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Abstract

We studied the dynamics of a large-scale model network comprised of oscillating electrically coupled neurons. Cells are
modeled as relaxation oscillators with short duty cycle, so they can be considered either as models of pacemaker cells,
spiking cells with fast regenerative and slow recovery variables or firing rate models of excitatory cells with synaptic
depression or cellular adaptation. It was already shown that electrically coupled relaxation oscillators exhibit not only
synchrony but also anti-phase behavior if electrical coupling is weak. We show that a much wider spectrum of
spatiotemporal patterns of activity can emerge in a network of electrically coupled cells as a result of switching from
synchrony, produced by short external signals of different spatial profiles. The variety of patterns increases with decreasing
rate of neuronal firing (or duty cycle) and with decreasing strength of electrical coupling. We study also the effect of
network topology - from all-to-all – to pure ring connectivity, where only the closest neighbors are coupled. We show that
the ring topology promotes anti-phase behavior as compared to all-to-all coupling. It also gives rise to a hierarchical
organization of activity: during each of the main phases of a given pattern cells fire in a particular sequence determined by
the local connectivity. We have analyzed the behavior of the network using geometric phase plane methods and we give
heuristic explanations of our findings. Our results show that complex spatiotemporal activity patterns can emerge due to
the action of stochastic or sensory stimuli in neural networks without chemical synapses, where each cell is equally coupled
to others via gap junctions. This suggests that in developing nervous systems where only electrical coupling is present such
a mechanism can lead to the establishment of proto-networks generating premature multiphase oscillations whereas the
subsequent emergence of chemical synapses would later stabilize generated patterns.

Citation: Meyrand P, Bem T (2014) Variety of Alternative Stable Phase-Locking in Networks of Electrically Coupled Relaxation Oscillators. PLoS ONE 9(2): e86572.
doi:10.1371/journal.pone.0086572

Editor: Gianmaria Maccaferri, Northwestern University, United States of America

Received July 29, 2013; Accepted December 12, 2013; Published February 10, 2014

Copyright: � 2014 Meyrand, Bem. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: This work was supported by the status grant of the Polish Academy of Sciences (TB). The funders had no role in study design, data collection and
analysis, decision to publish, or preparation of the manuscript.

Competing Interests: The authors have declared that no competing interests exist.

* E-mail: pierre.meyrand@u-bordeaux2.fr

Introduction

Electrical synapses have been shown to be important in the

regulation of neuronal and glial cell activity in developing, adult

and injured central nervous system (CNS) [1–5]. Electrical

coupling between cells is mediated by intercellular channels that

enable cell-to-cell electrical communication as well as intercellular

transport of small molecules. Whereas in vertebrates these

channels are formed by a large family of hemi-channels called

connexins [6–7], homologous molecules have been found in

invertebrates where the gap junction protein is called innexin [8–

9]. In both invertebrate and vertebrate systems gap junctions

undergo regulation of their expression and conductance via

different mechanisms varying from neuromodulation to transcrip-

tional regulation [10–13] including activity dependent mecha-

nisms [14]. For example, in adult systems, the strength of gap

junction coupling can be modified by many agents such as nitric

oxide via cGMP [15] or dopamine [16–17]. In the developing

nervous system the expression of connexins increases during the

first postnatal weeks in the cortex and then decreases [18–19]

whereas in the spinal cord similar changes occur mainly during

late embryonic and late postnatal life [18,20–21].

Gap junctions play an important role in the CNS physiology.

The most obvious is their ability to equalize the membrane

potentials of cells and therefore to create clusters of cells expressing

similar electrical activity. However, using a modeling approach it

has been shown that electrically coupled neurons can also express

an anti-synchronous behavior. Indeed, both in network models

comprised of relaxation oscillators of sufficiently small duty cycle

(i.e., small spike duration compared to the duration of the cycle)

[22–23] or in networks composed of integrate-and-fire units [24–

26] weak electrical coupling may lead, although via different

mechanisms, to anti-synchrony (see also Wang-Buzsaki model

neurons in [27]). Importantly, all these models show the capacity

of electrically coupled neurons to generate only two behaviors:

synchrony (in-phase locking, IP) or anti-synchrony (anti-phase

locking, AP). However, in biological systems, in early development

where chemical synapses are not yet fully established and only

electrical synapses are present, it is not clear what factors

contribute to the ability of embryonic circuits to generate their

first patterned activity. Therefore the question arises as to what

extent electrical coupling contributes to the generation of activity

patterns that are more complex than simple synchrony or anti-

synchrony.
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In this paper we show that a large-scale neural network

comprised of relaxation oscillators interconnected solely by

electrical synapses expresses a much wider spectrum of multiphase

patterns. A relaxation oscillator is a model commonly used to

describe a cellular pacemaker (slow envelope of membrane

potential in bursting neurons) and in the case of a short duty

cycle, when the duration of the active phase is a negligible fraction

of the oscillatory period (1–2%), is also applicable for spiking

neurons, in which the intrinsic regenerative mechanism is fast

compared to the recovery variable [28,29]. Moreover, this model

is analogous to firing-rate models of excitatory neural networks

with slow negative feedback like synaptic depression or cellular

adaptation, in which neurons do not exhibit, by themselves,

pacemaker properties, like for example in developing CPG

networks of the spinal cord [30].

In this study we looked for a full spectrum of stable multiphase

solutions which coexist with the IP solution (i.e. synchrony) in the

network comprised of 24 or 60 electrically coupled oscillators. We

obtained various multiphase spatiotemporal patterns by applying

transient switching stimuli of different spatial profiles distributed

among cells expressing synchronous behavior. The network is

organized in a ring-like structure parameterized by the number of

connections of an individual cell to its closest neighbors, so we can

gradually change the network topology from a pure ring, with only

two connections per cell, up to all-to-all coupling. Such a ring-like

organization of network architecture was introduced in order to

control the extent of local coupling since in biological networks

electrical synapses are made between membranes of neighboring

cells. Our goal was to understand how the robustness of a given

pattern depends on the number of phases it contains, the number

Figure 1. Multiple activity patterns expressed by network of electrically coupled oscillatory cells. A. Examples of wiring diagrams of
network connectivity for different numbers of closest connected cells Ncc. B. 2-phase and 3-phase patterns expressed by fully connected network.
Equally numerous groups of cells (see scheme of cells contribution to different groups, left) express activity in 2 (B1) or 3 (B2) different phases of
oscillatory cycle. Note that cells belonging to a given group fire synchronously (see insert, B2). Parameters: N = 24, Ncc = 23, gel = 0.12 (B).
doi:10.1371/journal.pone.0086572.g001
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of cells firing in each of the phases, on the network topology and

on the cells’ duty cycle. We first found a domain of parameters,

namely the coupling strength and connectivity, in which a given

pattern is stable in the presence of noise of different amplitudes.

Here the robustness of the pattern decreased with the increasing

number of phases involved but was weakly dependent on the

network architecture, except for the AP pattern. We also showed a

subtle structure of multiphase patterns in networks with a small

number of connections per cell. Here subpopulations of cells

which are active during each of the main phases of a pattern do

not fire synchronously but in a given order thereby creating a sub-

pattern of activity.

