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Transcriptome analysis reveals 
similarities between human blood 
CD3− CD56bright cells and mouse 
CD127+ innate lymphoid cells
David S. J. Allan1,2, Ana Sofia Cerdeira3,5, Anuisa Ranjan1, Christina L. Kirkham1, Oscar A. 
Aguilar   1, Miho Tanaka1, Richard W. Childs2, Cynthia E. Dunbar2, Jack L. Strominger4, 
Hernan D. Kopcow3 & James R. Carlyle1

For many years, human peripheral blood natural killer (NK) cells have been divided into functionally 
distinct CD3− CD56bright CD16− and CD3− CD56dim CD16+ subsets. Recently, several groups of innate 
lymphoid cells (ILC), distinct from NK cells in development and function, have been defined in mouse. 
A signature of genes present in mouse ILC except NK cells, defined by Immunological Genome Project 
studies, is significantly over-represented in human CD56bright cells, by gene set enrichment analysis. 
Conversely, the signature genes of mouse NK cells are enriched in human CD56dim cells. Correlations 
are based upon large differences in expression of a few key genes. CD56bright cells show preferential 
expression of ILC-associated IL7R (CD127), TNFSF10 (TRAIL), KIT (CD117), IL2RA (CD25), CD27, CXCR3, 
DPP4 (CD26), GPR183, and MHC class II transcripts and proteins. This could indicate an ontological 
relationship between human CD56bright cells and mouse CD127+ ILC, or conserved networks of 
transcriptional regulation. In line with the latter hypothesis, among transcription factors known to 
impact ILC or NK cell development, GATA3, TCF7 (TCF-1), AHR, SOX4, RUNX2, and ZEB1 transcript 
levels are higher in CD56bright cells, while IKZF3 (AIOLOS), TBX21 (T-bet), NFIL3 (E4BP4), ZEB2, PRDM1 
(BLIMP1), and RORA mRNA levels are higher in CD56dim cells.

Natural killer (NK) cells are an important component of the innate immune system that serve the dual func-
tions of direct cellular cytotoxicity and early secretion of regulatory cytokines. Phenotypically, human NK cells 
have been distinguished by their expression of CD56 (NCAM1), and the absence of CD3. For almost 30 years, 
human NK cells have been further classified into two sub-populations based upon surface levels of CD56 and 
CD16 (FCGR3A)1, 2. The first population, composed of CD56bright cells, make up approximately 10% of circulating 
blood NK cells, and are characterized by high-density expression of CD56 and low or negative levels of CD16. 
The second population, CD56dim cells, make up the remaining ~90% of blood NK cells, and are characterized by 
low-density expression of CD56 and high levels of CD16. These two populations show distinguishing differences 
in expression of inhibitory NK cell receptors, cytokine and chemokine receptors, as well as differential functional 
responses (reviewed in ref. 2). For instance, CD56dim cells exert greater cytotoxic effects on target cells1, but pro-
duce lesser quantities of cytokines3. On the other hand, ex vivo CD56bright cells are weakly cytotoxic1, and produce 
high levels of immunoregulatory cytokines, such as IFN-γ, lymphotoxin-α and GM-CSF3.

The developmental relationship of the CD56bright and CD56dim populations remains unclear. Some reports 
have provided evidence that CD56bright NK cells may be developmental precursors of CD56dim NK cells4–6. 
Upon in vitro culture with synovial fibroblasts or cytokines, CD56bright NK cells were reported to undergo mul-
tiple changes in cell surface phenotype and function to resemble CD56dim NK cells4, 6. Another study observed 
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acquisition of CD16 on sorted CD56bright cells, but not other features of CD56dim cells, upon culture in IL-15; this 
process could be regulated by TGF-β7. CD56bright cells were shown to have longer telomeres than CD56dim cells, 
perhaps consistent with a more immature status4, 6. On the other hand, studies following clonal hematopoiesis in 
vivo in rhesus macaques revealed that analogous CD56+CD16− and CD16+ NK cell populations showed differ-
ences in progenitor cell origin for many months after stem cell transplant; a large number of rhesus CD16+ NK 
cells were derived from highly biased progenitor clones that did not substantially give rise to other lineages, while 
many CD56+CD16− cells shared progenitors with T, B, and myeloid cells8. This provides evidence that human 
CD56bright and CD56dim populations may follow distinct developmental pathways. Interestingly, some patients 
deficient in GATA2 lack CD56bright blood cells, while they retain some CD56dim NK cells, possibly arguing against 
a simple precursor-progeny relationship9. Mouse NK cells do not express CD56, making assignment of analogous 
mouse populations more challenging.

