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Aim. )e aim of this study is to evaluate the diagnostic value of machine learning- (ML-) based quantitative texture analysis in the
differentiation of benign andmalignant thyroid nodules.Materials andmethods. A sum of 306 quantitative textural features of 235
thyroid nodules (102 malignant, 43.4%; 133 benign, 56.4%) of a total of 198 patients were investigated using the random forest ML
classifier. Feature selection and dimension reduction were conducted using reproducibility testing and a wrapper method. )e
diagnostic accuracy, sensitivity, specificity, and area under curve (AUC) of the proposed method were compared with the
histopathological or cytopathological findings as reference methods. Results. Of the 306 initial texture features, 284 (92.2%)
showed good reproducibility (intraclass correlation ≥0.80). )e random forest classifier accurately identified 87 out of 102
malignant thyroid nodules and 117 out of 133 benign thyroid nodules, which is a diagnostic sensitivity of 85.2%, specificity of
87.9%, and accuracy of 86.8%. )e AUC of the model was 0.92. Conclusions. Quantitative textural analysis of thyroid nodules
using ML classification can accurately discriminate benign and malignant thyroid nodules. Our findings should be validated by
multicenter prospective studies using completely independent external data.

1. Introduction

)yroid nodules are common, with a prevalence of up to
67% in the adult population [1, 2]. Approximately 5%–15%
of these nodules are malignant, and the differentiation of
malignant and benign nodules is mandatory for forming
individual management strategies [3–7]. Ultrasound (US) is
the first and most commonly used imaging modality for the
evaluation of thyroid nodules [2, 3]. )e nodules that are
strongly suspected to be malignant as appraised by US are
further evaluated by fine-needle aspiration biopsy (FNAB)
or tissue biopsies; hence, a noninvasive method with an
ability to differentiate malignant and benign nodules is
desirable [8, 9]. Sonographic features such as irregular
margin, solid composition, hypoechogenicity, elongated

shape, and microcalcifications indicate malignancy [8, 9].
However, these features are somewhat qualitative, and the
experience of a radiologist has a substantial influence on
diagnostic accuracy [10–15]. Over the years, various
reporting systems have been introduced to reduce in-
consistencies among radiologists and promote communi-
cation between clinicians and radiologists. However, these
reporting systems still rely on a radiologist’s subjective in-
terpretations. Moreover, some radiologists are reluctant to
use these reporting systems owing to their complexity
[8–10].

Radiomics is defined as the machine learning- (ML-) or
deep learning-based mining of quantitative texture features
extracted from conventional imaging modalities. )e aim is
to improve the precision and diagnostic accuracy of imaging
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methods, mostly in the field of cancer research [16, 17].
Several studies have demonstrated the feasibility of ML-
based texture features in differentiating between benign and
malignant thyroid nodules [18–28]. Nevertheless, ML-based
texture analysis for the evaluation of thyroid nodules is still
in its infancy, and further research is necessitated.

Herein, we evaluate the diagnostic performance of ML-
based quantitative texture analysis in differentiating ma-
lignant and benign thyroid nodules.

2. Materials and Methods

)e local ethics committee approved this retrospective
study, which was conducted between January 2015 and
January 2019. We reviewed our picture archive and com-
municating system to identify patients who underwent
thyroid US examination for thyroid nodules. )e patients in
whom the thyroid nodules were determined as benign or
malignant according to FNAB or surgical pathology were
included in the study. Nodules that fell into the non-
diagnostic or indeterminate categories according to the
Bethesda Classification System and thyroid nodules <1 cm in
diameter were excluded from the study [4]. All of the
nodules were evaluated by the same radiologist (B.C.), who
had more than 20 years of experience in thyroid US, with the
same device (LOGIQ E9 with XDclear, General Electric (GE)
Healthcare, Wauwatosa, WI, USA) using a linear array
transducer (ML6-15) with a frequency range of 12 to
15MHz. Grayscale images of the thyroid nodules in the axial
plane were selected for further analysis.

