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ABSTRACT: Applications of machine learning (ML) to synthetic chemistry rely on the assumption that large numbers of
literature-reported examples should enable construction of accurate and predictive models of chemical reactivity. This paper
demonstrates that abundance of carefully curated literature data may be insufficient for this purpose. Using an example of Suzuki−
Miyaura coupling with heterocyclic building blocksand a carefully selected database of >10,000 literature exampleswe show that
ML models cannot offer any meaningful predictions of optimum reaction conditions, even if the search space is restricted to only
solvents and bases. This result holds irrespective of the ML model applied (from simple feed-forward to state-of-the-art graph-
convolution neural networks) or the representation to describe the reaction partners (various fingerprints, chemical descriptors,
latent representations, etc.). In all cases, the ML methods fail to perform significantly better than naive assignments based on the
sheer frequency of certain reaction conditions reported in the literature. These unsatisfactory results likely reflect subjective
preferences of various chemists to use certain protocols, other biasing factors as mundane as availability of certain solvents/reagents,
and/or a lack of negative data. These findings highlight the likely importance of systematically generating reliable and standardized
data sets for algorithm training.

■ INTRODUCTION
Machine learning (ML) is making an impact on many fields of
research with remarkable successes in areas in which learning is
based on well-defined rules (e.g., game theory1,2) or large and
high-quality data sets (e.g., protein folding3). In contrast, when
the data are of lesser quality and involve features not properly
captured by ML models, the predictions can be less impactful.4

This is also the case in chemistry where the limitations of data-
driven AI are now being recognized.5,6 On the one hand, when
reaction data sets include sufficiently large numbers of
mechanistically well-defined reactions, ML models have been
able to predict reactivity patterns more accurately than either
heuristic or even QM methods and, with physically meaningful
descriptors, can extrapolate to compound classes outside of the
training sets. For instance, we have demonstrated such ability
in predicting regio-, site-, and diastereoselectivity patterns of
Diels−Alder cycloadditions,7 Hong and co-workers showed
high fidelity of ML models in assessing radical C-H
functionalizations of heterocycles,8 whereas Seeberger and

Gilmore9 and separately Reymond10 demonstrated highly
accurate models of glycosylation stereoselectivity. On the other
hand, when sometimes idiosyncratic human choices or hard-to-
control variables come into play, ML methods fare significantly
worse. One example is synthesis planning where ML methods
have been limited to simple targets,11,12 often suggest
chemically implausible transformations,13 and cannot emulate
more far-sighted thinking of human experts over multiple steps
(of note, such multistep “strategizing” has been successfully
implemented in “hybrid” systems14,15 combining knowledge-
base and ML approaches, as recently demonstrated by
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machine-designed syntheses of drugs and complex natural
products16−18). Another example is prediction of reaction
yields for which data-driven methods perform poorly,19

especially on diverse data sets; in this case, the limited

predictability likely reflects the fact that yields can vary
perceptibly depending on human or environmental factors, for
example, chemist’s skill, minute difference in manual
procedures, or even time of the year (for yield variability in

Figure 1. Formulation of the prediction problem and literature-based statistics of reaction conditions. (a) Data set of literature-reported reactions
we consider comprises heteroaryl-heteroaryl and aryl-heteroaryl Suzuki couplings (additionally restricted to only bromides and boronic acids). The
objective is to use AI models to predict “optimal” reaction conditions for a given pair of substrates. Literature-based statistics of (b) most common
Pd sources used in heteroaromatic Suzuki couplings [>50% of all published reactions used Pd(PPh3)4 as a catalyst]; (c) reaction temperatures
(almost 50% reactions were performed between 80 and 109 °C; ∼20% of the records do not report temperature); (d) bases (five most common
bases cover >80% of reaction space; additionally, carbonate bases were used in almost 70% of reactions); (e) solvents and solvent mixtures (five
most common solvent mixtures cover only 45% of reaction space). Legends color-code the specific types of substrates used: “X = any”any type of
halide; “X = hetero”heteroaromatic halide; “X = aryl”aryl halide; “B = any”any type of boronic acid; “B = hetero”heteroaromatic boronic
acid; “B = aryl”aryl boronic acid.
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reactions performed over the years for the same compounds by
the same group of chemists, see the Supporting Information of
ref 20).
Another important problem, tackled herein, deals with the

prediction of optimal conditions for a particular reaction in
which there are generally multiple viable choices of solvents or
reagents. Several works21−24 have attempted to use ML for the
prediction of reaction conditions, and the overall message they
seem to convey is that ML can, in fact, offer accurate
predictions provided adequate numbers of literature examples
on which to build the models (but see also critical ref 6).
However, here, we demonstrate with a case study that this may
have been an overoptimistic interpretation, and that even with
large quantities of carefully curated literature data, ML
approaches may not perform considerably better than
estimates based on the popularity of reaction conditions
reported in the literature. In other words, these ML models do
not provide significantly more insights than just suggesting the
most popular conditions which could be obtained by simple
statistics over literature examples25,26 and no “machine
intelligence.”
As a case in point, we consider the problem of predicting