In the past few years, a number of related subsets of innate lymphoid cells (ILC), distinct from NK cells, 
have been described in mouse and human. These include: (i) Rorγt-dependent group-3 ILC (ILC3), which pro-
duce IL-22 and play key roles in bacterial and fungal defence, mucosal homeostasis, regulation of immune tissue 
development, and modulation of adaptive immune responses; (ii) group-2 ILC (ILC2), expressing high levels 
of GATA3, which produce Th2-associated cytokines, including IL-5 and IL-13, and profoundly impact allergic 
responses and parasite defence; and (iii) T-bet (Tbx21)-dependent, group-1 ILC (ILC1) cells, which produce 
IFN-γ and are reported to be distinct from NK cells in development and function (reviewed in ref. 10). Using 
fluorescent Id2 or Zbtb16 (PLZF) reporter mice, along with surface marker staining, two groups defined common 
lymphoid progenitor (CLP)-like precursor cells with the capacity to differentiate in vivo or in vitro into ILC3, 
ILC2, and ILC1 cells, but not conventional mouse NK cells11, 12. The developmentally distinct mouse ILC1 subset 
appears to include TRAIL+ (Tnfsf10+) DX5− (CD49b−) CD49a+ NK1.1+ liver cells, previously described to dis-
play an immature NK phenotype13 or termed tissue resident NK cells14–16. Genetic lineage-tracing/fate-mapping 
studies showed that most liver NK1.1+ DX5− ILC1 cells had developed via a PLZF+ precursor, while most 
NK1.1+ DX5+ liver and spleen NK cells had not, supporting different developmental pathways11. In mice, Eomes 
is reported to distinguish conventional NK cells from ILC1, with lack of Eomes correlating with a TRAIL+ DX5− 
phenotype in the liver17, 18 and CD127+ CD27+ phenotype in the small intestine12. Both Eomes+ NK cells and 
Eomes− ILC populations can express the typical mouse NK cell markers, NK1.1, NKp46, and NKG2D, compli-
cating their separation12, 17, 18. It has been proposed that all “helper ILC” (ILC3, ILC2, and ILC1) express CD127 
(Il7r), implying that ILC1 may be distinguished from NK cells by CD127 expression. However, both ILC1 and NK 
cells depend mainly upon IL-15 for their development (rather than IL-7), and both subsets develop in thymect-
omized and Foxn1−/− mice12, 15, 17. Genetic lineage-tracing experiments also suggest that mouse Rorγt+ ILC3 can 
lose Rorγt expression to acquire an ILC1-like phenotype, producing IFN-γ and expressing NK1.1 and NKp4612, 19;  
these transitioned cells have been referred to as “ex-ILC3 cells.” In human tonsil, non-NK ILC1 cells have been 
identified with a CD56− CD127+ NKp44− CD117− perforin− CRTH2− phenotype20.

In light of the discovery of these varied ILC subsets, the nature of the human peripheral blood CD3− CD56bright 
subset is re-examined here bioinformatically, using transcriptome-wide expression data. Transcription factors 
distinguishing this subset are also identified.

Results
Signature transcripts of mouse ILC are enriched in human CD56bright cells, while mouse NK sig-
nature gene products are enriched in human CD56dim NK cells.  We undertook a re-evaluation of the 
nature of the human blood CD56bright and CD56dim cell subsets. Microarray results from an Affymetrix HTA2.0 
dataset21 was used to compare peripheral blood CD3− CD56bright CD16− and CD3− CD56dim CD16+ cells, with 
results confirmed, where indicated, with data from an independent microarray dataset based upon HG-U133 
A and B arrays22. Robinette and colleagues previously examined multiple mouse ILC lineages by microarray in 
the context of the Immunological Genome Project (ImmGen), and used these data to define expression signa-
tures: Core ILC signature genes were expressed at higher levels in multiple mouse ILC subsets, but were lower 
in conventional NK cells23; Core NK signature transcripts were selectively over-expressed in mouse NK cells23. 
After conversion of these signatures to homologous human genes, selective enrichment was examined in human 
CD56bright and CD56dim subsets using the Gene Set Enrichment Analysis (GSEA) algorithm (which calculates 
scores based on positions of signature genes within a rank-ordered list according to differential expression24; 
Fig. 1A,B). Interestingly, the mouse Core ILC signature was significantly enriched in human CD56bright cells 
(p = 0.003) (Fig. 1A). However, this enrichment was largely driven by a few key signature genes that displayed 
expression highly biased towards CD56bright cells. Comparing CD56bright with CD56dim cells, IL7R (CD127) was 
22.9-fold higher; GPR97, 2.6-fold; and IL2RA (CD25), 1.6-fold. Independent human microarray data, from the 
second microarray platform, confirmed enrichment of the Core ILC signature in CD56bright cells due, in part, to 
higher expression of IL7R and GPR97 (an orphan G protein-coupled receptor) (Suppl. Figure 1A). In mouse, 
it has been proposed that surface CD127 (Il7r) distinguishes helper ILC lineages (ILC3, ILC2, and ILC1) from 
conventional NK cells. Strikingly, IL7R represented the transcript with the second highest fold-change between 
human CD56bright and CD56dim subsets, greater than CD16 (FCGR3A, 15.4-fold) and CD56 (NCAM1, 1.8-fold), 
the defining phenotypic markers of the subsets. At the protein level, CD127 appears to be bimodal on the surface 
of CD56bright cells (Fig. 1C), perhaps indicating the presence of distinct subsets of cells within the CD56bright pop-
ulation, or down-regulation upon recognition of IL-7. CD127 expression on CD56bright cells has been reported 
previously25. CD56dim cells appeared to be mostly negative for CD127 (Fig. 1C). Some CD56bright cells also show 
low-level cell surface expression of CD25 (IL2RA) (Fig. 1C) as noted previously26, 27. Although not part of the bio-
informatically-defined signature, CD27 is another marker that Klose and colleagues have reported to distinguish 
mouse ILC1 from conventional NK cells and ex-ILC312. Interestingly, CD27 is also selectively expressed on the 
cell surface of CD56bright cells in a bimodal fashion (Fig. 1C), again highlighting the possibility of distinct subsets. 
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Figure 1.  Signature genes, higher in mouse ILC subsets, are enriched in human blood CD3− CD56bright cells, 
while mouse NK cell signature genes are enriched in human CD3− CD56dim cells. (A,B) Transcriptional 
signatures of mouse NK cells (Core NK) and other mouse ILC (Core ILC) were defined by Robinette and 
colleagues as part of the ImmGen project23. Enrichment of corresponding homologous human genes was 
examined by Gene Set Enrichment Analysis in human blood CD56bright CD16− CD3− and CD56dim CD16+ 
CD3− populations characterized by Affymetrix HTA2.0 microarray21. Deviations of cumulative scores (green 
line) above zero indicate enrichment in CD56bright cells, while negative scores indicate enrichment in CD56dim 
cells. Samples of each subset from three individuals were used for analysis. Signature genes without human 
homologues were not included in the analysis. (C) Flow cytometry staining of gated human blood CD56bright 
CD16− CD3− or CD56dim CD16+ CD3− populations from three donors. Quadrant gates were set using 
fluorescence minus one (FMO) stains, of which one is shown. Intracellular staining for EOMES was performed 
on three blood samples distinct from those used to acquire the other results.
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However, CD56bright cells did not display substantially biased expression of other characteristic mouse ILC genes 
such as CXCR6 (Fig. 1A).

