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ABSTRACT: Chemical synthetic efforts have resulted in the preparation of the assigned
tetrasaccharide repeating subunit from the Acinetobacter baumannii KL4-associated capsular
polysaccharide. A convergent synthetic strategy hinging on a 1,2-cis-selective [2+2]
glycosylation to generate the fully protected tetrasaccharide was key to the success of this
synthesis.

Acinetobacter baumannii is a Gram-negative, opportunistic
bacterial pathogen associated with illness in individuals
suffering from traumatic injury as well as the immunocom-
promised.1−5 It is one of the six nosocomial “ESKAPE”
pathogens associated with drug resistance and virulence,6 and
it has been deemed an urgent threat due to the prevalence of
clinically relevant strains that are extensively drug-resistant
(resistant to at least one agent in all but one or two categories
of antimicrobials) and even pandrug-resistant (resistant to all
approved antimicrobials).7,8 Despite a multitude of efforts, a
vaccine remains elusive.9,10 Meanwhile, A. baumannii is
associated with a substantial number of capsular polysaccharide
(CPS),11 lipooligosaccharide,12 and O-glycan structures13 that
might prove to be promising candidates for semisynthetic
glycoconjugate vaccine development.14,15

As part of a research program aimed at synthesizing glycans
associated with the cell surface of A. baumannii, we became
interested in the KL4 (CPS biosynthetic gene cluster)-
associated repeating unit 1 depicted in Scheme 1. Originally
isolated by Kenyon et al.16 from multidrug-resistant A.
baumannii strain D78 and assigned using a combination of
chemical and spectroscopic analysis, the repeating unit of the
KL4 CPS has an intriguing structure. It consists of N-acetyl-D-
quinovosamine (QuiNAc), N-acetyl-D-galactosaminuronic acid
(GalNAcA), N-acetyl-D-galactosamine (GalNAc), and the 4,6-
pyruvate ketal of N-acetyl-D-galactosamine (Pyr-GalNAc), a
frequently occurring motif in microorganisms.17 Particularly
striking is the fact that all glycosidic linkages are of the 1,2-cis/
α configuration that is synthetically more challenging than 1,2-
trans/β linkages.18,19 Establishing the 1 → 4 glycosidic linkage
between GalNAc and GalNAcA in reasonable yield appeared
to be the greatest challenge. In this work, we recount our

efforts that have led to the successful synthesis of
tetrasaccharide repeating unit 1. Particularly noteworthy are
two 1,2-cis-selective O-glycosylation reactions as well as our
resorting to a convergent [2+2] synthetic approach when our
initial efforts toward a linear synthesis gave substandard results.
Our initial retrosynthesis (Scheme 1) consisted of

disconnecting 1 to 2-azido-2-deoxygalactose donor 2 (which
we believed to be a dramatically simplifying common
intermediate toward GalNAcA, GalNAc, and Pyr-GalNAc)
and 2-azido-2-deoxyglucose donor 3. Steric hindrance due to
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Scheme 1. A. baumannii KL4-Associated CPS Subunit
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the bulky di-tert-butylsilylene (DTBS) protecting group in 2
could ensure 1,2-cis selectivity in the relevant O-glycosyla-
tions.20 Meanwhile, the 1,2-cis-selective O-glycosylation
leading to the linkage between 3 and linker molecule 4
(which would enable eventual conjugation to carrier proteins
for, e.g., vaccine development14,15 or conjugation to a glycan
array21) could be carried out according to a previously
developed synthetic strategy.22

Our synthesis of the QuiNAc-linker molecule portion 8
(Scheme 2) commenced with known benzylidene-protected 2-

azido-2-deoxythioglucoside 5 (synthesized in five steps from D-
glucosamine).23 Walking benzylidene to position 4 was
effected with BH3·THF/TMSOTf followed by acetylation to
generate 6. Subsequent oxidative hydrolysis of thioglycoside
(NBS, H2O, and acetone) and conversion of intermediate
lactol to trichloroacetimidate (CCl3CN and K2CO3)