reaction conditions most suitable for a given pair of substrates
engaging in heteroaryl-heteroaryl or aryl-heteroaryl Suzuki
coupling. With >10,000 reaction examples with full condition
information, this reaction seemed to provide reaction statistics
that would be sufficient for successful ML. After categorizing
the solvents, bases, temperatures, and sources of palladium, we
apply various neural network (NN) approaches (feed-forward
and graph convolution) as well as word-embedding and
positive-unlabeled (PU) learning techniques to develop
predictive models. Alas, all of these models offer only low
accuracy of prediction, not significantly exceeding naıv̈e
baseline in which reaction conditions are assigned as those
most popular in the literature. Moreover, the same and largely
negative outcomes are observed when models described by
others to predict reaction conditions are applied to this same
data setin all cases, they do not perform much better than
the literature popularity measures.
Overall, the fact that numerous state-of-the-art ML

approaches fail to identify a predictive link between the
structures of substrates and most suitable reaction conditions
suggests that such a link may be inaccessible based on
published data alone.
The result reminds us that in synthetic chemistry, data are

heavily influenced by nonscientific factors such as chemist’s
subjective preference for certain protocols or even current
availability of chemicals in one’s laboratorythere are no
“descriptors” to capture these factors within ML models. We
advocate that the path forward for chemical ML is to use
robotized protocols27,28 to generate standardized data sets and,
in particular, multiple repeats of reactions carried out under
different conditions, such that objective comparisons and
learning of good vs bad conditions become possible.

■ RESULTS AND DISCUSSION
Reaction Data Set and Classes of Reaction Con-

ditions. We considered Suzuki coupling28−30 between
heteroaryl-heteroaryl and heteroaryl-aryl partners (Figure 1a).
These reactions were retrieved from Reaxys repository.31 We
excluded reactions not reporting yields, those in which no
source of palladium was provided, and those coming from
patents (which are not peer-reviewed). We have focused on

the Reaxys data set because it has higher quality than the
machine-extracted reaction set from patents (though we also
provide analyses for patent reactions). The details of data
curation are included in the Supplementary Information,
Section S1. These procedures left a set of 16,748 reactions for
which catalyst, base, and solvent were reported and 13,337 for
which temperature was also given. A total of 1037 reactions
had the same substrates and products but differed in reaction
conditions used (after categorization into the classes detailed
below, there were 511 such examples). The Reaxys reaction
IDs for entire data set are provided at http://doi.org/10.5281/
zenodo.4652819. Because these reactions use a variety of
solvents and reagents, we first performed statistical analyses to
categorize them into broader classes. Figure 1b shows that 92%
of reactions use five sources of Pd, predominantly Pd(PPh3)4.
In terms of reaction temperatures, the most popular ones are
between 80 and 109 °C (Figure 1c). Regarding the bases, the
five most popular ones cover 82% of cases, with carbonates
being most widely used (Figure 1d). The least consensus
seems to be in the use of solvents and solvent mixtures for
which five most popular types account for only 45% of all
reported reactions (Figure 1e). Based on these trends and
additional analyses given in the Supporting Information (e.g.,
that counterions present in the bases have no systematic effect
on reaction yields; see Figure S8), and in the effort to limit the
space of parameters to predict, we focused on the prediction of
solvents and bases.
Reflecting the statistics, the bases were categorized,

according to popularity, as carbonates, phosphates, fluorides,
hydroxides, amines, acetates, and other/miscellaneous. For
solvents, we tested two types of categorizations. The more
detailed one comprised 13 classes, ranked in the order of
decreasing popularity as water/ethers, ethers, water/alcohols/
aromatics, water/amides, alcohols/aromatics, aromatics,
amides, water/aromatics, low boiling polar aprotic solvents/
water, water/alcohols, water, alcohols, and other. The more
“coarse-grained” classification distinguished six solvent types:
{alcohols, water/polar solvents, water/alcohols, water/amides,
water, amides}, {water/aromatics, alcohols/aromatics, water/
alcohols/aromatics}, {aromatics}, {ethers}, {water/ethers},
{other}. In this way, we defined either 7 × 13 = 91 or 7 × 6
= 42 classes of reaction conditions, the latter less accurate but
in principle easier to predict, should the finer classification
prove challenging.

Models Based on Standard NNs. With these prelimi-
naries, our main task was to develop ML models to predict
which of the base/solvent class should be used for a given pair
of substrates engaging in a Suzuki reaction. To make such
predictions, we first used a standard feed-forward architecture
with two hidden layers (130 and 15 neurons) with exponential
linear unit (ELU) activation functions and softmax for the last
layer. The NN had two outputsone for the predicted base
and another for solvent class. Each output gave a ranked list of,
respectively, bases and solvents. Inputs were pairs of substrates
for which we tested four representations:

(1) Morgan fingerprints with 512-bit length and radius 3;
(2) Chemical descriptors from the RDKit library32 (200

descriptors for each substrate);
(3) Vectors combining the said Morgan fingerprints and

RDKit descriptors;
(4) 20 dimensional latent/compressed representation ob-

tained from an autoencoder (AE) comprising three
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hidden layers (30, 20, and 30 neurons with rectified
linear units (ReLU) or exponential activation functions)
and using the Morgan fingerprint as input representa-
tion. The output of the second hidden layer was used as
latent representation of substrates. Although this is not a
representation per se, the pretraining of AE can help in
removing unimportant (redundant) variables and
regularizing the model, as well as providing a denser
representation to the following classification layers.33

The last feature is of particular importance for the
fingerprint input, which is very sparse by its
construction.