In parallel, using geometrical phase plane analysis, we showed

that deflections of the phase plane trajectory occurring during the

evolution in the silent phase due to interaction with active cells are

critically important for the existence of a given solution. Moreover,

we described a relation between the number of phases in a solution

and the robustness of the pattern and how this changes as a

function of network architectures. We also showed why decreasing

the cell’s duty cycle allows for the existence of solutions of

increased number of phases. Finally, we analyzed the stability of

asymmetrical 2-phase patterns, with unequal number of cells firing

in each of the two phases. We demonstrated that in networks with

a small number of connections per cell highly asymmetrical

patterns cannot be generated.

Results

Network connectivity pattern
We considered a ring-like network model consisting of N cells,

in which each cell was connected electrically to a given number of

neighboring cells (Number of connected cells Ncc) varying from 2

to N-1, so network connectivity could be gradually changed from a

closest neighbor pattern (Ncc = 2) (which we call ‘‘Ncc2’’ network

or ‘‘ring network’’) to an ‘‘all to all’’ coupling pattern (Ncc = N-1)

(Fig. 1A1). For example, in Figure 1A2 Ncc is equal to 4. While

changing the connectivity parameter (Ncc) the total electrical

conductance per single cell was kept constant.

Multiple activity patterns coexist with synchrony
Starting from in-phase (IP) oscillations and by stimulating

different groups of cells with a transient stimulus (see Iin, equation

1) we were able to find a number of stable activity patterns which

were co-existing with the IP solution. Thereafter the stability of

these solutions was tested as a function of the electrical coupling

strength (gel) for different connectivities (Ncc) and different levels of

noise (s_noise).

We first tested the network with all-to-all connectivity (Ncc = 23)

consisting of 24 relaxation oscillators by stimulating a group

containing 12 neighboring cells (Fig. 1B1) or groups containing 8

neighboring cells (Fig. 1B2). Following such stimulation we

obtained either a 2-phase solution in which the two groups of

cells oscillating in anti-phase (AP) (right panel, Fig. 1B1) or a 3-

phase solution, with a phase shift F between the groups equal to

1/3 (right panel, Fig. 1B2). Importantly, cells belonging to the

same group oscillated in pure synchrony (see cells 17–24, bottom

Figure 2. 4-phase activity pattern. Ring network (Ncc = 2) is divided into 4 topologically compact groups of cells (left) which fire in 4 distinct
phases (right). Whereas behaviors among the groups are identical cells within each group have different voltage trajectories (stars indicate visually
observed differences, insert) and do not fire synchronously (see voltage trajectories within rectangle, insert). Parameters: N = 24, Ncc = 2, gel = 0.08.
doi:10.1371/journal.pone.0086572.g002
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panel, Fig. 1 B2). It must be noted that under all-to-all coupling

(Ncc = 23) it was not possible to switch from the IP to the 4-phase

solution. However, such a solution was easily obtained if the

connectivity pattern was changed to Ncc2 connectivity, as

illustrated in Figure 2. In such a network four groups of cells

were oscillating with a phase shift F equal to approximately 1/4

but, by contrast to all-to-all coupling, pure synchrony of cells

within each group was not present (see slight phase shift (grey bar)

between cell 19–24, bottom panel, Fig. 2). Moreover, whereas in

the fully coupled network within a given group of cells voltage

traces were identical (bottom panel, Fig. 1B2), here they differ

(compare cell 24 with other cells, see stars, bottom panel, Fig. 2).

Patterns’ stability as a function of network connectivity
In the next step we searched for a domain of coupling strength

and connectivity parameters in which 2, 3 and 4-phase solutions

were stable (and co-existing with IP). As illustrated in Figure 3A,

the 2-phase solution (i.e. AP oscillations) (top row, dark grey) was

found to be stable over a large range of electrical coupling

strength, until gel equal to 0.22–0.37, depending on the Ncc,

whereas above this limit only the IP solution was stable (top row,

light grey areas). Interestingly, the robustness of the AP solution

increased as a function of a decrease in the number of synapses per

cell (see enlargement of the domains of stability from Ncc = 23 to

Ncc = 2). The 3-phase solution was stable over a much narrower

range of electrical coupling than the 2-phase solution and its

robustness was weakly dependent on the network topology (middle

row, dark gray areas). Finally, the 4-phase solution was stable only

for a very small range of the coupling strength and moreover only

for small number of synapses per cell (Ncc,14, depending on the

amplitude of noise) (bottom row, dark gray areas). These features

of the stability of the three solutions were fairly resistant to

increasing of the amplitude of noise (compare columns from left to

right) as well as to increasing the number of cells in the network

(compare Fig. 3A and 3B).

Phase plane trajectory of the AP solution
In order to understand why decreasing the number of synapses

per single cell (Ncc low) increases the robustness of the AP solution

(see Fig. 3A, top row) we first considered the phase plane trajectory

of a free relaxation oscillator. (In all figures trajectories are

presented on the phase plane with coordinates: V (abscissa) and W

(ordinate)). Figure 4A shows a cubic curve called V-nullcline

(dashed curve) where dV/dt = 0. The nullcline is calculated by

setting the right side of equation [1] equal zero. This is the

nullcline of a free cell, with the values of the synaptic current Iel

and the external current Iin equal to zero. Another example of V-

nullcline corresponds to the case when the free cell receives a

depolarizing current (see Isyn, equation [5]): here the V- nullcline

(grey cubic curve) is shifted above the free nullcline. Notice that the

larger the value of the current, the larger will be the distance

between the free and shifted nullcline and also, that a hyperpo-

larizing current will produce a shift below the free nullcline (not

shown). Finally, W-nullcline (black straight line) shows where dW/

dt = 0 (see equation [2]). We assume relaxation regime so W is very

slow compared to V.

The free cell trajectory (black curve) consists of four pieces; two

of them lie along the left and right branches of the V-nullcline and

correspond to cell’s silent and active phases, respectively, whereas

other two pieces which begin at the knees of the nullcline

correspond to jumping between these two phases (arrows, Fig. 4A).

The jumping phases are very fast compared with the silent and

active phases. The speed of evolution along the left and right

branches is not constant but depends on the vertical distance

between the cell’s actual position on the phase plane and the W-

nullcline. Moreover, in our model the speed of the evolution is

higher during the active than during the silent phase due to the

smaller time constant (tw) (see equation [4]) which determines the

speed of approaching the W- nullcline and therefore assures that

the cell duty cycle (the proportion of the duration of the active

phase to cycle duration) is short. Figure 4B illustrates the phase

plane evolution of two such cells with short duty cycle generating

an AP pattern when coupled by reciprocal excitation (black solid

curve). When one of the cells jumps up from the silent to active

phase (see bottom arrow) it crosses the voltage threshold for

transmitter release (not shown) and therefore the partner cell is

removed from the free cell trajectory due to a depolarizing

synaptic current and evolves along the shifted V-nullcline (see grey

curve, Fig. 4B). After the cell jumps down (onset of the silent phase)

the partner cell is released from excitation and returns to the

evolution along left branch of the free nullcline (dashed curve,

Fig. 4B).

