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Abstract: The pathological remodeling of myocardial tissue is the main cause of heart diseases.
Several processes are involved in the onset of heart failure, and the comprehension of the mechanisms
underlying the pathological phenotype deserves special attention to find novel procedures to identify
the site of injury and develop novel strategies, as well as molecular druggable pathways, to counteract
the high degree of morbidity associated with it. Myocardial fibrosis (MF) is recognized as a critical
trigger for disruption of heart functionality due to the excessive accumulation of extracellular matrix
proteins, in response to an injury. Its diagnosis remains focalized on invasive techniques, such as
endomyocardial biopsy (EMB), or may be noninvasively detected by cardiac magnetic resonance
imaging (CMRI). The detection of MF by non-canonical markers remains a challenge in clinical
practice. During the last two decades, two-dimensional (2D) speckle tracking echocardiography (STE)
has emerged as a new non-invasive imaging modality, able to detect myocardial tissue abnormalities
without specifying the causes of the underlying histopathological changes. In this review, we
highlighted the clinical utility of 2D-STE deformation imaging for tissue characterization, and its
main technical limitations and criticisms. Moreover, we focalized on the importance of coupling
2D-STE examination with the molecular approaches in the clinical decision-making processes, in
particular when the 2D-STE does not reflect myocardial dysfunction directly. We also attempted
to examine the roles of epigenetic markers of MF and hypothesized microRNA-based mechanisms
aiming to understand how they match with the clinical utility of echocardiographic deformation
imaging for tissue characterization and MF assessment.

Keywords: TGF-beta signalling; myocardial fibrosis; microRNAs; speckle tracking echocardiography;
myocardial strain; subclinical myocardial dysfunction; modified Haller index

1. Introduction

Myocardial fibrosis (MF) is a pathological remodelling process defined by the excessive
accumulation in the myocardium of extracellular matrix (ECM) components, produced
by cardiac fibroblasts, particularly collagen type 1, in response to an injury [1]. Even
if MF is initially an adaptive mechanism, the excessive and continuous deposition of
ECM reduces myocardial compliance [2], as well as affects the electrical properties of
the myocytes [3]. MF, a well-recognized cause of morbidity and mortality [2], is the
common final pathway of several ischemic and non-ischemic conditions promoting cardiac
fibrosis, such as hypertensive, diabetic and idiopathic cardiomyopathy [1,4,5]. From a
pathophysiological point of view, a dysregulation of ECM homeostasis leads to three main
types of MF: (1) reactive interstitial fibrosis, (2) replacement fibrosis and (3) infiltrative
interstitial fibrosis.

Reactive interstitial fibrosis (Rea-F) is an adaptive aspecific response characterized by
an increased ECM deposition without alteration in a cardiomyocytes number [6], with the
prolonged activation of pro-fibrotic growth factors, such as transforming growth factor-beta
(TGF-β), connective tissue growth factor (CTGF) and fibroblast growth factor-2 (FGF2); this
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form of interstitial fibrosis is secondary to prolonged pressure overload, as in aortic stenosis
and chronic hypertension [7] and/or prolonged volume overload, as in aortic regurgita-
tion [8], and can be detected in a number of cardiomyopathies, including hypertrophic
cardiomyopathy [9], dilated cardiomyopathy [10] and diabetic cardiomyopathy [11], as
well as in heart failure with preserved ejection fraction [12].

In Reparative fibrosis (Rep-F), the death of cardiomyocytes and the rearrangement
of collagen fibers are the key elements in stimulating fibrosis; these changes allow for the
development of an organized fibrous scar tissue produced by myofibroblasts after cardiac
injury, such as after myocardial infarction [4,13,14].

Moreover, another form of interstitial fibrosis, called Infiltrative (Inf-F), may be found
during the progressive deposition of non-degradable matrix, such as in amyloidosis [15]
and Fabry disease [16].

In this work, we sought to provide an innovative way to approach the atavistic
problem for the assessment of MF, by describing the most invasive and non-invasive
diagnostic tools. Recently, both biochemical and molecular markers were measured for
MF diagnosis, but clear evidence for the echocardiographic imaging procedures has not
already been demonstrated.