Each of these models was evaluated by fivefold cross-
validation repeated five times (each time with a random 80:20
test/train split).
The results are summarized in Table 1a,b and give top-n

accuracies for all models (i.e., probabilities that the base and

solvent used in a particular literature-reported reaction would
also be among the n-top predictions of the NN). One
conclusion to make is that these accuracies do not vary
perceptibly with the representation used. In addition, the
accuracies are satisfactory for base prediction (which is heavily
dominated by carbonates; see Figure 1e) but significantly less
so for solvents, for which top-1 predictions are only ∼42−51%
correct for simplified six-solvent categorization and ∼36−43%
for 13 solvent classes. In fact, the accuracies are often on par
with a very naıv̈e “model” in which reactions are simply

assigned the n-most popular bases or solvents (e.g., for top-1,
each reaction is assigned carbonate as base and mixture of
water and ether as solvent). This means that our NN models
are not performing significantly better than a simple condition
“popularity” baseline. As a side note, we observe that the AE
model, while not providing better accuracy, provides additional
regularization, as indicated by learning curves (Figures S15 and
S16).

Advanced NN Models. The failure of the abovementioned
models could be reasonably ascribed to a simplistic NN
architecture. Accordingly, we examined the performance of
state-of-the-art graph convolutional neural networks
(GCNNs)34 and statistical correction proposed by Elkan and
co-workers35,36 (we apply this correction to the NN classifier,
denoting it PU-NN model). GCNNs process learn directly
from molecular graphs rather than from a predefined set of
substructures or descriptors and have been successfully applied
to predict, for instance, pKa values of C−H acids37 and other
molecular properties.38,39 Statistical correction present in PU-
NN, on the other hand, aims to solve the so-called PU
problem. In our case, PU means that for particular substrates,
the fact that certain reaction conditions were not reported does
not mean that they were unsuitable for the reaction
(“negative”) but only that they were untested. In other
words, the reaction might still be feasible under unreported
conditions and, at best, it can be assumed that the literature-
reported conditions are close to optimal. In technical terms, this
means that we now face a multilabel rather than a multiclass
binary classification problem. This means that for each pair of
substrates, all possible solvents/bases have their own 0/1 labels
assigned independently, and more than one solvent/base can
be deemed suitable for the reaction (in contrast, in a multiclass
classification analyzed previously, each substrate pair could be
assigned only to one out of many solvent/base classes). The
prediction of “the best” solvent/base for a given pair of
substrates is then performed by choosing the class with the
highest prediction probability (a probability that the class
“matches”).
For testing of these two architectures, we focused on the

problem of solvent selection (for six coarse-grained solvent
classes) for which literature-based distribution is less
dominated by a single class than in the case of bases (see
Figure 1d,e), and which has proven more problematic for feed-
forward NNs (see Table 1). The relevant entries in Table 2
indicate that the top-1 accuracies are, again, below 50% and the
top-3 ones are not much better than the naıv̈e, popularity-
based baseline.
For the completeness of comparisons, we also tested a feed-

forward architecture with substrate fingerprints (as before) but
with multilabel instead of multiclass classification. Further-
more, we explored two modifications to this model’s input: (i)
addition of the base class (to verify if solvent is in any way
correlated to the base); and (ii) Mol2Vec representation of
fingerprints. The Mol2Vec technique is inspired by language
processing and casts the fingerprints into a 300-dimensional
space, whereby the mutual proximity of points is expected to
reflect the “chemical” similarity between compounds (the
construction of such a space itself is based on statistical
properties inferred from a large “corpus” such as the ZINC
data set40). Unfortunately, the “feed-forward” entries in Table
2 evidence that none of these models improved the accuracy of
prediction perceptibly.

Table 1. Summary of Accuracies Obtained by Standard
Feed-Forward Networksa

(a)

input
prediction accuracy of base

(7 classes)
prediction accuracy of
solvent (6 classes)

top-1 top-2 top-3 top-1 top-2 top-3

“popularity”
baseline

76.8 89.6 93.8 29.8 57.4 75.5

Morgan
fingerprint

80.6
(3.1)

91.0
(2.7)

94.4
(1.9)

51.7
(7.8)

69.4
(5.0)

81.2
(2.8)

RDKit
descriptors

74.8
(2.2)

88.6
(1.9)

92.8
(1.6)

42.6
(5.4)

62.9
(4.4)

76.9
(4.3)

Morgan +
descriptors

76.9
(3.3)

89.1
(2.1)

93.0
(1.9)

45.2
(7.3)

64.4
(6.0)

78.1
(4.4)

autoencoder 77.7
(2.7)

90.2
(1.6)

93.5
(1.3)

42.2
(5.5)

62.3
(3.7)

77.2
(2.3)

(b)

input
prediction accuracy of base

(7 classes)
prediction accuracy of
solvent (13 classes)

top-1 top-2 top-3 top-1 top-2 top-3

“popularity”
baseline

76.8 89.6 93.8 29.7 41.4 52.6

Morgan
fingerprint

79.8
(3.4)