In contrast to the two examples described above, the trajectory

of the two cells coupled with electrical synapses is different from

the free cell trajectory over the entire cycle (Fig. 4C green curve).

Indeed, here the cell is continuously coupled with its partner either

in the active (as in Fig. 4B) or in the silent phase due to the

electrical coupling. Here the value of the coupling current Iel (see

equation [3]) depends on the actual position of the two cells on the

phase plane (i.e., on the difference of V-coordinates) which in turn

influences the shape and the position of the cell’s V-nullcline at any

moment of the cycle. For example, in Fig 4C1 we consider a cell

(upper light grey circle) just before its partner cell jumps up (not

shown). Here the cell’s nullcline (light grey curve) is shifted up with

respect to the free cell nullcline (dashed curve) (see also upper

insert). This is due to a depolarizing coupling current resulting

from the difference in membrane potential of the two cells. Later

in the cycle the cell reaches another position (middle black circle)

in which V-nullcline is at its uppermost position (black solid curve)

due to a strong depolarizing coupling current from the partner cell

which is now in the active phase evolving along the right branch of

the nullcline (not shown). Thereafter, when the partner cell jumps

down (not shown) the cell (dark grey circle) is now ahead of its

partner in the silent phase and with a higher V. This produces a

hyperpolarizing current and a shift down of the cell’s nullcline with

respect to the free nullcline (cf. dark grey curve and dashed curve,

respectively, see also lower insert). Thus, as a result of electrical

coupling the V-nullclines as well as the cell trajectory become

shrunken compared to the free cell nullcline and trajectory

(compare cells nullclines and trajectory in Fig. 4A and C1). The

deformation of the trajectory depends on the value of electrical

coupling. Indeed, as illustrated in Fig. 4C2 the trajectory is less

compressed for weaker coupling (gel = 0.05) than for the stronger

coupling (gel = 0.22). Moreover, with a further increase of the

coupling strength the trajectory of cells expressing AP behavior

becomes significantly altered (gel = 0.23, see grey curve) and this

solution disappears.

Existence of the AP solution
In order to understand why AP solution disappears at a given

value of gel we analyzed the cell position with respect to the knee of

the V-nullcline (see black circles and black curves, Fig. 4 C1, C3-

C4) at the moment of the cells higher depolarization at the silent

phase Whereas for gel = 0.15 the cell is still well above the knee of

the nullcline (black circle, Fig. 4C1) for gel = 0.22 the cell is already

at the level of the knee and with a larger V due to a shift up of the

nullcline resulting from the increase of the coupling current (black

circle, Fig. 4C3). With a further slight increase of the coupling
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(gel = 0.23) the nullcline is again slightly shifted up and therefore

the cell trajectory now becomes situated below the knee (black

circle, Fig. 4C4). As a result, instead of continuing evolution along

the left branch of the nullcline the cell is jumping directly toward

the right branch (double arrow) approaching its partner cell in the

active phase and after a few cycles the initial AP solution is

replaced by the IP solution (not shown).

In conclusion, we can see that a deflection of the cell trajectory

occurring along the left branch of the nullcline, corresponding to

the cell depolarization during the silent phase via the coupling with

the active partner, is a critical moment of the evolution in the

phase plane. Here the AP solution has to be lost if the coupling

becomes too strong. For the purpose of the further analysis we will

call this part of the trajectory a ‘‘critical deflection.’’

Size of the critical deflection is affected by the network
connectivity

As illustrated in Fig. 5A, decreasing the number of synaptic

connections (Ncc) at a given value of gel diminished the size of the

critical deflection. In view of our previous analysis this indicates

that at the critical deflection a cell with fewer connections is further

away from the knee of the V-nullcline than a cell connected to a

larger number of cells. Therefore the solution is more robust – the

value of gel may be increased much further until the solution has to

disappear due to geometry of the nullcline.

We will show now that this increased robustness of the AP

solution for small Ncc is due to the asynchronous behavior of cells

belonging to one of the two antagonistic groups (see grey vs. black

voltage traces in the insert, Fig. 5B). For example, for Ncc = 6, cells

belonging to one group have different voltage traces (Fig. 5C1) and

different phase plane trajectories (Fig. 5C2) depending on their

position within the group. ‘‘Middle group‘‘ cells are not connected

at all with the members of the other group (see cells. 4-7, Fig. 5B)

and these cells evolve almost like free cells (cf. trajectory of cell 6 in

Fig. 5C2 with free cell trajectory, Fig. 4A). By contrast, ‘‘edge’’

cells, situated at the border of the group, make of the most

connections with the cells belonging to the other group (see cell 1,

Fig. 5B) with the same total coupling strength as in fully connected

network. However, the interaction with members of the same

group modifies the edge cell’s trajectories and decreases the size of

the critical deflection in comparison with the fully connected

network, in which all cells express identical voltage traces and

therefore there is no intra-group interaction (Fig. 5A).

De-synchronization within groups of cells firing in anti-
phase (AP)

In networks with low Ncc we also observed de-synchronization

of firing within each of two groups of cells expressing AP behavior:

cells with less intergroup connectivity jumping ahead of cells more

strongly connected with members of the opposite group (see insert,

Fig. 5C1 and Fig. 5B). This can be understood by analyzing the

cells’ phase plane trajectory. Fig. 5D1 illustrates a phase of the

cycle when one of the groups evolves in the silent phase just before

the jump up to the active phase (see solid color curves) whereas the

other group is less advanced in the silent phase (see dashed color

curves). As we already mentioned above, in both groups

trajectories of ‘‘edge’’ cells (see dark blue and red curves),

influenced by larger coupling currents, are farther away from

the free nullcline (black curve) than less affected trajectories of cells

situated in the middle of the group (see grey and green curves). In

particular, in the advanced group the trajectories of ‘‘edge’’ cells

are shifted more down by hyperpolarizing currents than trajecto-

ries of ‘‘middle’’ cells (cf. dark blue and grey solid curves,

respectively, Fig. 5D1). Before a given cell jumps up to the active

phase it must reach the knee of its nullcline: this is the slowest part

of the cell’s trajectory since the speed of evolution along the V-

nullcline depends on the distance from the W-nullcline which is

shortest close to the knee (see Figure 4A). The more the nullcline is

shifted down by the hyperpolarizing current the more slowly a cell

evolves close to the knee. Therefore the ‘‘middle group’’ cells, less

hyperpolarized (see grey and green solid lines, Fig. 5D1-2), reach

the knee of their nullcline (not shown) and jump up to the active

phase before the ‘‘edge’’ cells (see dark blue and red solid lines,

Fig. 5D1-2). The cells trajectories differ also in the active phases

and here again the ‘‘middle’’ cell trajectories, less compressed by

the electrical coupling, approach the free cell trajectory (cf. grey or

green solid curve, Fig. 5C2 and black curve, Fig.4A). Conse-

quently, these cells jump down on the left branch of the V-nullcline

more far away from its knee than ‘‘edge’’ cells, which become

‘‘leaders’’ of the group (cf. grey and dark blue solid lines, Fig. 5D3).