The aim of this review was to examine the main findings of the most important studies
on MF, but few demonstrated a direct correlation between echocardiographic deformation
imaging and molecular approaches. Therefore, we summarized the main invasive and
non-invasive modalities for MF assessment, highlighting the usefulness of monitoring both
molecular and imaging procedures in clinical practice.

2. Diagnosis of MF
2.1. The Gold Standard for Diagnosis of MF

The current “gold standard” for quantification of collagen deposition and diagnos-
ing diffuse MF is the endomyocardial biopsy (EMB) [1,17,18]. Overall, EMB allows for
direct microscopic assessment of the myocardial components and fibrotic changes and is
particularly useful when other diagnostic tools are not successful and when a definitive
diagnosis is needed to guide treatment, such as in the case of myocarditis, amyloidosis and
sarcoidosis [19]. Its main limitations are related to some potential risks associated with its
invasive nature (such as tricuspid valve injury, transient complete heart block, right bundle
branch block and pericardial effusion) [20] and to the propensity for sampling deficit and
errors, especially in cases of localized fibrosis [19]. Figure 1A.
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Figure 1. (A,B) Major negative and positive effects with the use of the non-invasive (A) and inva-
sive (B) techniques able to identify fibrotic deposition in myocardium. CMRI: cardiac myocardial
resonance imaging; EMB: endomyocardial biopsy.

Beyond the EMB, MF may be identified by a number of non-invasive techniques [21].
The most common non-invasive method for measuring MF is Cardiac Magnetic Resonance
Imaging (CMRI), which employs gadolinium, an extracellular agent accumulating in
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interstitial fibrosis, oedema or infiltration areas [22], and chelating agents for myocardial
T1 mapping, quantifying cardiac scar fibrosis [19,23] and extracellular volume fraction [24].
Despite the advantageous effects, CMRI is not free from adverse events such as intolerance
phenomena to gadolinium-based contrast agent, especially increased risk of nephrogenic
systemic fibrosis [25]; moreover, it is not recommended for patients with metallic implants
and intracardiac devices [26], or for dyspnoic and claustrophobic patients [19]; in addition,
CMRI is an expensive method which requires a long learning curve for both acquisition
and analysis of the acquired images [14]. See Figure 1B.

2.2. Other Techniques for Diagnosing MF

Unlike EMB and cardiac MRI, serum biomarkers of MF (see Supplemental Table S1)
seem to be more advantageous for diagnosis, therapeutic monitoring and prognosis. How-
ever, they should be considered mostly experimental, with variable sensitivity and speci-
ficity in different settings, and absolutely not widely implemented in clinical practice.
A number of molecules, detectable in either the serum or plasma in humans, by using
immunoassay methods, have recently been proposed as biomarkers of MF. Nevertheless,
their relative experimental interpretation is difficult because some of them are inconclusive
for MF. Indeed, the cardiac cell population sources of serum biomarkers are various and
can include fibroblasts, endothelial cells, pericytes, and immune cells, each of which are
characterized by specific pathways that they activate. Among the circulating biomarkers
of MF, C-terminal telopeptide of collagen 1 (CITP), matrix metalloproteinases (MMPs)
and their inhibitors (TIMPs), transforming growth factor β (TGF-β), procollagen type 1
N-terminal propeptide (PINP), galectin-3, osteopontin and soluble interleukin 1 receptor-
like 1 (sST2) are the main clinically used indicators of MF [27], which in turn appear to be
regulated by epigenetic controllers such as microRNAs (miRNAs). A more sophisticated
analysis conducted by a “single-cell”-detector revealed various anatomic districts with
different gene networks; therefore, the markers used should be distinguished in relation
to myocardial tissue. For example, to identify cardiac valve interstitial fibroblasts, the
candidate markers are WNT Inhibitory Factor 1 (WIF1) and the cartilage oligomeric matrix
protein (COMP) [28], as well as periostin for epicardium fibrosis [29].