90.1
(2.5)

94.1
(1.1)

43.3
(8.6)

57.4
(7.2)

67.0
(6.4)

RDKit
descriptors

77.1
(3.8)

88.7
(2.1)

92.9
(1.7)

36.7
(7.0)

51.6
(6.1)

62.2
(5.3)

Morgan +
descriptors

78.4
(3.3)

88.5
(2.6)

92.4
(2.4)

39.6
(7.7)

54.0
(7.3)

63.6
(6.1)

autoencoder 77.2
(3.1)

89.7
(1.5)

93.8
(1.5)

36.0
(4.5)

50.6
(4.5)

60.8
(4.1)

aTop-k accuracy metric is the probability (in %) of finding the actual
class within top-k classes ordered according to model’s predictions
(values in parentheses are standard deviations from fivefold cross-
validation). Part (a) is for the model taking into account six solvent
classes. Part (b) is for 13 solvent classes.
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Augmenting Models with the Information about
Yields. In a further effort to improve prediction accuracies, we
decided to take advantage of the yield information, which, in
principle, should help the models to distinguish between good
and bad reaction conditions with greater precision. The logic
here is to first teach the AI models to predict reaction yields for
all possible reaction conditions and then, for a given pair of
substrates, select as optimal those conditions that correspond
to maximal yield. We began by training a regressor having a
general feed-forward architecture. The inputs were vectors
concatenating 512-bit Morgan fingerprints of the substrates,
temperature (°C), as well as several vectorized forms of
reaction conditions, either (i) one-hot encoded classes of
solvents and bases or (ii) the so-called “learnable embed-
ding”a technique from natural-language processingof
conditions, in which ligands, solvents/solvent mixtures, and
bases were first tokenized and then transformed into
multidimensional vectors (for details, see caption to Table
3). In all cases, the NN had two hidden layers (40 and 10
neurons), and activation functions for the layers were ELU,
linear, and ReLU.
Results summarized in Table 3 demonstrate that irrespective

of the vectorization scheme used, the mean absolute errors
(MAEs) of yield prediction were similar, around 16%. Also
similar were the predicted spreads of the yields of reactions
performed under different conditions; however, the “best” and
“worst” conditions were predicted to vary by 5−10%, which is
much lower than ∼20−30% observed in experiments. This
finding means that our regressors are largely insensitive to
reaction conditions. In this light, it is not surprising that the
top-k values, that is, conditions’ assignments based on the
prediction of the highest-yielding, second-highest-yielding, and
so forth reactions, are very poor. Significantly, these
predictions are again worse than a frequency-based baseline
(even if the model is additionally penalized for incorrect

predictions of the same substrates in different conditions; see
Section S3).
In order to compare those results with the aforementioned

classification approach, we trained separate fingerprint-based
models for base and solvent classification (in multilabel
formulation) and used them to predict the best conditions.
The condition class probabilities (required to sort the
predictions from best to worst) were taken as a product of
corresponding base/solvent class probabilities. This model, as
can be seen in the last row of Table 3, exceeded the naıv̈e
baseline in top-1 and top-2 accuracies but was still largely
unsatisfactory (e.g., top-1 < 40%).
Last but not least, we consider a model extreme in its

naiveténamely, assigning average yield (77%) independently
on the input substrates and conditions. Such baseline has an
MAE of 16.3%comparable with even the best regression
models (15.6%), especially when standard deviation from
cross-validation (typically ∼2%) is taken into account. Yet
again, this means that the AI models do not offer any major
advantages over simplistic measures based on literature
statistics.

Table 2. Coarse-Grained Solvent Classification by Advanced
NN Modelsa

model architecture input top-1 top-2 top-3

“popularity”-based
baseline

29.2 53.8 73.1

GCNN molecular graph of
substrates

40.6
(6.3)

61.0
(5.2)

74.7
(3.4)

PU-NN ECFP6 of substrates 42.1
(6.1)

60.9
(4.6)

74.0
(2.5)

feed-forward ECFP6 of substrates 45.8
(6.5)

63.5
(5.5)

75.9
(4.1)

feed-forward ECPF6 of substrates +
base class

46.4
(5.6)

64.2
(5.1)

76.6
(5.3)

feed-forward Mol2Vec42 embedding
of substrates

34.9
(3.9)

54.9
(3.1)

70.1
(2.7)

aGCNN: Graph convolutional neural network.34 PU-NN: NN
classifier with PU correction.35,36 ECFP6: Extended connectivity
fingerprints with diameter 6.41 Top-k accuracy metric is the
probability (in %) of finding the actual class within top-k classes
ordered according to model’s predictions (values in parentheses are
standard deviations from fivefold cross-validation). The baseline
values refer to ordering produced by the corresponding frequency in
the literature. Note that to mitigate class imbalance, all models used
sample weights inversely proportional to class frequency (e.g., if a
given solvent class was rarely used in the literature, the error of
corresponding “matching” examples was multiplied according to the
class size. This adjustment is meant to consider large and small classes
on equal footing, without size-induced bias).