2.1. Texture Feature Extraction. US images contain inherent
impulse and salt-and-pepper type noise; hence, an aniso-
tropic median filter was applied to all US images before the
texture extraction step to remove noise while preventing the
edges and boundaries of images being blurred. QMaZda
texture analysis software was used for quantitative texture
feature extraction [29]. )e radiologists manually delineated
the borders of the thyroid nodules for texture extraction.)e
image histogram was remapped within ±3σ of the grayscale
levels to prevent texture features from being affected by
image characteristics such as contrast or brightness [29].

A total of 306 texture features were extracted for further
analysis [28]: first-order histograms (13), gradient-map-
based features (5), gray-level co-occurrence matrix (GLCM)
features (176), gray-level run-lengthmatrix (GRLM) features
(28), autoregressive model features (5), Haar wavelets (12),
Gabor transform features (24), histogram of oriented gra-
dients (HOG; 8), and local binary patterns (LBP; 35) [30].
GLCM and GRLM were calculated at 5 bits per pixel, and
gradient-map-based features were calculated at 4 bits per
pixel. First-order histograms, autoregressive model features,
and Haar wavelet features were calculated at 8 bits per pixel.
LBPs were calculated by one of the three algorithms:over-
complete (Oc), transition (Tr), and center-symmetric
(Cs),with respect to the number of 4n neighbors. )e
extracted texture features were further entered into ML-
based analyses.

2.2. Feature Selection and Dimension Reduction. Waikato
Environment for Knowledge Analysis (WEKA) toolkit
version 3.8.2 (University of Waikato, Hamilton, New Zea-
land) was used for feature selection [31]. )e current study,
similar with most other studies involving quantitative tex-
ture analysis, had a substantially higher number of texture
features (n� 306) than thyroid nodules in the study cohort
(n� 235). )is is a recognized problem in ML analysis and is
also known as the curse of dimensionality. As a consequence,
there is a significant risk of overfitting the model. Over-fitted
models can be briefly described as models that strictly fit the
training data but show poor performance on new cases,
namely, the test set. Hence, there is a wide agreement as to
the importance of feature selection before creating the ML
model for classification or prediction tasks. To detect the
most appropriate features while discarding irrelevant ones
for the model, we employed three consecutive steps. First,
two radiologists (B.C. and D.A.) drew regions of interest
onto randomly selected images of benign and malignant
thyroid nodules (10 images each) to assess the re-
producibility of the extracted texture features. Features with
a good intraclass correlation (ICC) value (≥0.80) were
further considered in the following steps. Next, a scheme-
dependent feature selection method, a wrapper subset
evaluation using 10-fold cross-validation, was applied
[31, 32].

A wrapper method is a supervised scheme-dependent
feature selection technique that evaluates the features
according to their importance to the model [32]. )e
wrapper method evaluates the relevance of the attributes
based on a classifier, which was the random forest classifier
in the present work. )e wrapper method first creates
multiple subsets of the features and then tests the perfor-
mance of these subsets to find the best combination of
features. )ere are several types of wrapper methods
depending on the search method. )e current study uses the
wrapper method with linear forward stepwise selection, in
which the search for the most relevant features for the model
begins with a null model and continues until the best subset
of the attributes are determined [32]. We applied feature
selection after cross validation; hence, relevant features were
selected using only the training partitions of the dataset to
avoid the “double-dipping” phenomenon, which occurs
when the whole dataset is used for the selection and might
lead to biased or over-optimistic results [32, 33].)e selected
features were further processed using the ML classifier (a
random forest) to assess its diagnostic performance in
discriminating benign and malignant thyroid nodules.
Figure 1 summarizes the pipeline of the present work.

2.3. ML Models and Statistical Analyses. WEKA toolkit
version 3.8.2 was used to develop the ML model and to test
its performance. Only selected quantitative texture features
were used in the ML analysis. )e present study used the
random forest classifier to build the ML model. )e random
forest is a well-known ML algorithm for classification tasks
and has an inherent resistance to overfitting [34]. )e
random forest is an ensemble learning method. It chooses
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random data points from the dataset to build multiple
decision trees and then uses all of these decision trees to
improve the performance of the final prediction [31]. We did
not split the cohort into training and testing groups; instead,
we applied stratified 10-fold cross-validation, which ran-
domly divides all the data into ten parts and then holds out
10% of the data for testing.)is process is repeated ten times
[35]. A detailed illustration of the 10-fold cross-validation
method is given in Figure 2.