Conversely, mouse Core NK signature genes were highly enriched in the human CD56dim subset (p < 0.001) 
(Fig. 1B). This was largely driven by 5 genes within the signature: KLRG1 (3.7-fold higher in CD56dim), CMKLR1 
(3.1-fold), ZEB2 (2.7-fold), KLRAP1 (1.8-fold), and SCIMP (1.5-fold). KLRAP1 is the single human (pseudogene) 
homologue of the mouse Ly49 receptors, several of which are part of the mouse Core NK signature. Functional 
equivalents of the Ly49 in human, the killer-cell immunoglobulin-like receptors (KIR), are also highly differ-
entially expressed between the human subsets. Twelve of thirteen KIR genes that were interrogated displayed 
extremely biased expression in CD56dim cells, ranging from 3.2-fold to 13.4-fold higher in CD56dim cells (the 
exception being KIR2DL4, which was similar in both subsets) (data not shown). Using mAb recognizing several 
KIR, selective staining of CD56dim NK cells has been reported for many years7, 28. Examination of the second 
human microarray dataset also showed an enrichment trend of the mouse Core NK signature genes in CD56dim 
cells (Suppl. Figure 1B). Reports have defined the transcription factor, Eomes, as critical in distinguishing mouse 
NK cells (which express Eomes) from ILC1 (which do not)12, 17. However, the human CD56bright and CD56dim sub-
sets do not differ significantly in transcript levels of EOMES (measured on both microarray platforms). Similarly, 
intracellular flow cytometry staining revealed high levels of EOMES protein in blood CD56bright and CD56dim 
cells29, irrespective of CD127 expression (Fig. 1C).

Transcripts varying between mouse splenic CD127+ ILC and CD127− NK cells show common-
alities with differential transcripts observed between human blood CD56bright and CD56dim 
subsets.  In order to more closely examine these similarities, we examined the overall correlation of gene 
expression differences between the human blood subsets with differences between mouse ILC and NK cell sub-
sets. Robinette and colleagues examined ILC and NK cell populations in several mouse tissues by microarray. In 
spleen, ILC1 were isolated as NK1.1+ NKp46+ CD127+ CD27+, while NK cells were NK1.1+ NKp46+ CD127− 
(CD27+/−)23; thus CD127 and to some extent CD27 were the defining differential markers. To compare across 
species, homologues were matched using the NCBI homologene database. This allowed analysis of 16,351 tran-
scripts between human and mouse. Among these transcripts, 355 were found to differ by ≥2-fold in expression 
between human blood CD56bright and CD56dim subsets. Similarly, 184 differed by ≥2-fold between mouse splenic 
ILC1 and NK cells. Only 26 gene products overlapped between these two comparisons, showing that most dif-
ferences between the subsets were species-specific. However, 20 of these 26 overlapping gene products (77%) 
differed in the same direction; that is, higher together in ILC1 and CD56bright cells or higher together in mouse 
NK and CD56dim cells. This is illustrated in Fig. 2A in the larger number of gene products in the upper right and 
bottom left, compared with the other two quadrants (p = 0.02 when compared by Fisher’s exact test). Although 
the overall relationship was not monotonic (Fig. 2A), Spearman correlation analysis was performed considering 
only the subset of gene products that differed ≥2-fold in expression between mouse splenic ILC1 and NK cells 
(p = 0.0005). However, the correlation coefficient was low (r = 0.25). Examined a different way, using the GSEA 
algorithm, mouse genes that were ≥2-fold higher in spleen CD127+ ILC1 showed significantly enriched expres-
sion in human CD56bright cells (p < 0.001), while mouse genes ≥2-fold higher in spleen NK showed enrichment 
within the human CD56dim population (p < 0.001) (Suppl. Figure 2). However, it is visually evident that this was 
due to a limited number of key transcripts (Fig. 2A).