Table 3. Accuracy of Yield Prediction Using Feed-Forward
Neural Networks with Different Input Representationsa

input data loss MAE top-1 top-2 top-3 Mdiff

popularity-based
baseline

16.3 25.1 44.7 59.4

fine classes MSD 16.2
(2.3)

0.8
(0.4)

0.9
(0.4)

1.1
(0.6)

9.4

fine classes (with
ligand)

MSD 16.0
(1.9)

1.5
(0.7)

1.8
(0.9)

2.5
(1.7)

6.1

“coarse-grained”
classes

MSD 16.3
(2.2)

0.6
(0.7)

0.8
(0.7)

1.1
(0.8)

6.1

“coarse-grained”
(with ligand)

MSD 15.6
(2.0)

1.0
(0.8)

1.8
(1.6)

3.1
(2.8)

4.6

embedded
conditions

MSD 16.3
(2.7)

embedded
coarse-grained
classes

MSD 16.6
(2.4)

7.6
(11.7)

12.9
(12.4)

14.7
(11.3)

5.4

classifier 37.0 48.8 56.9
aMAE = mean absolute error; top-k values as in Tables 1 and 2 in %;
values in parentheses are standard deviations from fivefold cross-
validation; Mdiffmean difference between conditions predicted to
be the best and the worst for particular coupling partners. Popularity
baseline is defined according to most popular literature-reported
conditions (though, unlike in Table 2, here both base and solvent are
considered). The last entry labeled as “classifier” refers to the
combined predictions of separate base and solvent classifiers based on
fingerprint representation. “Learnable embedding” was performed
separately for each of three components (ligand, solvent, and base).
Tokenization took place before NN training and involved selection of
top-X (54 solvents, 72 bases, and 81 ligands) most frequent entries in
the literature data, and they were assigned a number (index in the
model’s “dictionary”)usually one of those numbers covered all less
significant, null, or unknown entries. Bases, ligands, and solvents were
each assigned single tokens, whereas solvent mixtures, up to four
components, were represented by tuples of four tokens representing
pure solvents (and ordered according to predominance in mixture and
with null/zero tokens used to denote “missing” solvents in binary and
tertiary mixtures). The embedding layer in the NN kept a “dictionary”
translating each token into a D-dimensional vector, whose
components were optimized during training. Here, each token was
assigned a 3D vector, resulting in a 24D representation of reaction
conditions (a concatenation of two 3D vectors for ligand and base, as
well as four 3D vectors for solvent components).
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Predictions of Previously Described Models. As
mentioned in the Introduction section, several prior works
reported ML models as relatively accurate in predicting
reaction conditions. We tested performance of three such
state-of-the-art approaches applied to the Suzuki coupling
problem: Reaction Conditions Recommender (RCR) devel-
oped by Gao et al.,22 Yield-BERT predicting reaction yields
based on SMILES-represented reaction and associated reaction
conditions,43 and Rel-GAT (Relational Graph Attention
Neural Network) previously evaluated on Suzuki and several
other coupling reactions.24

The RCR was used with the NN parameters provided by the
authors as trained on the entire Reaxys data set (i.e.,
encompassing our own data set). For each reaction, we
collected top-10 recommendations and translated them into
our coarse-grained solvent and base classes. We note that
palladium catalystusually Pd(PPh3)4was present in 82.3%
of the top-1 recommendations (and 94.1% of all top-10
proposals), indicating that the model correctly recognized
Suzuki coupling reaction. On the other hand, for the solvent
and base prediction problem, RCR did comparably to our own
classifiers and the popularity baseline (RCR’s top-1, 2, and 3
scores were 38.7, 46.1, and 50.7%, respectively).
Regarding the Yield-BERT43 model, we re-trained and tested

(5 × CV) it on our data set using the same hyperparameters as
the authors (attempts to optimize those hyperparameters did
not improve the model; see Section S2.4). The model was
originally trained on a significantly smaller and less diverse data
set of Suzuki couplings (5760 reactions from ref 44 differing in
halide and boronate substrates as well as reaction conditions
but all yielding the same product) and achieved MAE of 8.1%.
On our larger and more diverse set, the MAE was 14%, that is,
only slightly better than our simple regressor. Importantly,
when the model was used to score different reaction
conditions, the top-1 accuracy was 13.3% which is again better
than our regressor (7.6%) but well below the literature
popularity baseline (25.1%, see Table 4).
On the other extreme, the Rel-GAT24 was originally

evaluated on a significantly broader data set, that is, various
types of couplings and, within the Suzuki coupling, on all such
examples (i.e., not only the more synthetically challenging45,46

aryl-heteroaryl couplings but also aryl-aryl). Here, by
introducing chemically relevant classes of solvents and bases
(instead of explicit classification used in ref 43), we create a
more difficult classification problem (consider, for instance,
that out of four most popular bases, three are carbonates),
especially when class imbalance is taken into account (see
Figure S15 in Section S5.5). In Rel-GAT, this imbalance
problem was not addressed, whereas we applied sample
weights to address this issue; we note that in a recent study on
toxicity prediction, this technique turned out to outperform
other approaches to balance the data set.47 Still, even with

these precautions, the model performed similarly to our
GCNN discussed earlier and achieved the top-1, 2, and 3
accuracies of condition prediction of, respectively, 39.6, 53.6,
and 62.6%, (with standard deviations of the mean ∼4%; see
Table 4 and further details in Table S13).
Next, we investigated whether our results were in any way