3. Cellular and Molecular Pathways Involved in Myocardial Fibrosis

In non-pathological repair mechanisms, the soft balancing between the synthesis
and secretion of ECM and the ECM-degrading matrix metalloproteases (MMPs) ensures
the equilibrium of the cellular proliferative processes. Upon injury of the cardiac ECM,
the activation of several processes inducing the release of pro-inflammatory (e.g., TNF-a
tumour necrosis factor-a, IL-1, IL-6, chemokines and reactive oxygen species) and pro-
fibrotic factors (e.g., macrophages and lymphocytes), the proliferation of nonmyocytes
cells, and scar maturation, allow for the activation of cardiac fibroblasts, by Fibroblast-
specific protein 1 (FSP1 and S100A4) converting into myofibroblasts (fibrous tissue), and
contributing to the onset of fibrosis by abnormal secretion of collagen 1a1 and other ECM
proteins [30]. The persisting wound healing processes are supplanted by fibrotic scar
formation that increases the tensile strength of collagen; subsequently, the cells start an
adaptive process characterized by activation of genes, in particular α-smooth muscle actin
(SMA), a contractile intermediate filament-associated protein, which in turn contributes
to cardiac remodelling [30], disturbing cardiac architecture and function through the
disruption of conduction of electric signals. In these processes, myofibroblasts within
the cardiac scar tissue release proinflammatory and pro-hypertrophic signals, resulting in
cardiomyocyte hypertrophy and necrosis followed by replacement fibrosis.

At molecular levels, the ancestor controller of cardiac fibrosis seems to be TGF-β,
which is a pro-fibrotic factor in many events linked to the infarct healing process [31].
Indeed, the known transition of fibroblasts into myofibroblasts is mediated by TGF-β [32]
and stimulates the synthesis of collagen fibers type I and III, and fibronectin by decreasing
collagenase expression and by exacerbating TIMP1 expression.
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The dynamic of TGF-β signalling involves TGF-β receptor 2 (TGFβR2) binding,
which in turn phosphorylates TGF-β receptor 1 (TGFβR1) and triggers the activation
of a plethora of transcription factors, such as SMAD proteins [33] that could finally lead to
pro-fibrotic stimuli.

The activation of TGF-β after myocardial infarction is unclarified yet. It seems that
many proteases are required for TGF-β activation in the infarcted myocardium, most of
them derived from overproduction of reactive oxygen species (ROS) [34]. In reperfused
hearts isolated from myocardial ischemia-induced animal, TGF-β exogenous injection
seems to attenuate oxidative stress and reduce the release of pro-inflammatory cytokines
(tumour necrosis factor (TNF)-α) [35], whereas feline TGF-β injections reduced cardiomy-
ocyte death through p42/p44 mitogen-activated protein kinase (MAPK) signalling [36].

4. The Role of MicroRNAs in Myocardial Fibrosis

Growing evidence points to the role of non-coding RNAs and microRNAs (miR-
NAs) in cardiac fibrosis [37]. This novel class of small non-coding RNA (miRNAs), of
18–26 nucleotides in length, was identified as a key essential regulator of gene expression.

MiRNAs are transcribed from genomic DNA into a long primary transcript, called
pri-miRNA, which is larger than a mature miRNA [38], then cleaved by the endonuclease
Drosha RNase III, generating an intermediate known as pre-miRNA, which is transported
into the cytoplasm by the Exportin-5/Ran-GTP complex [39–41] and further processed
into double-stranded miRNAs of 22-nucleotide. The endonuclease Dicer forms a mature
miRNA [42] that binds to Argonaute proteins within the RNA-induced silencing complex
(RISC) and regulates gene expression at the posttranscriptional level by targeting the 3′

untranslated regions (3′-UTR) of mRNA transcripts by Watson-Crick base pairing.
It is now up for debate about the transcriptional modality in which the mature miRNA

would bind to their respective 3′UTR. For example, the site in which miRNA is located
(exons or introns, or across a splice site) could influence the destiny of pre-mRNA and
share with the host gene common regulatory patterns. Indeed, based on specific local-
ization, e.g., a conserved intergenic region, miRNAs can be transcribed and helped by
transcriptional machinery of the host gene, whereas a miRNA located in an intron has an
independent promoter [43].