Mouse liver and small intestine ILC1/NK cell subsets were also part of the ImmGen analysis, although iso-
lated in a slightly different fashion. Again, both subsets had been sorted NK1.1+ NKp46+, but liver ILC1 were 
isolated as DX5− TRAIL+, while NK cells were DX5+ TRAIL− 23. In the small intestine lamina propria, ILC1 were 
separated as RORγt− CD127+, while NK cells were RORγt− CD127− 23. A RorγtEGFP reporter had been utilized 
to exclude ILC3, which are predominant in intestinal tissue. No significant associations were found when simi-
lar Fisher’s exact test or Spearman correlation analyses were performed comparing human CD56bright/CD56dim 
subsets with mouse ILC1/NK cells from either liver or small intestine (Suppl. Figure 3). However, some genes 
displayed similar patterns of expression in multiple tissues. Two genes were expressed ≥2-fold higher in human 
CD56bright cells and mouse ILC1 subsets from all three tissues examined (IL7R and GPR97, both part of the ILC 
Core signature; see blue labels, Fig. 2A, Suppl. Figure 3). Five additional genes showed levels ≥2-fold higher in 
CD56bright cells and ILC1 subsets from two of the mouse tissues (GPR183, AHR, CXCR3, XCL1, and INPP4B; 
green labels, Fig. 2A, Suppl. Figure 3). In the opposite direction, four genes showed higher levels in CD56dim NK 
cells and mouse NK subsets from all three tissues (KLRG1, ZEB2, PRR5L, and CMKLR1; blue labels, Fig. 2A, 
Suppl. Figure 3). Seven were higher in CD56dim cells and NK subsets from two of the mouse tissues (S1PR5, 
GZMA, PRF1, FCGR2B, SLAMF6, ANXA2, GNPTAB; green labels, Fig. 2A, Suppl. Figure 3). If the stringency 
is lessened to a ≥1.5-fold difference, LTB, DTX1, CAMK4, GPR34, and IL2RA transcript levels are higher in 
CD56bright cells and mouse ILC1 subsets from all three tissues, while RAP1GAP2, NDRG1, KLF12, and SCIMP 
are higher in CD56dim cells and all three mouse tissue NK subsets (data not shown). Similar analyses were per-
formed using the second independent microarray dataset comparing human blood CD56bright and CD56dim sub-
sets and revealed a similar pattern and confirmed many of the differentially expressed genes (Suppl. Figure 4). 
Interestingly, LTB (Lymphotoxin β) and TNFSF10 (TRAIL) were preferentially expressed in CD56bright cells in 
this analysis (Suppl. Figure 4). For a number of the genes that showed selective expression in mouse ILC1, cell 
surface protein was confirmed on human CD56bright cells (Fig. 2B). CD56bright cells showed considerable staining 
with monoclonal antibodies recognizing CXCR3, CD26 (DPP4), and TRAIL (TNFSF10) plus some reactivity 
with anti-CD117 (KIT) and anti-GPR183; in each case, staining of CD56dim cells was lower or negative (Fig. 2B). 
Some of these observations have also been reported by others30–33. TRAIL expression is particularly striking, since 
TRAIL is used as a defining marker of ILC1 in mouse.

Although not necessarily matched between species by homologene, it is interesting to note that some MHC 
class II molecules were higher in both mouse splenic ILC1 and human CD56bright cells (Fig. 2A). Expression of 
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Figure 2.  Expression differences between mouse splenic CD127+ NK1.1+ NKp46+ ILC and CD127− NK1.1+ 
NKp46+ NK cells show commonalities with differences between human blood CD56bright and CD56dim cells. 
ImmGen microarray data examining mouse splenic NK1.1+ NKp46+ CD127+ CD27+ cells (annotated as ILC1) and 
NK1.1+ NKp46+ CD127− CD27+/− NK cells23 is analysed to show fold-change difference between subsets (x-axis). 
For all mouse genes with corresponding human genes in the NCBI Homologene database, this is contrasted with 
microarray expression differences observed between human blood CD56bright and CD56dim populations (y-axis) 
(HTA2.0 microarray)21. Transcripts differing by ≥2-fold between both human and mouse subsets are labelled, and 
their numbers are shown. Transcripts similarly varying by ≥2-fold in mouse ILC1/NK comparisons in both liver and 
small intestine (in addition to spleen) are shown in blue; those differing by ≥2-fold in 2-of-3 comparisons of mouse 
tissues are in green (see Suppl. Figure 3). Bold names also show ≥2-fold differences in an independent microarray 
dataset comparing human CD56bright and CD56dim cells (see Suppl. Figure 4). Although not matched by Homologene, 
human HLA-DRA (paired with mouse H2-Aa) is shown (with asterisk) but not included in transcript counts. (B) 
Flow cytometry staining of gated human blood CD56bright CD16− CD3− or CD56dim CD16+ CD3− populations from 
three donors. Quadrant gates were set using fluorescence minus one (FMO) stains.
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HLA-DR surface protein on some CD56bright cells, but not CD56dim cells, was observed (Fig. 2B)25 as has selec-
tive expression of HLA-DR on human ILC334. Transcript levels of KLRB1 (CD161, NKR-P1A) were comparable 
between human blood subsets (1.3 fold higher in CD56dim).

