilitate germination only when ecological
conditions are appropriate, by recruiting particular micro-
bial communities under appropriate moisture regimes.
Irrespective of the veracity of these speculations, one
outcome is that these processes set the stage for human
domestication millions of years later.

We show that a major heterochronic change included
prolongation of an ancestral developmental program, and
coincidently, this change pre-adapted the derivative cell type
for human domestication. At least in part it appears that
avoidance or delay of stress-like processes may underlie the
increased elongation in A-genome fiber development com-
pared to F-genome fiber, in conjunction with an increased
ability to modulate cellular redox balance in the growing cell.
These evolutionary processes, occurring as they did perhaps
several million years ago [9,10], may be interpreted as the key
events responsible for the domestication of one of the world’s
most important crop plants.

Materials and Methods

Plant material and RNA preparation. Plants from Gossypium
herbaceum (A1), G. longicalyx (F), G. hirsutum var TM1 (AD1), G. hirsutum
var yucatanense (wild AD1), G. arboreum (A2) and G. raimondii (D5) were
grown in three separate replicates of 4–8 plants in the Horticulture
Greenhouses at Iowa State University. For each replicate, ovules were
excised, immediately frozen in liquid nitrogen, and stored in�80 8C.
At each developmental time point, fibers were isolated from ovules
using a liquid nitrogen/glass bead shearing approach [21]. Initially,
ovules were visually inspected for cell damage and the fibers were

inspected for contaminating tissue. Subsequent RNA extractions
were performed using a hot borate method [44]. RNA quality was
confirmed on a BioAnalyzer (Agilent, Palo Alto, CA).

RNA amplification, labeling, and microarray hybridizations. For
microarray analyses, an indirect labeling procedure of amplified
aminoallyl a-RNA was used as described [21]. Two dyes, Cy3 and Cy5,
were coupled to 8 lg aliquots of aRNA using the Post-Labelling
Aminoallyl-aRNA CyDye reactive dyes (Amersham Biosciences). A
newly designed cotton long-oligonucleotide microarray containing
over 22,827 probes derived from deep EST sampling of diverse tissues
and organs [20] was used. All hybridizations, slide scanning and
normalizations were performed as described previously [21].

Experimental design and statistical analysis. A balanced devel-
opmental loop design for microarray analysis was performed (Figure
1B). For G. herbaceum (A1) and G. longicalyx (F), four fiber devel-
opmental time-points, 5, 10, 20 and 25 DPA were sampled. Within
each species, hybridizations were performed between each pair of
consecutive developmental stages by labeling one with Cy5 and the
other with Cy3, and by closing the loop with a comparison of 25 and 5
DPA. In addition, 2 hybridizations were done between species at each
time-point, using a dye swap for each pair. With three biological
replications and 16 slides each, we generated gene expression data
from a total of 48 microarrays. Statistical analyses were performed
using R and SAS statistical software (code available upon request).

Log transformed, median-normalized values of the 22,827 genes
were examined for expression differences between each fiber
developmental stage within and between species. We considered a
standard mixed linear model for the data for each gene as:

yijklm ¼ lþ di þ sj þ sk þ r1 þ dsij þ dssijk þ sðvÞmk þ eijkm

where yijklm denotes the normalized log-scale signal intensity for
genotype i, time-point j, biological replication k, dye l and slide m; l
denotes an intercept parameter; di denotes the fixed effect of
genotype i; sj denotes the fixed effect of time-point j; sk denotes the
random effect of replication k; rl denotes the fixed effect of dye l; dsij
denotes the fixed effect of the interaction between genotype i and
time-point j; dssijk denotes the random effect of the interaction
between genotype i, time-point j and replication k; s(v)mk denotes the
effect of the slide m inside replication k; eijkl denotes a random error

Figure 4. An Evolutionary and Development Model Describing Processes That Lead to the Formation of Spinnable Fiber

doi:10.1371/journal.pgen.0040025.g004
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term intended to capture all other sources of variability. Contrasts
for differential expression between genotypes, time points and the
interaction genotype x time-points were conducted using this model.
For each gene, differences were calculated using the following pair-
wise contrasts:

F10-F5; F20-F10; F25-F20; A10-A5; A20-A10;

A25-A20; F5-A5; F10-A10; F20- A20; F25-A25;

where letters denote genotype (F- or A-genome) and numbers denote
developmental time-point (5, 10, 20, or 25 DPA).

