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Industrial areas are characterized by the dispersion of environmental stressors that

could possibly have long-term detrimental effects on both human health and the

environment. Environmental contamination has been indicated to be one of the major

risks for reproductive health. In this context, the effects of environmental pollution

on pregnant women living in heavily polluted areas is of special interest. In fact,

fetal development is a crucial phase due to the dynamic interaction between the

maternal/external environments and the developing organs and tissues. Moreover,

following Barker’s postulate of the intrauterine origin of health and disease, the events

occurring in this time window could affect future health. Birth cohorts provide the

most suitable design for assessing the association between early-life and possible

long-term health outcomes in highly contaminated sites. By providing an assessment

of the early life environment throughout the collection of biological samples, birth cohorts

offer the opportunity to study in-depth several possible confounders and outcomes by

means of questionnaires and follow-ups based on clinical evaluations and bio-specimen

samplings. The exposome comprises the totality of exposures from conception onwards;

the birth cohort approach allows the integration of the exposures as a whole, including

those related to socioeconomic status, with “omics” data from biological samples

collected at birth and throughout life. In the characterization of the “fetal exposome,”

the placenta represents a highly informative and scarcely considered organ. For this

purpose, the “Neonatal Environment and Health Outcomes” (NEHO) birth cohort has

been established by enrolling pregnant women residing in contaminated sites and in

surrounding areas.
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INTRODUCTION

Health Effects of Environmental Exposures
in Highly Contaminated Sites
Contaminated sites can be defined as “areas hosting or having
hosted human activities which have produced or might produce
environmental contamination of soil, surface or groundwater,
air, food-chain, resulting or being able to result in human
health impacts” (1). Contaminants such as heavy metals (HMs)
and persistent organic pollutants (POPs) may transfer from
one environmental matrix to another and, depending on their
chemical-physical properties, are able to infiltrate the human
body through different exposure pathways and routes (2). Living
near environmental hazards contributes to a poorer general
health status (3). Moreover, contaminated sites are often located
in socially deprived neighborhoods; this makes exposure patterns
more complex and results in interactions with other health
determinants (4). Environmental pollution is one of the largest
causes of death and disability in the world. In 2015, about
16% of premature deaths worldwide were caused by exposure
to chemicals released into the environment (5). The WHO
highlighted that 26% of deaths among children under five are
due to modifiable environmental factors, and therefore can
be prevented (6). Moreover, many childhood morbidities and
disabilities are attributable to environmental causes and to gene-
environment interaction starting from the fetal development
period (7).

Environmental contamination is one of the major risk
factors for reproductive health (8). Indeed, causal relationships
between parental or prenatal environmental exposures and
several adverse pregnancy and childhood outcomes have been
clearly documented (9–13). Moreover, toxicants were associated
with intrauterine growth restriction (14–16), inadequate birth
weight (17), and premature births (18). These birth outcomes
are of special interest for their double significance: they represent
both an adverse outcome per se and could be considered as risk
factors for future childhood pathologies.

Many chemicals released into the environment due to
industrial processes are able to disrupt the programming of
endocrine signaling. Thus, gametes, pregnant women, and
developing fetuses are particularly vulnerable to the harmful
impact of these environmental toxicants (19–21). For example,
cadmium (Cd) has been identified as an endocrine disruptor
and is released by industrial plants, negatively influencing both
male and female reproductive health, acting at the level of the
hypothalamic-pituitary-gonadal intercommunication axis (22).
Lastly, human studies have shown an association between Cd
exposure during pregnancy and low birth weight (23).

There is growing evidence supporting the hypothesis that
prenatal exposure to toxicants is associated with long-term effects
on children’s neurological development (24, 25), respiratory and
cardiovascular systems (26), and metabolic signaling (27). For
instance, children born to women exposed to organochlorine
pesticides have a higher risk of developing neurodevelopmental,
neurodegenerative, and neurobehavioral disorders (28, 29).
Prenatal exposure to methylmercury has also been associated
with the development of autism spectrum disorders (30).