It has been reported that some ILC3 can exhibit lineage-plasticity, losing Rorγt expression and acquiring a 
phenotype similar to ILC1; the resulting cells are called “ex-ILC3”12, 19. Therefore, the mouse cells isolated as 
CD127+ NK1.1+ NKp46+ (and termed “ILC1” above) may also may also encompass or include these ex-ILC3 
populations. Thus, it is possible that the human CD56bright cell transcriptome (or subset(s) therein) may show 
commonalities with either mouse ILC1 or ex-ILC3 populations.

Human CD56bright cells express higher levels of some transcripts that are also selectively 
expressed in mouse ILC1 and ex-ILC3.  Klose and colleagues employed a different strategy to examine 
the diversity of mouse NK1.1+ NKp46+ cells, utilizing a dual-reporter mouse. A heterozygous knock-in of GFP at 
the Eomes locus (EomesGFP/+) reported Eomes expression, while transgenic Rorc(γt)-Cre x Rosa26RYfp/+ provided 
fate mapping for prior Rorγt expression characteristic of ILC312. The authors used this system to define three 
NK1.1+ NKp46+ populations as follows: (i) Eomes+ classical NK cells, (ii) Rorγtfate-map+ ex-ILC3, and (iii) ILC1, 
which expressed neither12 (with the minor caveats of monoallelic reporter expression and inappropriate transgene 
expression possible). Using microarray data characterizing these three mouse populations from small intestine12, 
we created lists of signature genes selectively expressed in the different subsets. These were then contrasted with 
human CD56bright and CD56dim cells by GSEA. Mouse transcripts enriched ≥2-fold in both ILC1 and ex-ILC3 
relative to NK cells (mouse ILC1/ex-ILC3 signature) were significantly over-represented in the CD56bright popu-
lation (Fig. 3A). This was due to higher expression of several signature genes, including IL7R, GPR97, HOXA5, 
IRAK3, ZMAT4, and EPAS1 in human CD56bright cells (Fig. 3B), all of which were also identified by previous 
analyses in either Fig. 2A or Suppl. Figure 3 using ImmGen data. A similar result was observed using the other 
human microarray dataset (Suppl. Figure 5A,B). On the other hand, signature transcripts of mouse Eomes+ NK 
cells (≥2-fold higher in both NK versus ILC1 and NK versus ex-ILC3 comparisons) were reported by the GSEA 
algorithm to be enriched in human CD56dim cells (Fig. 3C). However, inspection of the GSEA plot shows that the 
Eomes+ NK signature transcripts are actually preferentially clustered at both ends of the scale, some enriched in 
the CD56bright and some in the CD56dim subsets (Fig. 3C,D, Suppl. Figure 5C,D). Signature transcripts selectively 
found in only Rorγtfate-map+ ex-ILC3 appeared to be enriched in expression in human CD56bright cells; however, 
this was mostly due to expression of one gene, GPR183, shared by both CD56bright cells and mouse ex-ILC3 (Suppl. 

Figure 3.  Transcripts with higher expression in mouse ILC1 and ex-ILC3 subsets show enrichment in human 
CD56bright cells. Lists of signature transcripts were compiled from published microarray data comparing three 
mouse NK1.1+ NKp46+ subsets: (i) Eomes+ NK cells, (ii) Rorγtfate map+ ex-ILC3 (that formerly expressed Rorγt), 
and (iii) ILC1 that expressed neither (from ref. 12). Enrichment of corresponding homologous human genes 
was examined by Gene Set Enrichment Analysis in human CD56bright and CD56dim populations characterized 
by Affymetrix HTA2.0 microarray21, using the following signatures: (A-B) Mouse ILC1/ex-ILC3 signature 
(transcripts detected at ≥2-fold higher levels in both ILC1 versus NK and ex-ILC3 versus NK comparisons 
and (C-D) Mouse Eomes+ NK cell signature (genes with ≥2-fold higher expression in both NK versus ILC1 and 
NK versus ex-ILC3 comparisons). (B,D) Fold difference in expression of these transcripts between human 
CD56bright and CD56dim cells is shown for comparison. Genes differing by ≥2-fold between the human subsets 
are labelled (in order by fold change difference) and emboldened if conserved in similar analyses with a second 
human microarray dataset (see Suppl. Figure 5).
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Figure 6A,B,E,F). GPR183 (EBI2), a G-protein-coupled migration receptor recognizing oxysterols35 also features 
prominently in the Fig. 2A analysis using ImmGen data described above, although cell surface expression of 
GPR183 on CD56bright cells appeared to be quite low (Fig. 2B). Enrichment patterns of mouse ILC1 signature 
transcripts were inconsistent between the two human microarray datasets (Suppl. Figure 6C,D,G,H). To gauge 
the magnitude of the GSEA enrichments that were observed here, the same mouse ILC signatures were also com-
pared by GSEA with the other mouse microarray dataset from ImmGen (Suppl. Figure 7).

In summary, human CD56bright cells shared the selective expression of a limited subset of genes with mouse 
spleen CD127+ NK1.1+ NKp46+ ILC and with ILC defined by other reporters. Two hypothetical interpretations 
of the preceding data include:

	(a)	 Ontological/developmental/lineage similarity of CD127+ human blood CD56bright cells with mouse spleen 
CD127+ NK1.1+ NKp46+ ILC, or

	(b)	 Presence in both cell types of a similar module of gene regulation, perhaps due to expression of particular 
transcription factors.

To investigate the latter possibility, transcription factor expression in CD56bright and CD56dim cells was exam-
ined in greater detail.