peculiar to the Reaxys data set. To this end, the experiments
described above were repeated using 5434 reactions from the
USPTO48 collection and deposited at https://github.com/
rmrmg/SuzukiConditions/blob/master/uspto/dataset/
suzuki_USPTO_with_hetearomatic.txt (for details of the
extraction procedure, see Section S1.2). The results
summarized in the right portion of Table 4 evidence that in
terms of top-1,2,3 metrics, all tested models offer accuracies
comparable to the Reaxys data set. The only model that
outperforms the popularity baseline is the rel-GAT classifier.
However, it should be noted that the popularity baseline is
higher for USPTO than for Reaxysthis effect can be
explained by the lower diversity of condition classes in
USPTO (see Section S5.5 and Figure S18) with regard vs
Reaxys (Figure S15). Furthermore, it has to be stressed that
automatically curated reactions in USPTO are generally of
lower quality (see Section S1.3). Indeed, careful evaluation of
randomly sampled 50 entries from each database revealed that
as much as half of the USPTO entries may be compromised,
whereas in the case of Reaxys, this estimate is at the level of ca.
10% (this is also in line with our recent estimates, spanning all
reaction types, of erroneous entries in these repositories49).
The errors in USPTO records are particularly evident in the
case of solvent entries (see Section S1.3.1 and Table S2),
plausibly because this collection is dominated by the “other”
solvent class (Figure S18), causing corrupted solvent entries to
fall out of our classification criteria. With this evidence, the
real-world performance of any model trained on such low-
quality data, even with the highest possible values of
performance metrics, is at least questionable. Further analyses
of the NN models trained on USPTO are provided in Sections
S8 and S9.
Finally, to better understand why even the state-of-the-art

ML models offer such limited accuracies, we compared their
performance on the pairs of reactions involving the same
substrates under different reaction conditions. To this end, we
selected all 316 pairs of reactions from Reaxys that satisfy the
following criteria: (a) they use the same pair of substrates; (b)
they were performed under different conditions (according to
our classification of solvents and bases); and (c) the difference
of their yields is greater than 10%. If more than two reactions
met these conditions, we chose a pair that maximizes the yield
difference. Our expectation here was that on such pairs, a good
model should correctly recognize which conditions are “better”
(i.e., provide higher yield) for a given reaction. The simplistic
popularity metric orders these pairs correctly in 43.7% cases.

Table 4. Accuracy of Condition Prediction Using Previously Reported Modelsa

task type data source Reaxys USPTO

input data metric top-1 top-2 top-3 MAE top-1 top-2 top-3 MAE

popularity-based baseline 25.1 44.7 59.4 16.3 29.8 51.8 62.7 21.1
classification reaction conditions recommender22 38.7 46.1 50.7 26.4 31.0 34.0
classification Rel-GAT42 39.6 53.6 62.6 46.3 60.9 70.6
regression yield-BERT43 13.3 14.1 14.7 14.1 5.6 8.0 10.9 19.2

aTop-k values as in Tables 1−3 in %. Popularity baseline is defined according to most popular literature-reported conditions (though, unlike in
Table 2, here, both base and solvent are considered).
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This is on par with RCR (35.4%), Yield-BERT (51.3%), and
Rel-GAT (47.0%). This result suggests that both of these ML
models are relatively insensitive to reaction conditions and
capture only some crude correlations between the structure of
the reactants and the preferred reaction conditions. Some
additional analyses are provided in Sections S5.4 and S5.5.

■ CONCLUSIONS

In summary, we applied a range of ML techniques, from simple
to state-of-the-art, to answer a seemingly simple question
that is, which reaction conditions should be chosen for
substrates engaging in a reaction of a particular type. Even
though we used a large, diverse, and carefully curated data set
of Suzuki−Miyaura couplings, all of these models gave largely
unsatisfactory prediction accuracies (especially for the solvent
prediction subproblem), not significantly higher than the
popularity baseline. At first sight, this may be surprising given
that ML models are expected to offer accurate predictions if
trained on large enough, high-quality reaction data sets. This
might be true when the descriptors used to construct the
model capture the chemical essence of a problem in question,
for example, when trying to predict reaction outcomes given its
substrates, the structural, steric, and electronic descriptors are
generally sufficient.7−10,50 The condition prediction problem,
however, is markedly different because in addition to the
structural features of reactants, products, and reagents, it
entails several “human” factors: Conditions are often chosen
based on the query of relevant literature, ultimately selecting
those most frequently reported (this may explain why
popularity-based metrics worked nearly as well as ML). In
addition, mundane factors of instantaneous availability of
specific reagents/solvents in one’s laboratory or even
“historical” preference for certain choices (i.e., conditions
commonly used in one’s laboratory) might come into play. In
other words, chemistry often propagates its own practices/
routines, and these factors are hardly quantifiable as
“descriptors” of sorts. A way around this problem is to begin
to augment the available literature data by systematic and
standardized experiments in which reactions are repeated
under multiple conditions such that meaningful conclusions
about better vs worse ones can be learned. Several years ago,
such augmentation of thousands upon thousands of reactions
would hardly be possible as human chemists lack incentives to
repeatjust for the sake of generating more dataa successful
reaction under multiple other and likely worse yielding
conditions. The recent progress in synthesis automation,
however, should make such an effort feasible, at least for some
more popular classes of reactions. Until such multiple-
condition data become available, we advocate that ML models
are always accompanied by and compared against popularity-
based baselines which are known, by themselves, to capture
certain reactivity trends.25,26

■ ASSOCIATED CONTENT

*sı Supporting Information
The Supporting Information is available free of charge at
https://pubs.acs.org/doi/10.1021/jacs.1c12005.