Similarly, a significant increase in the incidence of “bronchitis”
was reported in Taiwanese children born to women exposed
to polychlorinated biphenyls (PCBs) during pregnancy (31).
Moreover, prenatal exposure to perfluoroalkyl substances
and postnatal exposure to copper, ethylparaben, and household
crowding were associated with poorer lung function in 6- and 12-
year-old children (32). In-utero exposure to hexachlorobenzene
(HCB) and dichlorodiphenyldichloroethylene (DDE) was
associated with childhood obesity and higher blood pressure
levels at 4 years (33). In this study, an obesogenic effect of DDE
and HCB was hypothesized through sex steroid dysregulation.
Moreover, in a French birth cohort, an association was found
between high maternal Cd and lead (Pb) blood levels and
increased risk of gestational diabetes (34). Fetal exposure to
maternal gestational diabetes was further associated with an
altered glucose-induced hypothalamic activity in children and,
as a consequence, with increased risk of obesity later in life (35).

Scientific data on the long-term effects of developmental
exposures provide new insight into the importance of preventing
the negative effects of environmental chemicals on the residents
of highly polluted sites. There are different methodologies
to assessing pollutant impacts on human health through
studies with both ecological and etiological design. One
example is the SENTIERI Project, which works toward
multiple endpoints, including hospital discharges during infancy
and congenital anomalies, in all the main contaminated
sites in Italy, implementing an a-priori identification of
health endpoints linked with pollution sources (36). This
approach is of undeniable value for public health monitoring,
even though any demonstration of pathophysiological links
between environmental pollutants and health effects requires
further research.

It is generally recognized that prospective pregnancy or
birth cohort studies, incorporating exposure biomarkers during
sensitive windows, are required to examine the potential
health effects of developmental exposure to chemicals. Birth
cohort studies provide the most suitable design for assessing
the association of early-life adversities occurring at critical
developmental windows with their possible long-lasting effects
on postnatal health and well-being. Cohort populations living
in highly contaminated sites have been studied mainly in
occupational settings; in contrast, their use in the general
population is not well-represented in scientific literature, though
remarkable examples are available, especially in cases of
accidental events, such as the Seveso disaster (37) or Minamata
disease (38).

Fetal Development and Environmental
Epidemiology
Starting from Barker’s postulate of the “intrauterine origins of
health and disease susceptibility” (39–41), growing evidence has
highlighted how environmental stressors can interfere with the
early stages of fetal development leading to diseases later in
life. Chemical compounds, social stress, and lifestyle can lead to
the permanent alteration of fetal development, possibly resulting
in increased susceptibility to adverse health outcomes over a
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person’s lifetime (42, 43). Homeostatic processes during fetal
life allow the organism to dynamically adapt to changes in
the intrauterine environment in order to obtain an immediate
survival chance and to have future adaptive advantages in
adulthood (44). However, changes that turn out to be adaptive
for one endpoint, such as surviving an acute stressful condition,
may be maladaptive in other life stages, thus producing a higher
risk of non-communicable disease occurrence (45).

In recent years, the role of epigenetic mechanisms (e.g.,
nucleotide and histone chemical modifications and small
non-coding RNAs) has been recognized in regulating fetal
development and its adaptation to changing environmental
conditions through changing gene expression (45), while
growing evidence has drawn attention to epigenetic alterations
induced by environmental contaminants (46). Epigenetic
alterations that affect the trajectories of fetal development may
maintain their effects over generations (47). Industrial activities
and power plants are known sources of many chemicals which
can induce epigenetic effects (2, 48–52). DNA methylation is a
potential mechanism by which environmental exposures may
contribute to the etiology of complex diseases (53). Epigenetic
changes have been observed in pregnant women, placentas,
and cord blood after exposure to various environmental
contaminants, such as phthalate and bisphenol A (54), but
also to maternal smoking (55) and psychological stress (56).
In a large-scale epigenome-wide meta-analysis, the authors
found a significant association of PM10 and PM2.5 exposures
during pregnancy with methylation differences in newborns’
genes relevant to respiratory health, such as FAM13A and
NOTCH4 (57).