Human CD56bright and CD56dim cells differ in expression of multiple transcription factors pre-
viously linked to ILC and NK cell development.  Microarray analysis of transcription factors differing 
between human blood CD56bright and CD56dim populations is shown in Fig. 4A. This list includes differences 
verified on both microarray platforms with independent samples. CD56bright cells showed higher levels of tran-
script for SCML1, RUNX2, SOX4, ZEB1, TCF7, HOXA5, AHR, AFF3, MYC, SSBP2, TCF4, and GATA3. On the 
other hand, CD56dim cells had higher signal for IKZF3 (AIOLOS), MYBL1, RORA, PRDM1 (BLIMP1), PYHIN1, 
NFIL3 (E4BP4), ZEB2, HIPK2, ADRB2, BNC2, BCL11B, TBL1X, CRY1, TCF7L2, and TBX21 (T-bet). The differ-
ences in a subset of transcription factors were additionally validated by real-time RT-PCR (Fig. 4B), in all cases 
confirming or trending with the microarray results. “Intermediate” cells with a CD56bright CD16+ phenotype were 
very similar in transcription factor expression to CD56bright CD16− cells (Fig. 4B), as observed previously for cell 
surface markers7.

Figure 4.  Human CD56bright and CD56dim subsets differ in expression of many transcription factors known 
to affect development of ILC and NK cells. (A) Fold-change differences in expression between CD56bright and 
CD56dim cells analysed by two Affymetrix microarray platforms: HTA2.021 (black bars) and HG-U133 A/
B22 (grey bars). Three samples of each subset were analysed on each microarray, for a total of 6 independent 
sample pairs. Transcription factors showing ≥2-fold difference on both array platforms are shown, ordered by 
mean fold change. Genes labelled in purple italics have been shown to affect development of ILC and/or NK in 
mouse models (see references in text). (B) Quantitative real-time RT-PCR validation of several differences in 
transcription factor expression (including some that showed ≥2-fold change in only one microarray dataset). 
RNA was isolated from human blood CD56bright CD16− cells, CD56dim CD16+ cells, and the “intermediate 
population” displaying CD56bright CD16+ phenotype. Transcript levels are quantitated relative to ACTB in 
samples from three individuals (represented by triangle, circle and square symbols) with a bar depicting the 
geometric mean level of expression. Samples were distinct from those analysed by microarray. *p < 0.05, 
**p < 0.01, ***p < 0.001, by Tukey’s Multiple Comparison Test after one way ANOVA of Log10 transformed 
values. Trends were consistent if data was normalized to GAPDH transcript levels instead of ACTB.
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Discussion
ImmGen studies have previously defined signature genes that are preferentially expressed in mouse ILC or NK 
cell subsets23. When these signatures were examined in microarray data comparing human peripheral blood 
subsets, several interesting patterns emerged. The mouse Core ILC signature was enriched in human CD56bright 
cells (Fig. 1A); however, this was driven largely by transcript levels of only a few genes (IL7R, GPR97, and IL2RA). 
More in depth comparisons revealed a small subset of genes that are expressed at higher levels in both human 
CD56bright cells and mouse ILC1 defined by different markers or reporters. This included IL7R (CD127), TNFSF10 
(TRAIL), KIT (CD117), IL2RA (CD25), CD27, CXCR3, DPP4 (CD26), GRP183, AHR, XCL1, and MHC class II; 
most of which were also shown to be preferentially expressed at the cell surface of CD56bright cells (Fig. 2). On the 
other hand, the mouse Core NK signature was enriched in CD56dim cells (Fig. 1B). Human CD56dim and mouse 
NK cells shared higher expression of KLRG1, PRF1 (perforin), GZMA (granzyme A), S1PR5, CMKLR1 (chemerin 
receptor 23), and other genes (Fig. 2A). Interpreted in reverse, this indicates that both human CD56bright and 
mouse ILC1 have lower levels of these NK cell-associated transcripts.

These similarities could indicate a developmental or lineage relationship between human blood CD56bright 
cells and mouse CD127+ NK1.1+ NKp46+ ILC. This may imply that human CD56bright cells are ILC-like, or that 
cells defined primarily by CD127 expression in mouse spleen (with NK1.1 and NKp46) could be analogous to 
human CD56bright cells rather than bona fide ILC1. As suggested recently, NK cells and ILC1 may represent two 
extremes of a broad spectrum of cells comprising the group-1 ILC population36. Human CD56bright cells may 
inhabit the middle of this spectrum. Strikingly, recent data from rhesus macaques showed that subsets similar 
to human CD56bright and CD56dim cells predominantly arose from distinct progenitors, with limited overlap and 
little evidence of differentiation from one subset to the other8. It is possible that human blood CD127+ CD56bright 
cells develop from IL-22-producing ILC3 described to exhibit a “stage 3” progenitor phenotype (Lin− CD117+ 
CD161+ IL-1R1+ CD94−)37–39, whereas CD56dim NK cells may develop independently from distinct NK cell pro-
genitors (such as those described in ref. 40). Future studies will be required to delineate their lineage relationships 
(including those with human liver ILC/NK cell subsets41, 42).