During the evolution along the left branch of the V-nullcline the

distance between ‘‘leaders’’ and ‘‘followers’’ decreases (cf. vertical

distance between solid lines after jump down and close to the knee,

Fig. 5D3-4) because ‘‘followers’’ are further from the W-nullcline

and therefore evolve with the larger speed. Finally, during jump up

to the active phase, the order of cells is reversed and ‘‘followers’’

become ‘‘leaders’’, as described above (see Fig. 5D1).

In order to place the results obtained in a more biological

context we have used instead of a ring - a chain of coupled cells, as

in models of spinal cord CPGs. Interestingly, the results were fairly

similar, showing increased robustness (by about 50%) of the AP

solution in comparison to fully coupled network and also showing

asynchronous behavior of cells within the same group. Here cells

with less intergroup coupling fired before the other cells as in the

ring model. However, whereas in the latter case the less influenced

cells were located in the middle of their group, in the former model

they were located at the edge of the chain (data not shown).

Why patterns containing more phases are less robust
In the next step we asked why increasing the number of phases

in the pattern dramatically decreases its robustness, as described

above (cf. top with middle and bottom rows in Fig. 3A and B). In

order to answer this question we first considered the phase plane

trajectory of the 3-phase solution in the fully coupled network (grey

curve, Fig. 6A). Here, when one group of cells is active (black disc)

the other two groups evolve in the silent phase (see light gray and

dark gray circles) along two deflections of the trajectory resulting

from a coupling with the active group. Previously, we have shown

that the 2-phase solution disappears when such a deflection

becomes large enough so the cell can jump directly to the active

phase and join the active group (see Fig. 4C2). This occurs when,

due to the coupling current, the knee of the nullcline is shifted

above the current position of the cell in the phase plane.

Which among the two deflections illustrated in Fig. 6A1 become

critical for existence of the 3-phase solution? Obviously, a cell

belonging to the delayed group (light grey circle) is farther away

Figure 3. Occurrence of activity patterns as a function of electrical conductance and network connectivity. Shown are domains of
stability of 2, 3 and 4-phase solutions in (gel, Ncc) parameter space in 24 (A) and 60 cell network (B). Note that with increasing the number of groups
expressing different phases (see schemes of groups, right) the robustness of the solution diminished (left). Parameters: s_noise indicates standard
deviation of independent identically Gaussian distributed random current values for each 0.2 unit integration step in A and B.
doi:10.1371/journal.pone.0086572.g003
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Figure 4. Phase plane evolution of oscillators involved in the 2-phase behavior in fully connected network. A. Trajectory of an
uncoupled oscillatory cell (black curve) on the phase plane. Evolution along left and right branches of V-nullcline (dashed cubic curve) corresponds to
the active and silent phases, respectively. Transitions between the phases occur when the cell jumps up from the left knee or jumps down from the
right knee of the V-nullcline (see arrows). The speed of evolution is high during jumps as compared to evolution along V-nullcline when it is inversely
proportional to the distance between the actual position of the cell and the W-nullcline (black straight line). Also shown is the V-nullcline for
depolarized system (grey cubic curve). B. AP trajectory of 2 cells coupled reciprocally by excitatory synapses. The trajectory (black curve) is identical as
in A, except for a right-sided deflection, corresponding to the evolution along the new V-nullcline (grey cubic curve) of the depolarized cell, which is
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from the knee of the nullcline (black curve) than a cell from

advanced group (dark grey circle) (cf. Distance To the Knee,

DTK). The latter, with a slight increase of gel, will find itself below

the knee of the new nullcline and will jump directly to the active

phase cutting off the existence of the 3-phase solution (not shown).

We therefore conclude that for multiple phase solutions, when the

trajectory contains several deflections, a deflection closest to the

knee becomes critical.

Importantly, DTK of critical deflections (calculated for the

moment when active cells cross W = 0) decreases with increasing

number of phases. This is shown in Fig. 6B1-3, where for arbitrary

chosen points in (gel, Ncc) space a distance Dgel from a given point

to the border of existence of a given solution (i.e. to a value of gel

where a transition to synchrony occurs) is plotted against DTK for

2, 3 and 4-phase solutions. For 2 and 3-phase solutions we chose

Ncc = 2, 10, 23 (see crosses, open circles, full circles, respectively,

Fig. 6B1-2) and for 4-phase solution Ncc = 2, 6, 10 (see crosses,

diamonds and open circles, respectively, Fig. 6B3). For each of the

above Ncc values we choose 3 values of gel: very small (gel = 0.01),

close to the value of gel at which the transition to IP occurs

(determined in simulation) and an intermediate value of gel.

Visibly, DTK is a good indicator of the stability of a solution since

it is well correlated with Dgel and becomes very small close to the

border of existence of the solution. The range of gel, in which a

given solution exists, diminishes with increasing number of phases

and so does the range of DTK (cf. Fig. 6B1–B3). We can also see

that, in agreement with results shown in Fig. 3, only robustness of

the 2-phase solution (AP) is dependent on the connectivity pattern

(cf. Fig. 6B1 with Fig. 6B2–3).

Effect of the connectivity on patterns containing more
than 2 phases

We next asked why decreasing the density of synapses Ncc,

which enlarges the domain of existence of the 2-phase solution, has

almost no effect on robustness of the 3-phase solution (cf. upper

and middle row, Fig. 3A and B). To answer this question we

compared the trajectory of the 3-phase solution in two extreme

cases of connectivity patterns, i.e. in the fully connected and Ncc2

network, for the same value of electrical coupling (gel = 0.12)

(Fig. 7A1–3 and B1–3).

Fig. 7A1 shows the evolution of 3 groups of cells: leading,

middle and following (see red, dark blue and grey curves,

respectively) during a time interval in the silent phase. In

Fig. 7B1 we considered the evolution of 3 analogous groups,

starting from the same value of W for cell 9 (middle group) (see

dark blue curve), during the same time interval. As expected, in

the fully connected network, cells belonging to one group evolve

identically (Fig. 7A1), whereas in the Ncc2 network they have

different trajectories, as shown in the example of ‘‘edge’’ cells (cf.

red (cell 1) and yellow (cell 8), dark blue (cell 9) and light blue (cell

16), grey (cell 17) and green (cell 24) curves, Fig. 7B1). Moreover,

‘‘edge’’ cell 8 jumps up to the active phase before ‘‘edge’’ cell 1 (cf.

red and yellow curve, see also insert, Fig. 7B1). This results from

the difference in the hyperpolarizing currents: cell 8, connected

only with cell 9 (middle group), undergoes a smaller hyperpolar-

ization than cell 1, connected to cell 24 (follower group), due to a

smaller distance in V. Therefore cell 8 first reaches the knee of its

nullcline and jumps up (see yellow curve), which produces

depolarization of cell 9 from the middle group (see deflection of

dark blue curve). The jump up of cell 8 produces also, via intra-

group connectivity, a depolarization of cell 1 (from leading group),

which follows cell 8 (see red curve) (Fig. 7B1). With cell 1 active

depolarization of cell 24 also occurs (see black curve, Fig. 7B2) and

both deflections of trajectories (corresponding to depolarization of

cells 9 and 24) last until cells of the leading group jump down (see

red and yellow curve, Fig. 7B2–3).