MiRNAs involved in cardiac pathology are well-investigated. The main miRNAs
governing the pathways for MF activation are the miR-29 family, involved in ECM expres-
sion [44], miR-125b governing fibroblast activation, and miR-30 targeting connective tissue
growth factor (CTGF), contributing to fibrotic remodelling [45].

Among cardiac microRNAs, miR-21 has been studied in fibrotic processes, being one of
the targets of TGF-β signalling; a recent study showed the ability of plasmatic miR-21 levels
to predict fibrotic lesions enhanced by levels of collagens I and III, fibronectin expression
by targeting RECK, programmed cell death 4 (PDCD4), and transforming growth factor
(TGF)-β-signalling factors [46].

Plasmatic miR-21 seems to delineate a specific profile in the regulation of the fibro-
sis gene program, targeting their downstream mRNA 3′UTR of Jagged1 [47], the phos-
phatase and tensin homolog deleted from chromosome 10 (PTEN)/AP-1 [48], SMAD family
member 7 (Smad7) [49] and sprouty1/2 (SPRY1/2) [50,51].

Since metabolic dysregulation, including glucose metabolism, was recognized in MF
progression (through the regulation of TGF-β-mediated hypoxia-inducible factor (HIF)-
1α and/or the renin-angiotensin system [52]), it is plausible that miR-21 might play a
key role. Recently, miR-21 has been associated with the increase of oxidative stress and
has also been associated with glycemic parameters [53–55], showing not only a link with
the pathogenesis of the onset of cardiovascular complications, but also a growing role as
alternative biomarkers coupled to clinical investigations.

MiR-185 has been identified in resident cardiac cells from mice subjected to an ex-
perimental model of cardiac fibrosis. In cardiac fibroblasts, the gain of function assay of
miR-185 allowed collagen production and profibrotic activation [56]. An in vivo study on
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mice demonstrated that targeting miR-185 abolished pressure overload induced by cardiac
interstitial fibrosis. Mechanistically, it seems that the miR-185-5p binding apelin receptor
inhibits their anti-fibrotic effects. It could be speculated that miR-185 expression increases
with the degree of fibrosis in virtue of its concomitant increase of pro-fibrotic TGF-β1 and
collagen-1 in left ventricular tissue from patients with severe cardiomyopathy [56]. More-
over, it is well known that elevation of miR-185 was associated with selenium deficiency
leading to MF; furthermore, pathological changes accompanied by increased miR-185 ex-
erted a reduction of antioxidant properties such as glutathione peroxidase-1(GPx-1) levels
in a cellular model of endothelial cells mimicking glycemic variability [57]. A schematic
depiction was reported in Figure 2.
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Figure 2. Depiction of the main mechanisms involved in the development of myocardial fibrosis.
Upon injury, a fibroblast or other resident cells such as pericytes, endothelial cells, among others,
release profibrotic factors including miR-185 to convert into a myofibroblast. The activation of a
plethora of damaging agents such as ROS or proinflammatory cytokines and ECM proteins induces
myocardial fibrosis and ultimately a hypertrophic heart.

5. The Advantages and Limitations of Echocardiographic Deformation Imaging in the
Assessment of Myocardial Fibrosis

To date, two-dimensional (2D) transthoracic echocardiography (TTE) is the most
common cardiac imaging procedure performed in clinical practice, due to its portability,
low cost, and patient acceptance. It provides a certain degree of tissue characterisation,
especially in the case of thinned and akinetic myocardium and expression of transmural
MF [58].

During the last two decades, advances in the echocardiographic imaging have led to
the introduction of a 2D speckle tracking echocardiography (STE), an angle-independent
technique, which provides diagnostic and prognostic information in several cardiac dis-
eases, such as heart failure, cardiomyopathies and valvular heart disease [59]. The myocar-
dial strain of both ventricles and also the left atrium has been shown to correlate with the
degree of MF [60,61].