Alternatively, the subset of genes with common expression in CD56bright cells and mouse ILC may be the result 
of a similar module of gene regulation, due to actions of particular transcription factors. Strikingly, many tran-
scription factors that differ between CD56bright and CD56dim human blood populations have been shown to affect 
ILC development and function in mouse knockout models. CD56bright cells show higher levels of GATA3, AHR, 
TCF7, and RUNX2 transcripts (Fig. 4A). Upon gene disruption in mouse hematopoietic cells, Gata3 was shown 
to be necessary for development of ILC3, ILC2, and CD127+ ILC1, while CD127− NK cells (and DX5− liver 
ILC) were largely maintained15, 43. Similarly, mice deficient in Ahr displayed largely intact NK cell populations, 
despite deficiencies in ILC3 subsets44–46 and liver ILC147. Tcf7 (encoding TCF-1 protein) affects all mouse ILC/
NK lineages and is expressed in early ILC/NK progenitors48, 49. Among the Runx family of transcription factors, 
Runx3 impacts mouse ILC3, ILC1, and NK development50. Interestingly, Tcf7GFP reporter mice and mice with YFP 
inserted at the distal Runx3 promoter both appear to show higher levels of fluorescence in ILC1 and ILC3 versus 
NK cells48, 50. Human RUNX3 transcripts levels were high in both CD56bright and CD56dim subsets (not shown) 
while CD56bright cells selectively expressed greater RUNX2 mRNA (Fig. 4A,B).

On the other hand, human CD56dim cells show higher levels of mRNA for RORA, BCL11B, and TBX21 
(Fig. 4A), which have also been implicated in ILC development. Rora−/− and Bcl11b−/− mice have severe deficien-
cies in ILC251–55. Mice deficient in Tbx21 (T-bet) lack NK1.1+ NKp46+ TRAIL+ DX5− ILC1 cells in liver, while 
DX5+ NK cells are partially retained but phenotypically altered12, 17, 18. In summary, the transcription factors that 
may control the differentiation of human CD56bright and CD56dim cells appear to be closely related with those that 
affect ILC versus NK cell differentiation in the mouse. One exception is Eomes, implicated in mouse studies as 
critical in the regulation and demarcation of NK cell versus ILC1 development12, 17, 18. EOMES did not score as 
significantly different between the human subsets in microarray. Both CD56bright and CD56dim cells showed high 
levels of EOMES protein by intracellular flow cytometry (Fig. 1C). Interestingly, the subset of human liver ILC/
NK that express the characteristic mouse ILC gene CXCR6 are also Eomeshigh, suggesting differences between 
species41.

The CD56dim population also possesses higher levels of several other transcription factors associated with 
the formation or function of mature mouse NK cells, including NFIL3 (E4BP4), PRDM1 (BLIMP1), and IKZF3 
(AIOLOS) (Fig. 4A). Nfil3−/− mice lack most NK cells56, 57, but Nfil3 is also necessary for the formation of ILC pro-
genitors and most mouse ILC lineages with the apparent exception of liver DX5− ILC115, 58–61. Prdm1 deficiency 
has been shown to affect the proliferation and maturation phenotype of mouse DX5+ NK1.1+ NK cells, exhib-
iting increased CD27, CD117 and decreased KLRG162, molecules that are also differentially expressed between 
human CD56bright/CD56dim and mouse ILC1/NK cell subsets (Fig. 1,2). Selective expression of PRDM1 in human 
CD56dim cells has been additionally confirmed62, 63. Ikzf3 has also been shown to affect mouse DX5+ NK1.1+ NK 
cell maturation markers and function64.

Interestingly, human CD56dim cells express higher levels of transcripts for ZEB2, while CD56bright cells show 
greater amounts of message for the related molecule, ZEB1 (Fig. 4A,B). Zeb2 was also selectively expressed 
in mouse NK cells in comparisons versus ILC1 in all three tissues examined (Fig. 2, Suppl. Figure 3,4), and is 
included in the ImmGen mouse Core NK signature23. Targeted deletion of Zeb2 resulted in impaired NK cell 
maturation affecting several molecules observed to differ between CD56bright and CD56dim subsets (including 
CD27, KLRG1, S1PR5, and CXCR3) in a gene-dosage dependent manner65. It is intriguing to speculate that the 
ZEB1/ZEB2 balance could form a molecular switch controlling the differentiation fate of ILC/NK subsets. It is 
also striking that ZEB2, TBX21, PRDM1, and IKZF3, each expressed at higher levels in human CD56dim cells, all 
show some commonalities in mouse knockout models62, 64, 65.

Many of the transcription factors that differ between CD56bright and CD56dim cells also play roles in T cell 
development and differentiation. For example, Gata3, Tcf7, Lef1, Bcl11b (and Runx1/Runx3) were included in 

http://3,4


www.nature.com/scientificreports/

9Scientific Reports | 7: 3501  | DOI:10.1038/s41598-017-03256-0

a regulatory network controlling mouse thymic T cell development, which also includes Kit (CD117) and IL7r 
(CD127)66. Similarly, Sox4, Tcf7, Prdm1, Runx2, Gata3, and Tbx21 (along with Eomes) are part of a bioinformat-
ically determined transcription factor network associated with mouse T cell memory formation67. Furthermore, 
perturbation analyses performed by retroviral transduction of each gene into T cells has suggested complex reg-
ulatory effects amongst these transcription factors67. For example, overexpression of Sox4 downregulated mRNA 
for Tcf7, Eomes, Runx2, and Tbx21, while overexpression of Tcf7 downregulated Sox4, Eomes, and Prdm1 tran-
scripts; in addition, transduction of Prdm1 repressed transcription of both Sox4 and Tcf767. It is likely that a sim-
ilar network of interactions (including additional factors from Fig. 4) governs differentiation into human blood 
CD56bright and CD56dim subsets. Future studies will determine if this network is analogous to that regulating ILC 
versus NK cell differentiation in the mouse, which in turn may explain the cross-species transcriptome similari-
ties observed (Figs 1, 2 and 3).