24

furnished donor 3. We then performed multiple attempts at
O-glycosylation of linker 4 with 3 according to conditions
previously reported by Boons and co-workers (TMSOTf,
excess of thiophene, and low temperature).22 While yields were
reasonable, selectivity was modest [<5:1 in favor of 1,2-cis
relative to an unwanted byproduct that we attribute to the 1,2-
trans isomer (data not shown)]. We attribute this to the very
high reactivity of 4 resulting in modest selectivity. Coming off
our recent success25 (and noting the successes of others)26 in
the development of 1,2-cis-selective glucosylation using
glucosyl imidates and a combination of either triflic acid or
TMSOTf in 1,4-dioxane, we performed glycosylation of 4 with
3 using 1,4-dioxane as the solvent under dilute conditions at
room temperature (∼18 °C) (Scheme 2). This furnished
target glycoside 7 in 75% yield with only traces of the
observable undesired byproduct. Four additional steps of
manipulation (Scheme 2; methanolysis, tosylation, Finkelstein
iodination, and ionic reduction with NaCNBH3 in diethylene
glycol diethyl ether) resulted in the formation of alcohol 8,
which was ready for further manipulation.
Having reached the incipient phase of tetrasaccharide

assembly (Scheme 3), we reacted alcohol 8 with DTBS-
protected N-phenyltrifluoroacetimidate 2 (prepared in six steps
from triacetyl D-galactal)27 in the presence of triflic acid
(HOTf) to provide a high yield of disaccharide 9 as the only

observed isomer. This is likely due to the bulk of DTBS that
deflects “top-side” attack by the acceptor.20 Subsequent
manipulation of 9 [DTBS removal with HF·pyridine, two-
step oxidation to uronic acid,28 and methylation with
TMSCHN2

29 (Scheme 3)] resulted in alcohol 10. While the
potential low reactivity of this acceptor (due to the axial
disposition of the C-4 alcohol and electron-withdrawing effects
from an azido at position 2 and a -CO2Me at position 6) was of
concern, this potential flaw may have ultimately been to our
advantage (Scheme 4, vide inf ra). In any case, subsequent

glycosylation of 10 with 2 (HOTf and CH2Cl2) resulted in a
79% yield of trisaccharide 11 as the only observable isomer,
suggesting that the potential low reactivity of 10 was not fatal
to the synthesis. Pleased with this result, we removed DTBS
(HF·pyridine) and attempted glycosylation of the resulting 12,
once again, with donor 2. To our great surprise and dismay,
these attempts at selective glycosylation at position 6 of the
nonreducing-end diol of 12 with 2 resulted in low yields and
complex mixtures of products of apparent unselective and even
double glycosylation. The cause of such low-yielding reactions
with poor regioselectivity is mysterious to us at present.

Scheme 2. Synthesis of the QuiNAc Portion

Scheme 3. Initial Assembly of a GalNAc/GalNAcA/QuiNAc
Trisaccharide

Scheme 4. Synthesis of a Pyr-GalNAc/GalNAc Disaccharide
Donor
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At this stage, we considered a number of alternatives,
including benzylidenation and subsequent “walking to the 4”
[as with 5 → 6 (Scheme 2)] of diol 12, but we were
dissatisfied with the attendant sacrifice of synthetic efficiency.
Therefore, we devised a convergent approach that, while not
being without its own risks, would avoid the intermediacy of
12 and streamline the synthesis. Synthesis of a suitable Pyr-
GalNAc/GalNAc portion of 1 (Scheme 4) commenced with
the glycosylation of 13 (prepared in seven steps from D-
galactosamine)30 with 2 in the presence of HOTf to generate
14 with 1,2-cis as the only observed configuration at the newly
forged linkage. Interestingly, this process resulted in epimeriza-
tion of reducing-end thioglycoside. Regardless of this
complication, separation of thioglycoside epimers at this
stage was facile. Subsequent DTBS removal (HF·pyridine)
preceded pyruvate ketal installation under equilibrating
conditions (BF3·Et2O) to furnish the thermodynamic ketal
stereochemistry (15), which was confirmed through analysis of
NMR chemical shifts.17 Oxidative hydrolysis of thioglycoside
(NBS, H2O, and acetone) and conversion to N-phenyl-
trifluoroacetimidate provided disaccharide donor 16, which
was ready for coupling to acceptor 10.
Because donor 16 lacked the highly efficacious DTBS group

that practically ensures 1,2-cis selectivity,20 we approached the
subsequent glycosylation with some trepidation (Scheme 5).