Notice that the size of deflection must be reduced in Ncc2

network compared to the network with all-to-all coupling due to

intra-group connectivity and a gradient of V within the group, as it

was in the case of the AP pattern (see above). However, in the 3-

phase pattern a critical deflection is attenuated also via interaction

with cells from the other, less advanced groups, of a smaller V.

Whereas such interaction between groups is fully present in the all-

to-all coupled network decreasing Ncc reduces the number of long

distance connections and for Ncc = 2 the cell which undergoes a

critical deflection of the trajectory (here cell 9, dark blue curve,

Fig. 7B1-3) is connected only with cell 8 of the active group and

cell 10 of its own group (insert, Fig. 7B1).

We therefore conclude that in a solution containing 3 or more

phases there are two factors diminishing the critical deflection:

interaction with cells less advanced in the silent phase and

interaction within the same group of cells. With decreasing the

density of synapses in the networks the effect of the former is

reduced whereas the effect of the latter is enhanced. By contrast, in

the 2-phase solution, where only one group of cells evolves in the

silent phase while the other group is active, decreasing Ncc has a

pure stabilizing effect on the solution via intra-group coupling.

Effect of cells’ duty cycles on the maximal number of
phases in a solution

In our simulation we were not able to divide the network, using

transient switching stimuli, into more than 4 equally numerous

groups of cells expressing different phases in oscillatory cycle i.e.,

to obtain a solution containing more than 4 phases. We consider

now the possibility that such a solution does not exist due to the

limited space in which the evolution of our model oscillators was

possible in the phase plane.

Fig. 8A shows the general shape of the trajectory of a multiphase

solution containing the active phase (solid dark blue curve) and

silent phase where multiple deflections may occur (dotted green

curve). As illustrated, the trajectory is situated between two

extreme values of W (see horizontal dotted lines): the upper (Wup),

indicating cells’ position just before a transition to the silent phase

(jump down), is placed below the right knee of the free nullcline

(solid black curve) at the distance determined by the value of

hyperpolarizing current resulting from interaction of active cells

shifted up with respect to the free nullcline (dashed cubic curve). C. AP trajectory of electrically coupled cells. The trajectory of two identical groups of
cells expressing anti-phase oscillation (green curve, C1) is compressed comparing to the free cell trajectory (black curve, A) due to continues
interaction of two groups all over the cycle. Shown are positions of cells before, during and after the other group’s active phase (light grey, black and
dark grey circle, respectively) and corresponding nullclines (light gray, black and dark grey cubic curves). Notice shift of the nullclines with respect to
the free nullcline (dashed cubic curve) (inserts, C1). Increasing gel produces gradual compression of the AP trajectory (color curves, C2) and changes a
position of cells (black circles) with respect to the knee of V-nullcline (black cubic curve) during a maximal deflection (C3-4, see also C1). When the
knee of the nullcline is shifted above a cells’ actual position (see black circle and solid cubic curve) a jump up occurs directly from the deflection
phase to the active phase (see double arrow) and the AP solution disappears (light blue curve) (C4). Parameters: N = 2 (A-B), 24 (C), Ncc = 23 (C), in B
parameters as described in Methods. Phase plane coordinates: V (abscissa), W (ordinate). Trajectories and nullclines were calculated using the
software XPPAUT developed by B. Ermentrout (http://www.pitt.edu/,phase/).
doi:10.1371/journal.pone.0086572.g004
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with cells evolving in the silent phase; the bottom (Wdown), placed

below the left knee of the free nullcline, indicates the position of

cells just before a transition to the active phase (jump up), when

they are under the inhibitory influence of cells less advanced in the

evolution in the silent phase. How many cells may evolve

simultaneously in the silent phase in between these two limit

values Wup and Wdown? Fig. 8B1 illustrates the evolution of cells

expressing the 4-phase pattern (to simplify the figure only one cell

of each group is shown). Assuming that during tt a cell from a

leading group jumps up (starting from Wdown), evolves in the active

phase and jumps down (at Wup) (black curve) whereas at the same

time cells belonging to the remaining groups evolve in the silent

phase (see red, black and blue curve). In the next part of the cycle

all 4 groups will evolve together in the silent phase until each cell

reaches a starting position of a more advanced cell whereas the

most advanced cell (red curve) will reach Wdown and the next jump

up will occur (not shown). Thereby J of the cycle will be

completed. If a solution containing more than 4 phases is to exist

we need a space (distance in W) for at least one more cell evolving

during Dt in the silent phase, equivalent to the length of any of the

trajectories expressed by 3 groups (see red, black and blue curves,

Fig 8B1). Obviously, in the presented example such space is not

available (compare space between trajectories of different groups

with their length). In other words, in our example a time interval

between the offset of the active phase (jump down) and the onset of

the next active phase (jump up), corresponding to time of evolution

of all groups in the silent phase, will be smaller than the duration

of the active phase:

J T2Dt,Dt

so a solution containing more than 4 phases will not exist.

However, decreasing a cells duty cycle, i.e. Dt/T, assures that J
T2Dt.Dt, as illustrated in Fig. 8B2 (compare length of

trajectories with intervals between them) and thereby assures the

existence of a solution with a larger number of phases (see phase

plane evolution, Fig. 8B3 and voltage traces of cells expressing the

6-phase solution, Fig. 8C).

Asymmetrical 2-phase solutions
So far we only analyzed patterns in which multiple groups of

cells expressed activity in different phases of the cycle, with equal

group sizes. In particular, in the 2-phase pattern two identical

groups of cells were oscillating in anti-phase. Figure 9A shows the

activity pattern expressed in the fully connected network by 2

groups of cells of different size (here containing 2 and 22 cells). As

illustrated, cells voltage traces are different: the larger group (LG;

black curve) expresses oscillation of a higher amplitude in the

active phase but lower amplitude of a deflection occurring during

the silent phase than the smaller group (SG, grey curve), which

follows LG with a small phase lag.

Asymmetry is present also in the phase plane trajectories. As

illustrated in Fig. 9B, the trajectory of SG (grey curve) is situated

more far away from the free nullcline (dashed curve) and is thereby

more affected by the coupling current than the trajectory of LG

(black curve). This is due to the unequal number of intergroup

connections made by a single cell belonging to SG and LG: the

intergroup coupling is stronger in SG (each cell makes 22 synapses

on LG and 1 synapse on SG) than in LG (each cell makes 1

synapse on SG and 22 on LG). Asymmetry in the coupling

strength results also in the difference in the size and position of

deflections occurring during the silent phase of the two groups

(Fig. 9B), which reflect the fact that SG is a leader whereas LG is a

follower in the cycle (cf. active phase of LG occurring soon after

jump down of SG, Fig. 9A). Indeed, with diminishing asymmetry

between the size of the two groups two deflections approach each

other (see grey and black curves), their V-amplitudes become

similar and finally, for equal group sizes, they fuse in a single

deflection, reflecting symmetrical evolution of the two groups in

the anti-phase solution (Fig. 9C1).