Pregnant women living in highly contaminated sites can
be exposed via multiple pathways, including food, inhalation,
and dermal contact. The exposure of the developing fetus to
environmental contaminants may lead to multi-organ alterations
producing organ dysfunction and diseases. Toxicants influence
fetal development in different ways. The influence can be
direct, as in the case of arsenic (As), Pb, and mercury (Hg) as
these substances can readily pass through the placenta into the
fetal environment (58), or indirect, as in the case of Cd, by
interfering with maternal and placental homeostatic functions
leading in turn to altered signaling with the fetus (Figure 1).
For other environmental toxicants, such as PCBs, their ability
to pass through the placenta is related to congener specific
chemical-physical properties, such as molecular weight and
lipophilicity (59).

Many studies performed in highly contaminated areas have
evaluated residential proximity to pollution sources or air
pollutant exposures (11, 60–63). On the contrary, studies
on the contribution of soil and water contamination to
human exposure, as well as those related to the food chain
and human biomonitoring, are less represented in scientific
literature (64–66).

Recently, Heindel and colleagues published a comprehensive
review of epidemiological studies evaluating associations
between in-utero and early post-natal life exposure to
environmental chemicals and adverse health outcomes
(67). They examined 425 papers, showing that most of the

publications were related to neurological/cognitive outcomes,
followed by cancer and respiratory diseases. Only in recent years
have researchers focused on metabolic outcomes (including
obesity) and second generation reproductive health (67).
Similarly, studies in highly contaminated sites have indicated
a greater incidence and prevalence of a variety of health
conditions, including cancer, respiratory diseases, diabetes,
obesity, and negative reproductive health outcomes (68, 69).
Moreover, in Heindel’s review, more than 60 different chemical
compounds were identified, most of which are known to be
related to environmental contamination due to power plants and
industrial/petrochemical emissions. The most frequently studied
chemicals are PCBs, often associated with incineration and
power generation processes (70). Regarding heavy metals, Hg,
Pb, and As were the most represented in the review. In Table 1,
a short list of studies on environmental pollutants present in
highly polluted areas is reported along with the relevant health
outcomes in pediatric age (71–98).

However, people living in heavily contaminated areas present
a different exposure profile as compared to the general
population, in terms of both level of exposure and number
of contaminated environmental matrices. In this respect,
multipollutant models are designed to overcome the difficulty
of identifying effects of multiple pollutants in epidemiological
studies which also try to effectively capture the health impact
of pollution mixtures observed under real-life conditions.
These models are of particular interest, though scarcely
represented, especially in the context of highly contaminated
sites. Moreover, the evaluation of real-life exposure represents a
methodological challenge for the overall integration of exposure
measures obtained from different matrices (e.g., ambient air,
blood, tissues).

The Fetal Exposome and the Placenta
Omics, including genome, epigenome, transcriptome,
metabolome, and microbiome, have widened our ability to
investigate complex biological processes. The possibility of
considering multiple molecular pathways at once gives us
the opportunity to have a more holistic and comprehensive
understanding of an organism’s development and functions.
Along the same line, Christopher Paul Wild coined the term
“exposome” in order to promote the use of an omics approach in
the field of environmental epidemiology (99).

Consistent advances have beenmade in “measuring” the levels
of environmental contaminants in biological tissues; however, a
delineated exposome approach has not been applied in clinical
settings. The exposome not only concerns toxic chemicals but
also includes three domains: (1) a general external domain
including the social and economic context and stress factors; (2)
a specific external domain including environmental pollutants,
diet, and drugs; and (3) a specific internal domain including
biomarkers of exposure, effects, and susceptibility (100). Another
key concept in defining the exposome is its dynamic nature
(100): for example, changes in household, school, occupation,
socioeconomic profile, social interactions and stress, course of
medical treatment, exposure profile (even for a short period),
and migration flows may all produce changes in the exposome
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FIGURE 1 | Schematic representation of direct and indirect interactions among environmental stressors, placental domain, and possible negative health outcomes.