Treatment of a mixture of donor 16 and acceptor 10 in
CH2Cl2 with TMSOTf at 18 °C resulted, to our delight, in a
high yield of the desired, fully protected tetrasaccharide 17
with 1,2-cis stereochemistry at the newly forged 1 → 4 linkage.
In some instances (e.g., running the reaction at 0 °C), we
could observe a minor product with a 13C signal appearing
slightly above 100 ppm, suggesting that some of the undesired
1,2-trans isomer might be generated in small quantities.
However, we were never able to isolate this byproduct in
pure form. The 1,2-cis selectivity of this glycosylation may be
attributable to the low reactivity of acceptor 10 and
equilibration of anomeric triflates derived from 16 with the
equatorial triflate (or an ion pair derived from it) being more
reactive than the axial triflate as has been suggested by Codeé

and co-workers.31 Blocking of “top-side attack” of 10 by the
axial 4-position benzyloxy group in 16 may also be a factor.
With fully protected 17 in hand, conversion of azides,

hydrolysis of methyl esters, and removal of benzyl protecting
groups remained. Thus, treatment with thioacetic acid in
pyridine over a period of 80 h resulted in reduction of azides
and acylation to the four acetamido groups in the final product.
Subsequent hydrolysis of methyl esters (NaOH, MeOH, and
THF) and hydrogenolysis of benzyl groups [H2 and Pd(OH)2]
resulted in final product 18, the linker-attached monomer of 1.
This synthesis proceeded in a total of 35 steps from
commercially available starting materials and a longest linear
sequence of 23 steps starting from D-glucosamine. NMR of the
final product (1H, 13C, 13C-APT, COSY, HSQC, HMBC, and
HOHAHA) as well as HRMS helped confirm the structure.
While differences were seen upon comparison of our spectra

with those of the CPS originally characterized by Kenyon et
al.,16 two important points deserve mention. (1) Our product
bears a linker, which represents a substantial perturbation of
the original structure. (2) While Kenyon et al. do not report on
any secondary structure associated with the original CPS,
secondary structure would be expected to perturb the
appearance of an NMR spectrum relative to a segment with
a short chain length. The tetrasaccharide that we have prepared
is necessarily devoid of secondary structure due to its short
chain length. Due to the regiochemical reliability of procedures
such as benzylidene walking [5 → 6 (Scheme 2) and in the
generation of known compound 13 (Scheme 4)], primary
alcohol oxidation to carboxylic acid using TEMPO/PhI(OAc)2
followed by Pinnick oxidation [9→ 10 (Scheme 3)],28 and the
stereochemical verifiability and reliability of pyruvate ketal
installation under equilibrating conditions [14 → 15 (Scheme
4)],17 we have high confidence in the structural assignment for
18. In addition to this, one-dimensional and two-dimensional
(2D) NMR analysis assisted us in identifying critical HMBC
correlations in 18, including the following: (1) between linker
CH2-O

1H signals centered at ∼3.71 and ∼3.91 ppm and the
QuiNAc anomeric carbon at 96.98 ppm as well as between the
QuiNAc anomeric proton at 4.98 ppm and the linker CH2-O
13C signal at 68.00 ppm, (2) between the GalNAcA anomeric
proton at 5.52 ppm and the QuiNAc C3 carbon at 79.20 ppm,
and (3) between the GalNAcA C4 proton at 4.58 ppm and the
GalNAc anomeric carbon at 99.01 ppm. This accounts for
three of four linkages, with the fourth linkage (1 → 6 linkage
between PyrGalNAc and GalNAc) being harder to analyze at
the stage of product 18 due to substantial signal overlap
between these subunits. Nevertheless, this linkage was
established with a high degree of confidence from a known
set of precursors [13 and 2 (Scheme 4)] to establish 1,2-cis
stereochemistry unambiguously as could be ascertained easily
with 13C spectra of 14. Also noteworthy is the fact that all
anomeric carbons of final product 18 appear at chemical shifts
of <100 ppm, affirming that 1,2-cis stereochemistry has been
established at all four of the glycosidic linkages. Thus, the
expected stereochemical and regiochemical outcomes of key
transformations in the synthesis of 18 are corroborated by 2D
NMR data.
In conclusion, we have synthesized the assigned16 KL4-

associated tetrasaccharide repeating CPS subunit of A.
baumannii D78 with a longest linear sequence of 23 steps.
Especially noteworthy with this synthesis were the establish-
ment of the glycosidic linkage between the linker and QuiNAc
using dilute conditions in 1,4-dioxane and a convergent [2+2]

Scheme 5. Final Approach to the Target Tetrasaccharide
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glycosylation to establish the fully protected tetrasaccharide
banking on the low reactivity of acceptor 10. Additional efforts
toward the synthesis of A. baumannii cell-surface-associated
glycans are underway and will be reported in due course.
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