Note that increasing the asymmetry between the groups

decreases the size of the deflection occurring in the trajectory of

LG and shifts it down (black curve, Fig. 9C1). As explained

previously, the robustness of a multiphase solution depends

critically on the size and position of the deflection occurring in

the silent phase of the phase plane trajectory. This further suggests

that the robustness of the 2 phase asymmetrical solution may be

similar in the case of weak asymmetry, when the deflection is large

and far away from the knee and in the case of stronger asymmetry

between the two groups when small deflection is situated close the

knee of the nullcline.

Indeed, as illustrated in Fig. 10A, where domains of stability of

the 2-phase solution with different group size ratios are shown for

different amplitudes of noise, robustness of the 2-phase solution in

the fully coupled network is almost independent of asymmetry

between the 2 groups of cells. (Note that range of gel where the

solution for 12/12 group size ratio is stable is identical to the

domain of stability of the 2-phase solution for Ncc = 23 in Fig. 3A,

where only symmetrical solutions are considered.) In contrast, in

the Ncc2 network the 2-phase solution exists only for relatively

similar groups size and disappears with stronger group size

asymmetry (see Fig. 10B) (here again 12/12 group size ratio

corresponds to Ncc = 2 in Fig. 3A). This is due to the fact that for

low Ncc asymmetry in the size of the two groups does not result in

asymmetry in the coupling between members of the groups, as for

the fully coupled network. For example for Ncc = 2, the only two

cells in each group which are directly coupled with the other group

(edge cells, see Fig. 5B) are coupled with a same conductance

strength equal to gel/2, i.e, with a coupling strength which was

present in a symmetrical group division. This is further illustrated

in Fig. 9C2 where deflections are shown occurring on the

trajectories of edge cells in two groups as a function of asymmetry

between the two groups. Here, with increasing asymmetry, a

deflection of trajectory in LG is shifted down (see black curve), as

for all-to-all coupling, but still with a relatively large amplitude (cf.

Fig. 9C2 and C1) rapidly approaching a position where the 2-

phase solution disappears.

In summary, two groups of cells of unequal size may express the

2-phase activity pattern in which the active phase of a larger group

is expressed first and followed after some phase lag by the active

phase of the smaller group. The larger the asymmetry between the

size of the two groups, the smaller the phase lag between the leader

and follower. Robustness of the solution in the fully coupled

Figure 5. Effect of network connectivity on the trajectory of cells expressing AP pattern. A. Deflection of cells trajectory resulting from
interaction with the active cells for different connectivity parameter (Ncc). B. Wiring diagram of connectivity for Ncc = 6. Shown are connections close
to the border between two groups of cells (vertical line) (see also voltage traces in insert). C. Voltage traces (C1) and phase plane trajectories (C2) of
cells belonging to one of the groups. Shown are same cells as in B. D. Consecutive steps of phase plane evolution (D1-D4) of the two groups of cells
(solid and dashed lines). Shown are the same cells as in C and analogous cells from the other group. Parameters: N = 24, gel = 0.22 (A, C-D). Phase
plane coordinates: V (abscissa), W (ordinate) (A, C2, D).
doi:10.1371/journal.pone.0086572.g005

Multiphase Activity via Gap Junction Coupling

PLOS ONE | www.plosone.org 10 February 2014 | Volume 9 | Issue 2 | e86572



network is relatively independent of the difference between two

group sizes whereas in a network with a small number of

connections the solution only exists for a low level of asymmetry.

Discussion

Obviously, if cells are only coupled electrically, then IP phase-

locking exists and is stable for all values of electrical coupling. This

has been shown for both relaxation oscillator and integrate-and-

fire neuron models, although the synchronization mechanisms are

quite different [22–28]. Previous studies have also shown that

weak electrical coupling may lead to AP locking in networks

composed of different neuronal model cells [22–28,31]. In the

present study we are going along this line of research, since our

results demonstrate, for the first time, a much richer variability of

multiphase activity patterns that may be expressed by a network

comprised of electrically coupled relaxation oscillators.

Indeed, we have shown that a large-scale network of oscillatory

cells with short duty cycles, coupled solely by electrical synapses,

may express multiple stable activity patterns, both symmetrical

and asymmetrical. Among symmetrical patterns, in which equal

numbers of cells fire at different phases of the oscillatory cycle, we

found 2, 3 and 4-phase patterns coexisting with the 1-phase

pattern, i.e. with synchronous or in-phase (IP) behavior (Figures 1–

2). Also patterns containing more than 4 phases were possible to

obtain by diminishing the cells duty cycle (Fig. 8). Such multiphase

activity patterns were stable over a range of electrical conductance

(gel), which was narrower the larger the number of phases

expressed in a given behavior (Fig. 3).

Looking for the effect of network topology (Fig. 1A) on the

robustness of expressed patterns we found that only the existence

of the 2-phase behavior was strongly affected. Indeed, the

robustness of the anti-phase pattern (AP) increased when network

connectivity approached a pure ring organization (Ncc low) (Fig. 3).

On the other hand, among 2-phase asymmetrical patterns, i.e.

patterns of different number of cells contributing to each phase, no

stable solution existed in a ring network if asymmetry between two

group sizes was high (Fig. 10B). In contrast, in the fully coupled

network the stability of 2-phase patterns was fairly independent on

the two group size ratios (Fig. 10A). Therefore, the main effect of

the ring topology on the network is to eliminate asymmetrical 2-

phase patterns and promote AP behavior. Moreover, such network

architecture gives rise to a hierarchical organization of activity:

during each of the main phases of the activity pattern a group of

participating cells do not fire synchronously but in a given

sequence determined by the cells’ interconnections.

Since a rigorous mathematical explanation of a given dynamic

behavior is generally neither easy to achieve nor easy to

understand for a reader without mathematical background, we

have provided a simplified explanation of our main findings

described above using a geometrical analysis of phase plane

evolution.