)e diagnostic performance of the ML model was
assessed using correlation matrices, which shows the results
as the number of true positives (TP), true negatives (TN),
false positives (FP), and false negatives (FN) according to the
histopathological sampling results. )e following formulas
were then used to determine performance: sensitivity�TP/
(TP+ FN), specificity�TN/(TN+ FP), and diagnostic
accuracy� (TP+TN)/(TP +TN+FP+FN). )e receiver
operating curve was drawn for the ML model and the area
under the curve (AUC) was calculated. )e wrapper method
is able to identify the best subset for the ML model, but it
does not provide further information regarding the relative
importance of the selected features. Hence, we employed an
information gain attribute evaluator, which evaluates the
worth of an attribute (in this case, the discriminative power
of the attributes for benign and malignant thyroid nodules)
by measuring the information gain with respect to the class
[31]. )e following formula was used for the information
gain attribute evaluator: InfoGain(Class, Attribute)�

H(Class) − H(Class | Attribute), where H represents the
amount of information in a unit called bits and ranges in
value between 0 and 1 [31]. )e information value increases
as the value approaches 1.

3. Results

)e final cohort study comprised a total of 235 thyroid nodules
of 198 patients (150 females, 48 males; age range 18–81 years;
and mean age 44.55 years). )ere were 98 patients with 102
malignant thyroid nodules and 100 patients with 133 benign
thyroid nodules. Of the 98 patients with malignant thyroid
nodules, 33 were male and 65 were female with a mean age of
42.12±14.55 years. Of the 100 patients with benign thyroid
nodules, 22 were male and 78 were female with a mean age of
46.35±17.12 years. Among the 102 malignant nodules, the
FNAB results of 82 nodules (80.3%) were also confirmed by
surgical pathology as 73 papillary thyroid carcinomas (89%) and
nine follicular variants of papillary cancer (11%). )e other
malignant thyroid nodules (n� 20) had only a cytopathological
diagnosis because the patients did not undergo an operation at
our institution. Of the 306 initial texture features, 284 (92.2%)
showed good reproducibility (ICC≥ 0.80) andwere further used
for the ML-based evaluation. A total of seven texture features
were selected for the final model: one histogram (HistPerc 99),
one HOG (HogO8b2), four GRLM (GrlmHRLNonUni,
GrlmHMGLevNonUni, GrlmNRLNonUni, and GrlmZRLNo-
nUni), and one GLCM (GlcmZ3AngScMom).
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(2) Feature extraction (306 features)
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Figure 1: )e scheme summarized the main workflow of the current study.
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Figure 2: Evaluation of the model’s performance by 10-fold cross-validation. 10-fold cross-validation first randomly divides all the data into
ten parts then holds out 10% of the data for testing. )is process is repeated ten times, and then the mean accuracy for the algorithm is
calculated.
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HistPerc 99 is an alternative to maximum intensity that
is equal to the highest intensity in the defined region of
interest [36, 37]. )e mean HistPerc 99 values of the benign
nodules were higher than those of the malignant ones in the
present study, indicating the higher intensity values in be-
nign tumors. )e GRLM counts the runs of pixels with the
same gray level in different directions [36, 37]. )e selected
GRLM features were the following in the present work:
GrlmHRLNonUni, GrlmHMGLevNonUni, GrlmNRLNo-
nUni, and GrlmZRLNonUni. In the feature names, “Grlm”
represents GRLM, the letters “H,” “N,” and “Z” represent the
direction of that feature: H� 0° (horizontal), Z� 45°, and
N� 135° [29]. Furthermore, MGLevNonUni and RLNonUni
represent nonuniformity, in which a higher value indicates
heterogeneity [29, 36, 37]. In the present work, malignant
thyroid nodules had more runs with nonuniform values,
indicating the heterogeneity of the nodules. GLCM features
count the number of co-occurrences of pixels with specified
gray-levels. Pairs of pixels are considered, such that one of
the pixels is situated at an offset (Δx, Δy) with respect to the
other [36, 37]. )e random forest model used
GlcmZ3AngScMom, where “Glcm” represents the GLCM,
“Z3” represents the direction (45°) and the offset of the
pixels, and AngScMom represents angular second move-
ment and also energy, which is a measure of homogeneous
patterns in the image [29, 36, 37]. Benign thyroid nodules
had higher mean GlcmZ3AngScMom values in the present
work. )e HOG counts the number of occurrences of
gradient. It identifies a sudden change in the pixel values,
which is called the gradient [29, 36, 37]. A positive gradient
refers to a change from a lower to higher pixel value while a
negative gradient refers to a higher-to-lower change in value.
HOGs are also a known marker of heterogeneity. In the
present work, malignant nodules had higher gradient
reflecting the heterogeneity of the tumor.