Echocardiographic strain imaging measures regional and global myocardial function
by assessing the deformation (strain) of myocardial fibers in systole and diastole, in longi-
tudinal, circumferential and radial directions and the rate at which this deformation occurs
(strain rate) [62–64]. Generally, strain (ε) is a dimensionless measure of tissue deformation,
expressed as a percentage (%), whereas the strain rate is expressed as unit s−1 [64]. The
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magnitude of strain and strain rate is expressed as a negative value in the case of myocardial
fibres shortening, and as a positive value in the case of myocardial fibres lengthening. Con-
sequently, the percentage (%) of strain in shortened contracted fibres is negative, whereas
in elongation phase it is positive.

5.1. Clinical Utility of Strain Deformation for Tissue Characterization

Unlike CMRI, which defines tissue characteristics through direct observation of the
changes in the acquired myocardial tissue images [65], 2D-STE analysis should be consid-
ered only indirectly as related to MF, by assessing the impact of the underlying pathology
on tissue function [66]. A number of histological and pathophysiological changes affecting
the extracellular matrix may impact myocardial mechanics by increasing myocardial stiff-
ness [67–70]. These changes in cardiomyocyte mechanics are reflected as global or regional
impairment in deformation parameters assessed by 2D-STE analysis [71–73].

The left ventricular (LV) global longitudinal strain (GLS) is the most commonly used
2D-STE-derived deformation index of cardiac contractility. A number of studies demon-
strated a strong inverse correlation between LV-GLS magnitude and the extent of MF in
various clinical settings. Notably, LV-GLS has been found to be strongly correlated with
the degree of MF in patients with advanced systolic heart failure (HF) requiring heart
transplantation [74], in patients with severe aortic stenosis (AS) [75–77], in patients with
myocarditis [78,79], in patients with hypertrophic cardiomyopathy (HCM) [71], in patients
with cardiac amyloidosis (CA) [80–82] and finally in patients with dilated cardiomyopa-
thy [72] (see Supplemental Table S1). Moreover, during the last two decades, several
studies have employed 2D-STE methodology as a diagnostic tool for identifying subclinical
myocardial dysfunction and for prognostic risk stratification of various study populations.
A significant reduction in LV-GLS magnitude has been associated with worse cardiovascu-
lar outcomes in patients with CA [83,84], in patients with HCM [85,86], in patients with
AS [87,88], in patients with non–ST-segment elevation myocardial infarction [89], and
in pregnant women aged 35 years or older [90]. Qualitative polar maps demonstrating
regional strain variations have been demonstrated to be particularly useful for detecting
the myocardial areas with the lowest regional strain values corresponding to the greatest
myocardial hypertrophy and fibrosis, as in patients with arterial hypertension [91], in
patients with HF with preserved left ventricular ejection fraction (LVEF) [92,93], in patients
with CA [94], in patients with HCM [95,96], in athletes [97], in patients with AS [98] and
finally in patients with nonalcoholic fatty liver disease [99].

Concerning left atrial (LA) strain assessment, 2D-STE deformation imaging provides
valuable information about atrial mechanics and its correlation with a range of cardiac
conditions [100]. A recent consensus document regarding 2D-STE deformation analysis
has been published to standardize the methodology applied for the assessment of the LA
chamber [101]. The 2D-STE analysis allows for the detection of LA dysfunction before
LA enlargement. The LA reservoir strain, assessed by 2D-STE analysis, is a more direct
measure of the intrinsic properties of the myocardium, whereas conventional morpholog-
ical parameters, such as left atrial volume indexed, just represent an indirect estimation
of LA function. LA reservoir strain is a rapid and simple measure that may elucidate
the role of atrial function in several pathophysiological conditions, such as mitral valve
disease, supraventricular arrhythmias, hypertension, coronary artery disease, HF, atrial
stunning and cardiomyopathy. A lower magnitude of LA reservoir strain and increased
LA stiffness are correlated with chronicity of LV afterload elevation, causing an increase in
LV filling pressures and leading to compensatory cardiomyocyte hypertrophy associated
with a significant quota of Int-F [102–104]. The interstitial collagen deposition explains
the early impairment of LA compliance, even before the LA enlargement. A number of
studies have demonstrated the incremental prognostic value of LA reservoir strain over
conventional echo Doppler parameters in different clinical settings, such as in patients
with AS [105–107], in acute ischemic stroke patients without a history of atrial fibrilla-
tion [108,109], in pregnant women with new-onset gestational hypertension [110] and