HMs, heavy metals; POPs, persistent organic pollutants.

during a lifetime and should be measured over time. Therefore,
the full characterization of an individual’s exposome requires
a number of measures able to capture exposure during their
lifespan. However, individual susceptibility changes with age, and
specific time windows can be identified.

As discussed above, fetal life is one of the crucial time windows
during which future health takes shape through a dynamic
interaction between the maternal/external environments and
developing organs and tissues (Figure 2). In this context, the
effort to characterize the fetal exposome is a priority for
determining future health and disease predisposition.

The placenta, as a sort of gestational logbook, is a useful
organ for defining the exposome, as well as a valid target
organ for molecular biomarkers. In fact, the placenta plays
a key role in the maintenance of an adequate intrauterine
environment as well as in signal transmissions from the fetus
to the mother and vice versa (101). Nutrition supplies, gas
exchange, endocrine, and immune regulation are guaranteed by
the placenta. At the same time, it has a pivotal role in minimizing
the quantity of environmental contaminants, toxins, pathogens,
and maternal stress hormones reaching the fetus (102). Placental
development begins during the first few weeks after fertilization;
from this moment, the success of fetal development is dependent
on an appropriate placentation and on the remodeling of
maternal circulation to ensure its perfusion (103). Moreover,
environmental toxicants frommaternal blood can reach the fetus
only by passing through the placenta, which is known to be
a selective barrier (104). Placental cells express detoxification
enzymes and antioxidant molecules which are involved in fetal
protection against toxicants and free oxygen radicals (105). On

the other hand, those chemicals which do not pass the placental
barrier may accumulate in placental tissue, thus modifying its
functions and indirectly affecting the fetus. The placenta is
usually discarded after birth and can be sampled in a non-
invasive procedure. It has been previously defined as a “black-
box” event recorder due to its highly informative potential for
summarizing the in-utero experience (106). From this point
of view, placental multi-omics investigation (e.g., epigenomics,
transcriptomics, and proteomics) could be considered an
essential step for simultaneously testing exposure, effects, and
susceptibility biomarkers in a single biological matrix—i.e., a
valid proxy for the internal fetal exposome.

For example, with respect to placental exposure biomarkers,
studies have shown that placental levels of Cd correlate to the
expression levels of the Metallothionein gene (107). Another
study found that placental expression of the arsenic transporter
AQP9 was positively associated with maternal urinary As
levels during pregnancy (108). However, these studies consider
placental gene expression for exposure to a single pollutant.
Only a few studies have tried to investigate two (109) or more
co-exposures and their potential effects on placental physiology
or functions (110). Deyssenroth and colleagues proposed an
exposure regression analysis to derive metal mixture indices
associated with placental networks, which in turn are associated
with small-for-gestational age (SGA) status. They found that,
among 19 metals tested, As and Cd levels are associated with
SGA, and the effects of these metals persist even after accounting
for the presence of correlated co-pollutants (110).

With regards to biomarkers of possible effects, in a study
conducted by Ahmed and colleagues, a reduction in levels
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TABLE 1 | Selected list of studies on environmental pollutants performed in pediatric age in highly polluted areas, along with the relevant health outcomes.

Exposure Type of

study

Sample characteristics and compounds

measurements

Outcomes References

As Retrospective

cohort study

in utero and childhood exposure to As. Standard

mortality rates calculated for populations living in

contaminated areas compared to those of the rest of

Chile.

Exposure through drinking water during early childhood

or in utero increases mortality rate in young adults due to

both malignant and non-malignant lung disease.

Smith et al.

(71)

Case-control

study

339 women having children with congenital heart defects

(CHDs) and 333 women with normal live births in China.

As levels were measured in maternal hair samples.