)e random forest classifier accurately identified 87 of
the 102 malignant thyroid nodules and 117 of the 133 benign

thyroid nodules. )ese values equate to a diagnostic sen-
sitivity of 85.2%, a specificity of 87.9%, and an accuracy of
86.8%. )e AUC was calculated as 0.92 for the model. )e
average values of the quantitative texture features for the
differentiation of malignant and benign thyroid nodules are
shown in Figure 3.

4. Discussion

)e present study demonstrated that the ML model using
the random forest classifiers with selected texture features
can successfully discriminate malignant and benign thyroid
nodules. )e selected texture features of the random forest
model consisted of histogram, HOG, GRLM, and GLCM
features. )e selected second-order features mainly reflect
the increased heterogeneity of the malignant thyroid nod-
ules, whereas the histogram feature represents the hypo-
echogenic characteristic of the malignant nodules.

4.1. Related Work. Several authors have evaluated the di-
agnostic value of ML-based texture analysis for the differ-
entiation of benign and malignant thyroid nodules. )e
diagnostic accuracy has even reached 100% in some of these
works. For instance, Acharya et al. [19–21] demonstrated
that ML-based texture analysis had a diagnostic accuracy
ranging from 98.3% to 100%, but the study cohorts consisted
of only 20 nodules in three of their reports. In the work by
Chang et al. [22], the support vector machines classifier
showed a diagnostic accuracy reaching up to 98.3% for 59
nodules. A recent work by Prochazka et al. [38] employed a
random forest and support vector machine classifier for
evaluating segmentation-based fractal texture analysis, and
the authors achieved a diagnostic accuracy of 94.3% with
their model. Although all studies mentioned above have
yielded promising results, the use of a small sample size in
ML-based diagnostic models will undoubtedly introduce
bias and variance [39]. Furthermore, using such small co-
horts increases the risk of overfitting and limits the gen-
eralizability of the results [39].

To our knowledge, there are few other studies on theML-
based quantitative texture analysis of thyroid nodules that
have a cohort size that is comparable to the size of the one in
our work. )ese works reported diagnostic accuracies
ranging from 78.5% to 94.3%, which is comparable with the
diagnostic accuracy of 86.8% obtained by the random forest
in the present work [23, 26, 28]. Song et al. [26] evaluated 16
GLCM features using logistic regression, artificial neural
network, random forest, boost, SVM, and random tree
models. )ey found that the logistic regression model
achieved the highest diagnostic accuracy. Similar to our
work, they did not use different data for training and testing;
instead, they implemented 10-fold cross-validation [26].
Acharya et al. [23] evaluated the Gabor transform features of
242 benign and malignant thyroid nodules using support
vector machines, k-nearest neighbors, multilayer percep-
tron, and C4.5 decision tree classifiers. In their work, the
C4.5 decision tree classifier achieved the best diagnostic
performance with a diagnostic accuracy of 94.3%. Yu et al.
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Figure 3: A total of seven texture features were selected for the final
model: one histogram (HistPerc 99), one HOG (HogO8b2), four
GRLM (GrlmHRLNonUni, GrlmHMGLevNonUni,
GrlmNRLNonUni, and GrlmZRLNonUni), and one GLCM
(GlcmZ3AngScMom). )e information gain attribute evaluator
identified that GrlmZRLNonuni was the most important feature in
the final model followed by HogO8b2 and GrlmNRLNonUni. )e
formula of the information gain attribute evaluator was Info-
Gain(Class, Attribute)�H(Class) − H(Class | Attribute), where H
represents the amount of information in a unit called bits and
ranges in value between 0 and 1.
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[28] implemented artificial neural network classifiers for the
evaluation of two morphological and 65 different texture
features. )ey trained the initial models using images of 610
thyroid nodules with 10-fold cross-validation and achieved
99% diagnostic accuracy. )ey externally validated their
model using images of 50 thyroid nodules, which resulted in
a diagnostic accuracy of 90% [28]. We suggest that the better
accuracy obtained by Yu et al. [28] might be a consequence
of the inclusion of semantic parameters such as the orien-
tation and boundaries of the nodules. It is well known that
semantic features such as vertical shape and irregular bor-
ders are closely associated with malignancy; hence, they
might improve the ML-based models.