Int. J. Mol. Sci. 2022, 23, 10944 7 of 18

in patients with mild-to-moderate idiopathic pulmonary fibrosis [111]. Moreover, atrial
cardiomyopathy may exist without atrial fibrillation (AF), can facilitate the development
of AF [100,112,113] and is strongly associated with functional impairment of the left atrial
appendage [114,115]. Concerning the relationship between LA strain and MF, a significant
negative correlation between LA reservoir strain and the degree of LA fibrosis measured
on EMB was demonstrated in patients with mitral valve disease undergoing mitral valve
replacement or repair [73,74] and in advanced HF patients undergoing heart transplanta-
tion [116] (see Supplemental Table S1). In addition, a low magnitude of LA reservoir strain
was found in patients with high degree of LA wall fibrosis detected on advanced CMRI
techniques [117,118].

With regards to the correlation between right ventricular (RV) deformation and under-
lying tissue characteristics, Lisi M et al. [119] and Tian F et al. [120] demonstrated a direct
correlation of RV free wall myocardial deformation with the extent of RV myocardial fibrosis
on EMB in patients with severe HF undergoing heart transplantation (Supplemental Table
S1). From a clinical point of view, the prognostic value of RV-GLS impairment has been
demonstrated in the setting of HF with reduced and preserved ejection fraction [121,122]
and for predicting chronic HF mortality [123].

5.2. Technical Limitation of 2D-STE Analysis

Even if LV-GLS is more sensitive than LVEF, as assessed by conventional 2D-TTE
for detecting subclinical myocardial dysfunction, it has not yet been incorporated into
everyday clinical practice, due to several limitations which can affect the calculation of
strain parameters and their physiological meaning. Indeed, a number of technical factors
may influence myocardial strain parameters (see Supplemental Table S1). Firstly, 2D-STE
analysis is a semiquantitative technique with a learning curve to improve the quality of
manual adjustments of the different regions of interest. Indeed, when the region of interest is
inappropriately narrow or too wide, it will result in inaccurate strain values [124]. Secondly,
it requires good image quality [62] and optimization of frame rates (generally, no less than
40 fps); the tracking quality becomes reduced when the frame rate is too low (for example
in the case of tachycardia), due to frame-to-frame decorrelation [125]. Other limitations of
2D-STE methodology are the temporal stability of tracking patterns, due to physiological
changes in interrogation angles between moving tissue and the ultrasonic beam during each
cardiac cycle [62,126,127], and the intervendor variability, with technical differences among
post-processing algorithms [128,129]. Moreover, reductions in myocardial deformation
indices are age-related [130], are more commonly detected in males than in females [131],
are observed in the setting of the pathological heart rate increase, such as in sepsis [132],
are associated with the common cardiovascular risk factors [133–137], and, finally, may
be related to the negative inotropic and chronotropic effects of beta-blockers. In addition,
it is important to consider that myocardial deformation depends not only on contractile
properties of the myocardial fibers (“contractility”), but also on their loading conditions
(pre- and after-load), chamber geometry, dyssynchrony, and segment interactions [138,139].
In this regard, a discrete number of studies has been performed to evaluate the influence of
chest wall conformation on 2D-STE derived myocardial deformation parameters in various
clinical settings [140–142]. The chest wall conformation may be assessed by the modified
Haller index (MHI), a nonradiological anthropometric index obtained by dividing the
latero-lateral (L-L) thoracic diameter (measured by a rigid ruler coupled to a level) by the
antero-posterior (A-P) thoracic diameter (measured during conventional 2D-TTE, from
the parasternal long axis view, as the distance between the true apex of the sector and the
posterior wall of the descending aorta, visualized behind the left atrium) (Figure 3A,B) [143].
Both diameters are measured at the end of inspiration. An increased MHI, due to a narrow
A-P chest diameter, was found to be the main anthropometric determinant of the significant
reduction in myocardial deformation indices, particularly at the level of basal segments,
detected in healthy individuals with a concave-shaped chest wall and/or pectus excavatum
(PE) (as noninvasively defined by a MHI > 2.5) [144], in absence of any intrinsic myocardial
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dysfunction [145–149]. Moreover, individuals with MHI > 2.5 have been found to receive
excellent prognoses over mid-to-long term follow-up [150–152]. The correlation between
MHI and strain parameters is strictly correlated to the degree of the anterior chest wall
deformity in subjects with MHI > 2.5, whereas this has not been observed in individuals
with normal chest conformation (MHI ≤ 2.5) [145]. Examples of LV-GLS bull’s eye plot
patterns obtained in two healthy subjects, with PE and normal chest shape conformation
respectively, are depicted in Figure 3C,D.
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Figure 3. Modified Haller index measurement, obtained by dividing the L-L thoracic diameter (A) by
the A-P thoracic diameter (B). The L-L thoracic diameter is measured with the subject in the standing
position and with open arms, by using a rigid ruler in centimetres coupled to a level (the measuring
device), placed at the distal third of the sternum, in the point of maximum depression of the sternum.
The A-P thoracic diameter is measured, during conventional transthoracic echocardiography, as
the distance between the true apex of the sector (the point of entry of ultrasound into the chest)
and the posterior wall of the descending thoracic aorta, visualized behind the left atrium. A-P,
anteroposterior; Asc ao, ascending aorta; Desc Ao, descending aorta; LA, left atrium; L-L, latero-
lateral; LV, left ventricle; RV, right ventricle. Examples of LV-GLS bull’s eye plot patterns obtained
in two healthy subjects, with PE (C) and with normal chest shape (D), respectively. The PE subject
(MHI >2.5) was found with a significant impairment in basal myocardial strain (light pink and pale
pink segments), moderate impairment in mid myocardial strain (light red segments) and with a
normal apical strain (bright red segments); the resultant LV-GLS (−17.4%) was moderately impaired.
On the other hand, the subject with normal chest wall conformation (MHI ≤ 2.5) was found to have
a uniformly red pattern of the bull’s eye plot, indicating normal regional and global longitudinal
deformation of myocardial segments (LV-GLS = −27.2%). GLS, global longitudinal strain; LV, left
ventricular; MHI, modified Haller index; PE, pectus excavatum.
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6. The Interplay between Deformation Imaging and Molecular Approaches in the
Clinical Decision-Making Process