Figure 6. Position of a critical deflection of a trajectory as a
function of number of phases in the pattern. A. Phase plane
evolution of cells expressing the 3-phase activity pattern. Shown are the
cells trajectory (solid grey curve) and cells nullcline (solid black curve).
During the active phase of one group of cells (black disc) two other
groups (light grey and dark grey circles) evolve at a different distance to
the knee (DTK) of the nullcline. A deflection closer to the knee is critical
for stability of the pattern. From here cells (dark grey circle) will jump up
below the knee and cease the solution if a slight increasing of gel

(Dgel = 0.001) shifts the nullcline up. Note that for cells evolving at the
upper deflection much larger increment of gel would be necessary to
produce a jump. B. A distance Dgel from the given point in (gel, Ncc)

space to a value of gel where a transition to synchrony occurs, is plotted
against DTK for 2, 3 and 4-phase solutions. For each of Ncc = 2, 10, 23 in
the 2 and 3-phase solution (see crosses, open circles, full circles,
respectively, B1-2) and for Ncc = 2, 6, 10 in the 4-phase solution (see
crosses, diamonds and open circles, respectively, B3) 3 values of gel

were chosen: very small (gel = 0.01), close to the value for which a
transition to IP occurs and an intermediate value of gel. Note that a
range of gel, in which a given solution exists, diminishes with increasing
number of phases and so does the range of DTK (cf. B1–B3). Only
robustness of the 2-phase solution (AP) is dependent on the
connectivity pattern (cf. B1 with B2-3). Parameters: N = 24. Phase plane
coordinates: V (abscissa), W (ordinate).
doi:10.1371/journal.pone.0086572.g006
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First, we explained that a deflection of the phase plane

trajectory occurring due to interaction between antagonist groups

of cells during the cell’s evolution in the silent phase is critical for

the existence of the AP solution (Fig. 4). Second, we showed that

the robustness of the AP solution increases in the ring network due

to interaction via electrical coupling within the agonist group of

cells which reduces the size of the critical deflection (Fig. 5). Third,

we explained that solutions containing larger numbers of phases

are less robust due to the position of the critical deflection in the

phase plane, shifted toward the knee of the nullcline (Fig. 6B).

Fourth, we showed that in the case of patterns containing more

than 2 phases the impact of network topology on the stability of a

solution is limited due to the opposite effect of inter- and intra-

group coupling currents influencing the size and position of a

critical deflection (Fig. 7). Fifth, we demonstrated that when one of

the groups of cells contributing to a given activity pattern is active,

the remaining groups evolving in the silent phase have a limited

space available in the phase plane. This determines how large the

variety of patterns that may be expressed by the network is for a

given electrical coupling strength: the shorter the cell’s duty cycle

the larger the maximal number of phases in the pattern (Fig. 8).

Finally, we explained how asymmetry between the sizes of the two

Figure 7. Effect of network connectivity on the trajectory of cells expressing 3-phase pattern. Shown are consecutive steps of phase
plane evolution of cells expressing 3-phase activity pattern in fully connected (A) and Ncc2 network (B). A. Cells belonging to different groups (solid
color curves) evolve in the silent phase (A1) and during the active phase of a leading group (A2–3). Within each group trajectories are identical. B.
Shown is the evolution of cells placed at the borders between groups (insert, B1) starting from the same W* (horizontal line) and during the same
time intervals as in A. Cells connected with a less advanced group (like cell 8 from the leading group connected with cell 9, insert) are leaders in their
own group during the active phase (cf. yellow and red curve, B1–2). Notice no clear difference in the size of critical (bottom) deflection in A3 and B3.
Parameters: gel = 0.18. Phase plane coordinates: V (abscissa), W (ordinate).
doi:10.1371/journal.pone.0086572.g007
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groups expressing 2-phase behavior influences the phase plane

trajectory of cells for different connectivity patterns. We showed

that highly asymmetrical 2-phase patterns cannot exist in a

network with a small number of connections per cell due to the

size and position of the critical deflection (Fig. 9 and 10).

Our model network is assembled from neurons arranged in a

virtual ring, with a connectivity parameterized by a number of

connections of a single cell to its closest neighbors. Although such

ring network architecture has so far never been described in

biological systems this is a convenient way to control the local

connectivity in a model of gap junction coupling between

neighboring cells [32]. Indeed such network organization allows

edge effects to be avoided which would be present, for example, in

a line of coupled oscillators. In order to place the results obtained

in a more biological context we have used instead of a ring - a

chain of coupled cells, as in models of spinal cord CPGs, and

found similar increase of the robustness of the AP pattern as

compared to the fully coupled network.

It has been shown in the previous studies of the dynamics of

electrically coupled oscillatory cells that decreasing the cells duty

cycle (or frequency of firing) assures stability of the AP pattern

[22–24]. Interestingly, our results indicate that it also reveals other

possible oscillatory behaviors of a more complex structure. What

may be the physiological function of such oscillations?

Although it is difficult to perform research work on the

physiological role of gap junctions during early development of

the CNS, there are some studies that indicate that electrical

coupling between neuronal cells may play an important role in the

formation of local connectivity [33–37]. Moreover, it has been

reported that the transient electrical coupling may play a crucial

role for the establishment of chemical synapses [38–40]. More

recently, it has been demonstrated that transient electrical

coupling between radially aligned sister excitatory neurons

regulates the subsequent formation of chemical synapses within

the group of cells that was electrically connected [41]. One

important issue in all these studies is the capability of neurons to

Figure 8. Maximal number of phases in the activity pattern. A. A general shape of a multiphase pattern trajectory. The trajectory (dark blue
curve) is placed between limit values of W (Wup and Wdown) (horizontal lines) at which jumps take place. During the silent phase (dotted green curve)
a number of deflection may occur (not shown), equal to number of phases in the pattern - 1. The free nullcline is shown as a reference curve (black
solid curve). B. Trajectories of cells belonging to different groups expressing 4-phase pattern (B1-2) or 6-phase pattern (B3) during a full active phase
of a single cell. For the 4-phase pattern shown are trajectories of cell 1, 7, 13, 19 (black, red, yellow and blue curves, respectively, B1-2). For the 6-
phase pattern shown are trajectories of cell 1, 5, 9, 13, 17, 21, (black, dark blue, green, light green and light blue curves, respectively, B3). Notice the
effect of shortening the cells’ duty cycle (cf. length of trajectories in the silent phase, see color curves in B1 and B2). C. Voltage traces of cells
expressing the 6-phase pattern. Only cells connected with a more advanced group are shown. Parameters: N = 24, Ncc = 2, gel = 0.08. Phase plane
coordinates: V (abscissa), W (ordinate). Cells numbers as in Fig. 7B (insert).
doi:10.1371/journal.pone.0086572.g008
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‘‘sense’’ each other in order to be able to form functional clusters.

However, the classic views on the electrical synapses function is

their ability to equalize the membrane potential between

connected cells so that the group of neurons will fire in synchrony

[42]. Here, a paradoxical effect of the gap junction communica-

tion is that if the potentials of cells are identical, the current flow

via such synapses is equal to zero and therefore there is no

information exchange between the neuronal cells, at least no

transfer of charged particles. Using a modeling approach we were

able to show that neurons solely electrically coupled, if the number

of synapses per cell is small (in ring-like or chain organization),

may express within a given cluster a small phase shift allowing a

Figure 9. Asymmetrical 2-phase activity pattern. A. Voltage traces of 2 groups of cells expressing asymmetrical behavior in a fully connected
network. Leading is the group of a larger size (22 cells) (black solid curve), the following group of a smaller size (2 cells) (grey solid curve) expresses
activity of a diminished amplitude (A). B. Phase plane trajectories of the same groups as in A. C. Phase plane position of deflections of trajectories of
both groups in a function of group size ratio in fully coupled (C1) and Ncc2 networks (C2). Parameters: N = 24, gel = 0.06. Phase plane coordinates: V
(abscissa), W (ordinate) (B, C).
doi:10.1371/journal.pone.0086572.g009
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given cell to ‘‘sense’’ the other cell partners via gap junctions

during a small time interval within each oscillatory cycle. One can

imagine that such a mechanism may play an important role in

early development to create clusters of cells where subsequent

chemical synapses will take place.