4.2. Limitations. First and foremost, there is an inevitable
selection bias in the present work because we only included
thyroid nodules categorized as benign ormalignant according
to FNAB or surgical pathology; hence, we excluded most of
the benign nodules that did not have biopsy results. In daily
practice, a relatively small number of thyroid nodules are
scheduled for histopathological examination, and most of the
thyroid nodule data with benign features were follow-ups
using US [3, 4]. )erefore, benign thyroid nodules in the
present work might not cover all types of benign nodules.
Second, we did not evaluate the semantic features of thyroid
nodules nor integrate qualitative US features such as echo-
genicity or nodule composition because our aim was to assess
the diagnostic value of textural analysis alone. )ird, we
neither compared the diagnostic accuracy of our ML model
with human evaluators nor evaluated the diagnostic accuracy
of a human evaluator supplemented by theMLmodel. Hence,
we suggest that further studies investigating the diagnostic
accuracies of human evaluators and ML-based classifications
as well as the assistive value of ML-based models for human
evaluators might be worthwhile. Fourth, we did not use
separate test and training groups; instead, we implemented
the 10-fold cross-validation algorithm, which allows us to use
the same cohort as test and training subjects [35]. Finally,
although it is not peculiar to the present work, to date, many
ML-based classification systems and an abundant number of
different texture features have been evaluated for differenti-
ating thyroid nodules as benign or malignant. Hence, the
standardization of the models and evaluated features is a
concerning issue that prevents the use of ML models for the
characterization of thyroid nodules in practice [40].

5. Conclusion

We demonstrated that an ML classifier, the random forest,
with selected textural features can achieve 85.2% sensitivity,
87.9% specificity, and 86.8% diagnostic accuracy with an
AUC of 0.92 in the task of differentiating malignant thyroid
nodules from benign ones. )e texture features selected in
this study indicate that malignant thyroid nodules have
increased heterogenicity and lower echogenicity than benign
thyroid nodules. We acknowledge that our findings should
be validated by prospective multicenter studies using a
completely independent external dataset.

Abbreviations

AUC: Area under the curve
GLCM: Gray-level co-occurrence matrix
GRLM: Gray-level run-length matrix
HOG: Histogram of oriented gradients
ML: Machine learning
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[29] P. M. Szczypiński, M. Strzelecki, A. Materka, and
A. Klepaczko, “MaZda—a software package for image texture
analysis,” Computer Methods and Programs in Biomedicine,
vol. 94, pp. 66–76, 2009.

[30] G. )ibault, B. Fertil, C. Navarro et al., “Texture indexes and
gray level size zone matrix application to cell nuclei classi-
fication,” in Proceedings of the 10th International Conference
on Pattern Recognition and Information Processing, pp. 140–
145, Barcelona, Spain, July 2009.

[31] E. Frank, A. M. Hall, and I. H. Witten, Data Mining: Practical
Machine Learning Tools and Technique, Morgan Kaufmann,
Burlington, MA, USA, Fourth edition, 2016.

[32] R. Kohavi and G. H. John, “Wrappers for feature subset
selection,” Artificial Intelligence, vol. 97, no. 1-2, pp. 273–324,
1997.

[33] B. Mwangi, T. S. Tian, and J. C. Soares, “A review of feature
reduction techniques in neuroimaging,” Neuroinformatics,
vol. 12, no. 2, pp. 229–244, 2014.

[34] L. Breiman, “Random forests,” Machine Learning, vol. 45,
no. 1, pp. 5–32, 2001.

[35] S. Arlot and A. Celisse, “A survey of cross-validation pro-
cedures for model selection,” Statistics Surveys, vol. 4,
pp. 40–79, 2010.

[36] A. Zwanenburg, S. Leger, M. Vallières, and S. Löck, “Image
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