The heterogenicity of cardiac tissue reflects differences in the expression of extracellular
matrix components. Several circulating molecules have been proposed as biomarkers of MF,
by virtue of their association with many parameters assessed by EMB, such as myocardial
collagen volume fraction (CVF) or myocardial collagen 1 and 3 volume fraction (CVF1 and
CVF3, respectively) [153].

In clinical practice, 2D-STE analysis is increasingly being used. This methodology
allows for a more detailed assessment of cardiac contractility and may detect a subclinical
myocardial dysfunction when LVEF is preserved, in various clinical settings [90,154].

In accordance with the 2016 ESC guidelines [155], the diagnosis of heart failure with
preserved LVEF needs several additive serum biomarkers, such as natriuretic peptides,
beyond the structural or functional ventricular alterations. In this regard, MF seems to
be more frequently observed in HF patients with preserved LVEF than in those with
reduced LVEF [156]. Recent studies have focused on the assessment of MF biomarkers in
the diagnosis and/or prognostic risk stratification of heart failure (see Section 3). From a
pathophysiological point of view, the major limit of these biochemical markers (tissue or
circulating) is related to the site of their production which is not always the myocardium,
but rather some inflammatory local or systemic processes.

Molecular approaches are in their infancy with respect to serum or plasma biomarkers,
in particular miRNAs [37], but they represent the new diagnostic frontier for detection of
MF. As miRNAs are circulating molecules, measurable with laboratory methods in blood
samples, they actually behave as circulating biomarkers of disease and therefore do not
present the limits of the genomic or proteomic approaches. Despite these novelties, the
lack of inter- and intra-laboratory standardization make them “putative biomarkers” and
a prerogative of research. In addition, miRNAs detection could pave the way for new
therapeutic targets specific for MF and comparable to the anti-fibrotic effects of major
incretin drugs such as glucagon like peptide-1 (GLP-1) [157,158]