Experimental details, additional details of neural net-
works, hyperparameters selection, custom loss function,
and further statistical analyses (PDF)

■ AUTHOR INFORMATION
Corresponding Authors

Martin D. Burke − Department of Chemistry and Department
of Biochemistry, Institute for Genomic Biology, Carle Illinois
College of Medicine, and Beckman Institute, University of
Illinois at Urbana-Champaign, Urbana, Illinois 61801,
United States; orcid.org/0000-0001-7963-7140;
Email: mdburke@illinois.edu

Bartosz A. Grzybowski − Allchemy, Inc., Highland, Indiana
46322, United States; Institute of Organic Chemistry, Polish
Academy of Sciences, Warsaw 01-224, Poland; Center for
Soft and Living Matter, Institute for Basic Science (IBS),
Ulsan 44919, Republic of Korea; Department of Chemistry,
Ulsan Institute of Science and Technology (UNIST), Ulsan
44919, Republic of Korea; orcid.org/0000-0001-6613-
4261; Email: nanogrzybowski@gmail.com

Authors
Wiktor Beker − Allchemy, Inc., Highland, Indiana 46322,
United States; Institute of Organic Chemistry, Polish
Academy of Sciences, Warsaw 01-224, Poland

Rafał Roszak − Allchemy, Inc., Highland, Indiana 46322,
United States; Institute of Organic Chemistry, Polish
Academy of Sciences, Warsaw 01-224, Poland

Agnieszka Wołos − Allchemy, Inc., Highland, Indiana 46322,
United States; Institute of Organic Chemistry, Polish
Academy of Sciences, Warsaw 01-224, Poland

Nicholas H. Angello − Department of Chemistry, University
of Illinois at Urbana-Champaign, Urbana, Illinois 61801,
United States; orcid.org/0000-0001-6436-3669

Vandana Rathore − Department of Chemistry, University of
Illinois at Urbana-Champaign, Urbana, Illinois 61801,
United States

Complete contact information is available at:
https://pubs.acs.org/10.1021/jacs.1c12005

Notes
The authors declare no competing financial interest.

■ ACKNOWLEDGMENTS
This work was supported by the Defense Advanced Research
Projects Agency under the Accelerated Molecular Discovery
Program (Cooperative Agreement No. HR00111920027 dated
August 1, 2019). The content of the information presented in
this work does not necessarily reflect the position or the policy
of the Government.

■ REFERENCES
(1) Silver, D.; Schrittwieser, J.; Simonyan, K.; Antonoglou, I.;
Huang, A.; Guez, A.; Hubert, T.; Baker, L.; Lai, M.; Bolton, A.; Chen,
Y. T.; Lillicrap, T.; Hui, F.; Sifre, L.; van den Driessche, G.; Graepel,
T.; Hassabis, D. Mastering the Game of Go without Human
Knowledge. Nature 2017, 550, 354−359.
(2) Silver, D.; Hubert, T.; Schrittwieser, J.; Antonoglou, I.; Lai, M.;
Guez, A.; Lanctot, M.; Sifre, L.; Kumaran, D.; Graepel, T.; Lillicrap,
T.; Simonyan, K.; Hassabis, D. A General Reinforcement Learning
Algorithm that Masters Chess, Shogi, and Go Through Self-Play.
Science 2018, 362, 1140−1144.
(3) Senior, A. W.; Evans, R.; Jumper, J.; Kirkpatrick, J.; Sifre, L.;
Green, T.; Qin, C. L.; Zidek, A.; Nelson, A. W. R.; Bridgland, A.;
Penedones, H.; Petersen, S.; Simonyan, K.; Crossan, S.; Kohli, P.;
Jones, D. T.; Silver, D.; Kavukcuoglu, K.; Hassabis, D. Improved
Protein Structure Prediction Using Potentials from Deep Learning.
Nature 2020, 577, 706−710.