Maternal exposure to As had a significant association

with the risk of CHDs in offspring.

Jin et al. (72)

Case-control

study

435 women having children affected by oro-facial clefts

and 1,267 mothers of unaffected children. As levels were

estimates by questionnaire (occupational, drinking water,

and dietary As exposure) along with a subsample of

subjects with measures of individual exposure levels to

As.

Positive association was observed for maternal

occupational As exposure and cleft palate.

Suhl et al. (73)

Cross-

sectional

study

Concentration of As in cord blood samples collected in

892 births.

Prenatal exposure to As was associated with poor

neurobehavioral performance of newborns, particularly

among those born to older mothers.

Wang et al.

(74)

Meta-

analysis

Including 18 reports from cross-sectional, case-control

and cohort studies of As exposure.

Authors reported that 50% increase of As levels in child

urine would be associated with a 0.4 decrease in the

intelligence quotient of children aged 5–15.

Rodríguez-

Barranco

et al. (75)

Hg Meta-

analysis

Meta-analysis was conducted for two major exposure

sources: thimerosal vaccines that contain ethylmercury

(clinical exposure) and environmental sources, using

relevant literature published before April 2014.

Moderate adverse effects were observed only between

environmental inorganic or organic Hg exposures and

autism spectrum and attention deficit hyperactivity

disorders. No effect of vaccine-derived Hg was

observed.

Yoshimasu

et al. (76)

Cohort study The Mediterranean (Italy, Slovenia, Croatia, and Greece)

cohort study included 1,308 mother-child pairs. Hg

levels were measured in different maternal biological

samples and cord blood.

Inverse relation between Hg levels and child

developmental motor scores at 18 months. No evidence

of detrimental effects of Hg was found for cognitive and

language outcomes.

Barbone et al.

(77)

Cohort study Including 458 mother/infant pairs. Blood Hg levels were

measured in cord blood at early and late pregnancy and

at 2 and 3 years of age.

Blood Hg levels at late pregnancy and early childhood

were associated with more severe autistic behaviors.

Ryu et al. (78)

Cohort study Maternal Hg blood concentration at 17th gestational

week analyzed in 2,239 women of a Norwegian cohort.

A small but significant adverse association between

children above the 90th percentile dietary Hg exposure

and childhood language skills.

Vejrup et al.

(79)

Cd Cohort study 300 mothers in China. Maternal blood Cd concentration. A 10-fold increase in maternal Cd levels was associated

with a 5.7-point decrease in social domain

developmental quotient and a 4.3-point decrease in

circulating brain-derived neurotrophic factor levels.

Wang et al.

(80)

Cohort study 575 mother-child pairs from the prospective “Rhea”

cohort on Crete, Greece. Exposure was estimated by

maternal urine Cd concentrations during pregnancy.

Elevated urinary Cd concentrations (≥0.8 µg/L) were

inversely associated with children’s general cognitive

score.

Kippler et al.

(81)

Cohort study 515 mother-child pairs from the “Rhea” cohort on

Heraklion, Greece. Urinary Cd concentrations measured

during early pregnancy.

Elevated prenatal Cd levels were significantly associated

with a slower weight trajectory and a slower height

trajectory in girls and in children born to mothers who

smoked during pregnancy.

Chatzi et al.

(82)

Cohort study Cd exposure was assessed by urinary concentrations

during early pregnancy (n = 1,299), 5 (n = 1,453), and

10 years of age (n = 1,498).

Childhood Cd exposure was associated with lower

intelligence in boys, and there were indications of altered

behavior in girls for both prenatal and childhood

exposures.

Gustin et al.

(83)

Cohort study 185 participants from the ELEMENT birth cohorts in

Mexico City with complete data on urinary Cd

exposures, anthropometry and covariates.

Prenatal Cd exposure was negatively associated with

measures of both abdominal and peripheral adiposities

in girls, but not in boys.

Moynihan

et al. (84)

Pb Cohort study 4,285 pregnant women from the ALSPAC cohort. Pb

levels were analyzed in blood samples from pregnant

women and from 235 children at age of 30 months.