Another possible function of such patterned activity in a solely

electrically coupled network is the possibility to create early in

development some proto networks expressing complex patterns of

activity. However, these patterns are quite unstable: they always

coexist with IP pattern and other multiphase patterns and can

switch from one to the other configuration. We have previously

shown that such switching exists and that transient stochastic or

sensory signals may produce transitions between IP and AP

behaviors [43,44]. Interestingly however, introducing chemical

inhibition should have a stabilizing effect on multiphase patterns.

Indeed, the action of inhibitory chemical synapses, which will take

place only during the active phase of cells, will diminish the size of

the deflection of cells trajectories occurring during electrical

interaction between active and silent groups which, as we have

shown in this study, is critical for the stability of a pattern.

Therefore one can postulate that during early development a

population of electrically coupled neurons may generate multi-

phase spatiotemporal patterns that provide a way to organize the

development of chemical synapses within such proto-networks. In

turn, the establishment of chemical synapses will stabilize

generated patterns and the network will become more robust in

the face of incoming information.

In our previous study on the role of electrical synapses in

developing networks, we have shown a potentiality of gap

junctions to equalize expression of multiphase activity of

premature inhibitory networks into one embryonic pattern [43].

Here quite the reverse possibility is shown i.e., that a variety of

premature multiphase patterns of activity can be expressed in

populations of neurons coupled solely electrically, where inhibition

will be established in the future.

Materials and Methods

The Cell Model
As previously described in [31] cells in the network are modeled

by a set of first order differential equations, each cell contributing

two state variables to the set: the instantaneous membrane

potential (Vi) and a slow recovery current (Wi), dependent on the

membrane potential. The variables have the (non-dimensionalised)

dynamics defined by equations 1–4.

tv
dVi

dt
~ VizWi tanh (gfastVi)zIel

i zI in
i (t)

� �
ð1Þ

Figure 10. Occurrences of asymmetrical 2-phase patterns as a function of electrical conductance and group size ratio. Domains of
stability of asymmetrical 2-phase behaviors in fully coupled (A) and Ncc2 networks (B) for different levels of noise are shown. Whereas in fully coupled
network almost all asymmetrical network divisions are equally stable (A) the ring connectivity strongly promotes symmetrical patterns (B).
Parameters: N = 24.
doi:10.1371/journal.pone.0086572.g010
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tw(Vi)
dWi

dt
~ Wi{gslowVi

� �
ð2Þ

In equations 1–2 gfast determines the degree to which the

instantaneous voltage-dependent current is N-shaped whereas gslow

models the voltage-dependent activation function of the slow

current. Gap junction current is given by

Iel
i ~

Xj~(Ncc{ls)=2

j~1

gel (Vizj{Vi)z(Vi{j{Vi)
� �

z

gel ls(V
izN

2
{Vi)

ð3Þ

where gel is a total electrical conductance per single cell and Ncc is

the number of synapses per cell, ls = 1 if Ncc.N-2 and 0 elsewhere.

Here, since the network is organized as a ring of N cells with a

cell’s number increasing in one direction therefore if i+j.N then

Vi+j = VN-i-j and if i-j,0 then Vi-j = VN+i-j. Since N is a paired

number then for the all-to-all coupling (Ncc = N-1) we add one

connection (ls = 1). I in
i (t) is externally injected input current. tt

and tw (Vi) are the membrane time constant and the time constant

of slow current dynamics, the latter depending on the membrane

potential Vi:

tw(Vi)~(t1{t2)s(
Vi

ktw
) ð4Þ

with tt and tt specifying the minimum and maximum time

constants and thereby determining the durations of the active and

silent phases of the oscillator – and ktw quantifying the rate of

voltage dependence. Sigmoidal function s(x) is defined as s(x) = 1/

(1+ex). The complete model defined by equations 1–4 has,

therefore, three time constants, two membrane, one junction

conductance and one rate constants (the k parameter). For

tractability in the current work following parameters are identical

for all junctions and neurons respectively, with following values:

gfast = 2, gslow = 2, tt= 5, tt= 50, ktw = 0.2, tt= 0. 16.

The parameters have been chosen to model neurons of

relatively short duty cycle (i.e. with short fraction of the cycle

when the cell is depolarized above threshold and may exert

synaptic action). With this choice of parameters, equations 1–4

may be considered as a model of spiking neurons. In the study

presented here, the only parameters varied from the defaults is the

time constant ttin the example presented in Fig. 8B2-3 and C and

the conductance gel, except of a network of reciprocal excitatory

instead of electrical connections considered in Fig. 4B (see Results).

Here we replace Iel
i (t)in equation (1) by I

syn
i (t) given by

I
syn
i (t)~

XN

j~1

gsyns
Vj{Hsyn

ksyn

� �
(V{Esyn) ð5Þ

Where and gsyn = 0.05 is the maximal synaptic conductance, Vj is

the membrane potential of the presynaptic cell j, Esyn = -4 is the

synaptic reversal potential whereas Hsyn = 0 and ksyn = 0.02 are,

respectively, the midpoint and steepness of the synaptic activation

function.

The model has been implemented as a set of Matlab functions

which compute the quantities defined by the equations above and

integrate the set of ordinary differential equations using Matlab’s

standard ode45 solver with the default tolerance parameter

settings. The external input currents I in
i (t) are assumed to be

piecewise constant. The implementation has been independently

realized using the xpp tool (http://www.pitt.edu/,phase/) and

found to give identical results. The model codes are placed in

http://ibib.waw.pl/download/MPA/MultiphasePatternAnalysis.

zip.

Analysis Methods
For a given choice of parameters, the network exhibits a

number of oscillatory behaviors. In this study, we vary the

following parameters: electrical conductance gel and number of

synapses per cell (Ncc), over the range in which interesting

behaviors occur, for networks comprising 24 and 60 cells. The

reported results generated as follows. For each value of Ncc

investigated:

1. The model is integrated with time step of 0.2 unit (the model is

dimensionless) from initial conditions identical for all cells and

for electrical coupling very low (generally gel = 0.02) so that the

IP behavior is generated.

2. Thereafter an attempt is made to switch the network to another

oscillatory behavior: some cells receive a 1 unit positive current

injection and some a negative current injection of 1 unit

amplitude for 0.2 time units, applied once or in successive

attempts, depending on the number of desired phases in the

target activity pattern.

3. In the next step we verify whether the obtained solution (see

p.2) is stable in the presence of noise. For this aim we apply

random current inputs during 250 time units. Random current

input is constructed using independent identically Gaussian

distributed random values with zero mean and standard

deviation s_noise = 0.002, 0.01 or 0.02 for each 0.2 time unit

step. The behavior is then classified for each consecutive

increment of gel using algorithms described in [31,44,45].
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