Methods
Microarray data analyses.  Affymetrix HTA2.0 chip CEL files from flow cytometry sorted human periph-
eral blood CD56bright (CD3− CD56bright CD16−) and CD56dim (CD3− CD56dim CD16+) subsets (from ref. 21) 
(NCBI GEO accession numbers GSM2278891-GSM2278896 inclusively) were normalized by robust multi-array 
average (RMA) algorithm using Expression Console version 1.4.1.46 with “Gene level RMA sketch” settings, 
and annotated with Affymetrix release 35.1 transcript cluster annotations. Unless otherwise noted, the shown 
fold change values are calculated from this normalized HTA2.0 data. HG-U133A/B CEL files from three addi-
tional independent samples of each of human blood CD56bright and CD56dim cells (from ref. 22) (GSM2108750- 
GSM2108755 inclusively and GSM2108760-GSM2108765 inclusively) were normalized using Partek Genomics 
Suite 6.6 using the RMA algorithm with default settings and annotated with Affymetrix annotations (release 35).

CEL files encoding microarray data describing mouse spleen, liver, and small intestine ILC subsets from the 
ImmGen project23 were downloaded from NCBI GEO with accessions GSM1585312-GSM1585337 inclusively, 
then RMA normalized with Partek Genomics Suite 6.6 (with default settings) and annotated with Affymetrix 
release 35 transcript cluster annotations. Additional CEL files analysing small intestine ILC and NK populations 
were also downloaded from ArrayExpress (E-MTAB-2428)12 and similarly analysed using Partek Genomics suite. 
Human transcription factors were identified using a list compiled from three sources (see refs 68–70).

Gene Set Enrichment Analysis was performed with GSEA v2.2.0 or v2.2.3 (Broad Institute)24 using default 
settings with the exception of gene set randomization as the permutation type, due to the limited number of 
phenotypes analysed.

Cross-species transcriptome comparisons.  Single microarray probesets were chosen to represent each 
gene, prioritizing: lack of cross reactivity, recognition of coding regions, and higher fold changes between sub-
sets, when such information was annotated. Mouse and human gene expression results were synchronised using 
NCBI Homologene database (release 68) allowing examination of 16,351 mouse-human homologous gene pairs. 
Spearman correlations between human and mouse relative gene expression were performed on log2 transformed 
fold change values, examining only genes for which expression differed by more than two fold between the mouse 
subsets. Lists of signature mouse transcripts were also converted to human homologues via NCBI Homologene.

Human blood samples.  Peripheral blood immune cell subsets were isolated from de-identified blood bank 
buffy-coat or leukopack samples. Depending on the site of the experiments and source of samples (i) NIH Office 
of Human Subjects Research Protections, and (ii) the Committee on the Use of Human Subjects (the Harvard 
institutional review board) determined that this use of this material is exempt from the requirements of IRB 
review, therefore not requiring written consent.

Quantitative Real-time RT-PCR.  Leucopacks were treated using a negative enrichment antibody mixture 
(NK RosetteSep, Stem Cell Technologies). Enriched cells were then flow cytometry sorted in order to isolate 
CD56bright (CD3− CD56bright CD16−), CD56dim (CD3− CD56dim CD16+) subsets, as well as an intermediate pop-
ulation which is CD3− CD56bright CD16low. Cells were washed 3-4 times with PBS and cell pellets stored at -80C. 
RNA was isolated using the RNeasy Plus Mini Kit (Qiagen). All isolated RNAs showed an RNA Integrity Number 
of >9.3 when tested by Agilent Bioanalyzer. First strand cDNA was synthesized from 100-200ng total RNA using 
RT2 First Strand Kit (Qiagen) and PCR reactions were performed with RT2 SYBR Green Mastermix (Qiagen) in 
triplicate. The PCR reaction profile consisted of 10 min at 95 °C, followed by 40 cycles of 15 s at 95 °C, and 1 min 
at 60 °C in BioRad CFX96 or Stratagene MX3000p thermocyclers. Primers were derived from custom designed 
RT2 Profiler PCR Arrays (SuperArray/Qiagen). Samples with multiple melting-curve peaks were not included in 
analyses.

Flow cytometry.  After overnight at room temperature, NK cells were isolated from human blood buffy-coat 
samples with Rosettesep as above, and stained with the following mAb clones recognizing CD56 (NCAM16.2), 
CD16 (3G8), CD127 (HIL-7R-M21), HLA-DR (G46-6), CD25 (M-A251), TRAIL (RIK-2) from BD Biosciences, 
CD3 (OKT3), CD127 (A019D5), CD27 (M-T271), GPR183 (SA313E4), CD26 (BA5b), CXCR3 (G025H7), or 
CD117 (104D2) from BioLegend. Staining for EOMES was performed with clone WD1928 and transcription 
factor staining buffer set (both from Affymetrix EBioscience).
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