Journal of the American Chemical Society pubs.acs.org/JACS Article

https://doi.org/10.1021/jacs.1c12005
J. Am. Chem. Soc. 2022, 144, 4819−4827

4825

https://pubs.acs.org/doi/suppl/10.1021/jacs.1c12005/suppl_file/ja1c12005_si_001.pdf
https://pubs.acs.org/doi/10.1021/jacs.1c12005?goto=supporting-info
https://pubs.acs.org/doi/suppl/10.1021/jacs.1c12005/suppl_file/ja1c12005_si_001.pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Martin+D.+Burke"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://orcid.org/0000-0001-7963-7140
mailto:mdburke@illinois.edu
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Bartosz+A.+Grzybowski"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://orcid.org/0000-0001-6613-4261
https://orcid.org/0000-0001-6613-4261
mailto:nanogrzybowski@gmail.com
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Wiktor+Beker"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Rafa%C5%82+Roszak"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Agnieszka+Wo%C5%82os"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Nicholas+H.+Angello"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://orcid.org/0000-0001-6436-3669
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Vandana+Rathore"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/doi/10.1021/jacs.1c12005?ref=pdf
https://doi.org/10.1038/nature24270
https://doi.org/10.1038/nature24270
https://doi.org/10.1126/science.aar6404
https://doi.org/10.1126/science.aar6404
https://doi.org/10.1038/s41586-019-1923-7
https://doi.org/10.1038/s41586-019-1923-7
pubs.acs.org/JACS?ref=pdf
https://doi.org/10.1021/jacs.1c12005?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


(4) Roberts, M.; Driggs, D.; Thorpe, M.; Gilbey, J.; Yeung, M.;
Ursprung, S.; Aviles-Rivero, A. I.; Etmann, C.; McCague, C.; Beer, L.;
Weir-McCall, J. R.; Teng, Z.; Gkrania-Klotsas, E. A.-C.; Rudd, J. H. F.;
Sala, E.; Schönlieb, C. B. Common Pitfalls and Recommendations for
Using Machine Learning to Detect and Prognosticate for COVID-19
Using Chest Radiographs and CT Scans. Nat. Mach. Intell. 2021, 3,
199−217.
(5) Artrith, N.; Butler, K. T.; Coudert, F. X.; Han, S.; Isayev, O.;
Jain, A.; Walsh, A. Best Practices in Machine Learning for Chemistry.
Nat. Chem. 2021, 13, 505−508.
(6) Chuang, K. V.; Keiser, M. J. Comment on “Predicting Reaction
Performance in C−N Cross-Coupling Using Machine Learning”.
Science 2018, 362, No. eaat8603.
(7) Beker, W.; Gajewska, E. P.; Badowski, T.; Grzybowski, B. A.
Prediction of Major Regio-, Site-, and Diastereoisomers in Diels-Alder
Reactions by Using Machine-Learning: The Importance of Physically
Meaningful Descriptors. Angew. Chem., Int. Ed. 2019, 58, 4515−4519.
(8) Li, X.; Zhang, S.; Xu, L.; Hong, X. Predicting Regioselectivity in
Radical C−H Functionalization of Heterocycles through Machine
Learning. Angew. Chem., Int. Ed. 2020, 59, 13253−13259.
(9) Moon, S.; Chatterjee, S.; Seeberger, P. H.; Gilmore, K.
Predicting glycosylation stereoselectivity using machine learning.
Chem. Sci. 2021, 12, 2931−2939.
(10) Pesciullesi, G.; Schwaller, P.; Laino, T.; Reymond, J.-L. Transfer
learning enables the molecular transformer to predict regio- and
stereoselective reactions on carbohydrates. Nat. Commun. 2020, 11,
3878.
(11) Segler, M. H. S.; Preuss, M.; Waller, M. P. Planning Chemical
Syntheses with Deep Neural Networks and Symbolic AI. Nature 2018,
555, 604−610.
(12) Coley, C. W.; Thomas, D. A.; Lummiss, J. A. M.; Jaworski, J.
N.; Breen, C. P.; Schultz, V.; Hart, T.; Fishman, J. S.; Rogers, L.; Gao,
H.; Hicklin, R. W.; Plehiers, P. P.; Byington, J.; Piotti, J. S.; Green, W.
H.; Hart, A. J.; Jamison, T. F.; Jensen, K. F. A Robotic Platform for
Flow Synthesis of Organic Compounds Informed by AI Planning.
Science 2019, 365, No. eaax1566.
(13) Borrelli, W.; Schrier, J. Evaluating the Performance of a
Transformer-based Organic Reaction Prediction Model. ChemRxiv.
2021, 3nqv9.
(14) Badowski, T.; Gajewska, E. P.; Molga, K.; Grzybowski, B. A.
Synergy Between Expert and Machine-Learning Approaches Allows
for Improved Retrosynthetic Planning. Angew. Chem., Int. Ed. 2020,
59, 725−730.
(15) Molga, K.; Szymkuc,́ S.; Grzybowski, B. A. Chemist ex
Machina: Advanced Synthesis Planning by Computers. Acc. Chem.
Res. 2021, 54, 1094−1106.
(16) Szymkuc,́ S.; Gajewska, E. P.; Klucznik, T.; Molga, K.; Dittwald,
P.; Startek, M.; Bajczyk, M.; Grzybowski, B. A. Computer-Assisted
Synthetic Planning: The End of the Beginning. Angew. Chem., Int. Ed.
2016, 55, 5904−5937.
(17) Klucznik, T.; Mikulak-Klucznik, B.; McCormack, M. P.; Lima,
H.; Szymkuc,́ S.; Bhowmick, M.; Molga, K.; Zhou, Y.; Rickershauser,
L.; Gajewska, E. P.; Toutchkine, A.; Dittwald, P.; Startek, M. P.;
Kirkovits, G. J.; Roszak, R.; Adamski, A.; Sieredzinśka, B.; Mrksich,
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