The 22,827 p-values from each comparison were converted to q-
values using the method of Storey and Tibshirani [45]. These q-values
were used to identify the number of differentially expressed genes for
a given comparison when controlling the false discovery rate (FDR) at
various levels.

Blast2GO (http://www.blast2go.de/) was used to identify biochem-
ical pathways involved in a given comparison and to calculate the
statistical significance of each pathway. Blast2GO includes the Gossip
package [46] for statistical assessment of annotation differences
between two sets of sequences, using Fisher’s exact test for each GO
term. FDR controlled p-values (FDR , 0.05) were used for the
assessment of differentially significant metabolic pathways.

Quantitative RT-PCR analyses. Amplified aRNA was used as a
template for first strand cDNA synthesis with the Super-script II pre-
amplification system reverse transcriptase kit (Gibco BRL Life
Technologies) at 42 8C according to the supplier’s instructions.
Specific primers with amplicons for quantitative PCR were designed
based on the sequence derived from the EST sequence corresponding
to the candidate and reference genes (Table S3). We used the RNA
helicase gene (Q9ZS12) as the reference gene. RNA helicase gene was
found to be equally expressed in different developing fibers as well in
other plant tissues [21]. cDNA was used as the template for
quantitative PCR amplification using the GeneAmp 5700 Sequence
Detection System (PE Biosystems) with SYBR Green Master Mix
containing AmpliTaq Gold, according to the manufacturer’s in-
structions (PE Biosystems). Standards containing logarithmically
increasing known levels of cDNA were run with each set of primers
for normalization. All real-time PCR products were confirmed by
sequencing.

Supporting Information

Figure S1. Expression Patterns of Previously Well-Characterized
Genes Involved in Fiber Development [21]

The graphs show the difference in LS means between the A- and F-
genome fibers during development.
(A–E) Genes associated with fiber development that do not show a
difference in expression between F- and A-genomes.
(F–J) Genes associated with fiber development that show significant
difference in expression between F- and A-genomes. Triangles, A-
genome; squares, F-genome.

Found at doi:10.1371/journal.pgen.0040025.sg001 (3.7 MB TIF).

Figure S2. Expression Patterns of Six Highly Upregulated ‘‘Stress-

Response’’ Genes in Developing Fibers of the F-Genome in
Comparison to the A-Genome

Values represent the log-normalized LSmeans of three biological
replications. Squares denote the F-genome and triangles the A-
genome. The genes presented are: (A) (Q84YH9) Polyphenol oxidase.
(B) (Q84QI6) Auxin response factor. (C) (O22616) Ornithine
decarboxylase. (D) (Q9M662) Cell death associated protein. (E)
(Q9ZVR6) Jasmonic acid induced lectin. (F) (Q84YB7) cystein
proteinase RD19a. For more details about the selected genes, please
refer to Table S2.

Found at doi:10.1371/journal.pgen.0040025.sg002 (1.6 MB TIF).

Figure S3. Difference in Expression of the Gast1-Like Gene Product

The comparison is between populations of developing cotton fiber
cells and a genetically complex reference sample derived from six
different cotton organs, showing that the Gast1-like gene is fiber-
specific. Data are from Hovav et al. [21].

Found at doi:10.1371/journal.pgen.0040025.sg003 (1.5 MB TIF).

Table S1. Number and Overrepresented Classes of Upregulated and
Downregulated Genes

Blast2GO was used to infer a putative function for each gene.
Subsequent statistical analyses revealed classes of genes overrepre-
sented in particular time-point/species relative to gene classes
represented by the total microarray probe set. Gene classes are
ordered from the most significant to the least.

Found at doi:10.1371/journal.pgen.0040025.st001 (39 KB XLS).

Table S2. List of 2% Upregulated Genes in the F-Genome in
Comparison to the A-Genome at 5 DPA

The table shows the genes ID and the first blast hit for each gene.
Genes associated with stress-like processes are indicated in red. For
these genes a web-based URL example is attached.

Found at doi:10.1371/journal.pgen.0040025.st002 (26 KB XLS).

Table S3. Primers Used in This Study for Real-Time PCR

Found at doi:10.1371/journal.pgen.0040025.st003 (30 KB XLS).
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