In the great majority of cases, the impairment in myocardial deformation indices
has been primarily correlated with pathological myocardial remodeling secondary to MF.
Contrary to EMB and cardiac MRI, which directly evaluate the myocardial tissue features in
the different pathological diseases, 2D-STE analysis identifies secondary myocardial tissue
functional abnormalities without specifying the causes of the underlying histopathological
changes. For example, an impaired LV-GLS detected in a patient with significant myocar-
dial hypertrophy is not automatically diagnostic of amyloid infiltration or hypertrophic
cardiomyopathy and cannot define the amount of MF eventually present either. However,
CMRI and EMB are not easily available for routine use in the clinical practice. Conversely, a
2D-TTE implemented with 2D-STE analysis of all cardiac chambers may also be performed
as a first approach at the patient’s bedside and is absolutely non-invasive and repeatable in
time [61].

In light of the above-mentioned considerations, we could affirm that abnormally low
strain values in a single patient are not necessarily a sign of myocardial dysfunction and/or
MF and should always be integrated with other clinical characteristics and diagnostic
examinations, due to the possible role exerted by interfering or artifactual factors on 2D-
STE results. In this context, molecular approaches might be coupled with 2D-STE analysis,
in particular to provide the relationship of the myocardial strain indices with soluble
molecules and micro-RNAs. Therefore, the identification of these markers (canonical and
non-canonical) could lead to potential strategies for a better comprehension of MF.

From a clinical point of view, a patient with an echocardiographic phenotype sugges-
tive of hypertrophic, infiltrative or dilatative cardiomyopathy with preserved LVEF on
2D-TTE and LV-GLS less negative than -20% on 2D-STE analysis should be treated with
cardioprotective and anti-fibrotic drugs, such as angiotensin-converting enzyme (ACE)
inhibitors/angiotensin II receptor blockers (ARBs) and/or aldosterone receptor antagonists.
On the other hand, the impaired myocardial deformation detected in a healthy individual
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with anterior chest wall deformity (MHI > 2.5) and normal systolic function assessed by
2D-TTE examination might not be directly considered as a synonym of intrinsic myocar-
dial dysfunction and/or MF, but could be primarily the expression of intraventricular
dyssynchrony secondary to the influence of chest wall conformation on the cardiac motion
pattern [126].

Due to the high negative predictive value of LV-GLS in different clinical settings [159–162],
a normal LV-GLS value (more negative than −20%) allows clinicians to reasonably exclude
a subclinical myocardial dysfunction and possibly even the presence of significant MF. To
date, we believe that the incorporation of LV-GLS for clinical decision-making might be of
additional value in patients with normal LV-GLS (more negative than −20%) only.

Conversely, due to the lower positive predictive value of a reduced LV-GLS (less
negative than−20%) and the possible interference by confounders and/or artifactual factors
on 2D-STE analysis, the clinical decision-making process in a single patient with reduced
LV-GLS should consider other clinical and conventional echocardiographic variables and a
possible indication to other complementary diagnostic techniques [163].

7. Conclusions

Considering the complexity of MF, it is critical to identify the relationship between
molecular profiles and the functional properties of myocardium assessed by 2D-STE analy-
sis, for a better understanding of the MF pathophysiology. A combined approach evaluat-
ing both miRNA-based crosstalk among different cardiac districts, and 2D-STE-derived
regional and/or global myocardial strain indices, might improve the prognostic risk strati-
fication of MF patients.

During the critical clinical decision-making process, 2D-STE analysis might not be
a direct and univocal expression of intrinsic myocardial dysfunction and should be as-
sociated with other clinical and instrumental data. We discussed the innovative role of
non-radiological MHI as a “detector” of a particular chest wall conformation. Notoriously,
individuals with different patterns of chest shape have different probability of subclinical
myocardial dysfunction, such as those with a concave-shape chest wall and/or pectus exca-
vatum. Therefore, misinterpretations might be avoided by the implementation in clinical
practice of molecular markers, which may help clinicians to discriminate critical cardiac
situations. Further prospective studies should be performed for coupling 2D-STE analysis
with molecular or biochemical approaches to validate and strengthen its output data.
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