Prenatal Pb exposure was not significantly associated

with child IQ at 4 or 8 years. However, some evidence

suggests that boys are more susceptible than girls to

prenatal exposure to Pb.

Taylor et al.

(85)

(Continued)
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TABLE 1 | Continued

Exposure Type of

study

Sample characteristics and compounds

measurements

Outcomes References

Cohort study 965 pregnant women. Information about dietary intake,

and maternal and cord blood levels were collected for Pb

exposure assessment.

Maternal late pregnancy Pb was marginally associated

with deficits in mental development index of children at 6

months.

Shah-Kulkarni

et al. (86)

Cohort study Pb was measured in 334 mid-pregnancy women, in 362

late-pregnancy women and in umbilical cord blood, in a

cohort of full-term infants in rural northeastern China.

Auditory brainstem response (ABR) and grating visual

acuity (VA) maturation appears delayed in infants with

higher prenatal Pb exposure during late-pregnancy, even

at relatively low levels.

Silver et al.

(87)

Cohort study Pb and As were measured in 257 maternal toenail

samples collected at 28 weeks gestation and/or in 285

samples 6 weeks postpartum.

in utero toxic metal exposures may be associated with

early life increases in blood pressure in children, which

could have consequences for long-term health.

Farzan et al.

(88)

Cohort study Pb levels were measured between 20 to 24 weeks of

pregnancy and in cord blood, in 402 children from the

Polish Mother and Child Cohort (REPRO_PL).

Fetal exposure to very low Pb levels might affect early

cognitive domain, with boys being more susceptible than

girls.

Polanska

et al. (89)

PCBs Case-control

study

Southern California births, including 545 children with

autism spectrum disorders (ASD) and 181 with

intellectual disability (ID), as well as 418 healthy children.

Concentrations of 11 PCB congeners and 2 OCPs

measured in second-trimester maternal serum samples.

Higher levels of organochlorine compounds during

pregnancy are associated with ASD and ID.

Lyall et al. (90)

Cohort study PCB and DDE were measured in maternal serum and

breast milk in 656 women.

Association of PCD and DDE levels with body-mass

index of girl aged 5–7 years in relation to maternal body

weight.

Tang-

Péronard

et al. (91)

Cohort study Concentration of 17 PCB congeners analyzed in

umbilical blood cord samples, in a total of 40 healthy

term pregnancies.

Association between PCB 118 concentration and

fixation pattern examined by the upright and inverted

biological motion (BM) test at 4-months after birth, as a

measure of social functioning.

Doi et al. (92)

Meta-

analysis

Pooled data from seven European birth cohorts with

biomarker concentrations of PCB-153 and DDE in 2,487

and 1,864 samples respectively.

Significant increase in growth associated with DDE,

seemingly due to prenatal exposure, and significant

decrease in growth was associated with postnatal

PCB-153 exposure.

Iszatt et al.

(93)

Cohort study Concentrations of PCBs and OH-PCBs were determined

in cord blood samples of 97 mother-infant pairs.

Associations between PCB and OH-PCB levels and

motor optimality score, including detailed aspects of the

early motor development, measured at 3-month-old

infants.

Berghuis

et al. (94)

PAH Cohort study 727 Dominican or African American women living in

Northern Manhattan or the South Bronx were enrolled

during pregnancy. Prenatal PAH exposure was measured

from 48-h personal air monitoring, and children’s PAH

exposure at 5 to 6 years of age was measured from

residential indoor monitoring.

Repeated high exposure to pyrene was positively

associated with the development of asthma, ever

wheeze, asthma medication use, and emergency

department visits for asthma.

Jung et al.

(95)

Cohort study 727 Dominican or African American women living in

Northern Manhattan or the South Bronx were enrolled

during pregnancy. Prenatal PAH exposure was measured

from 48-h personal air monitoring.

Higher prenatal PAH exposures were significantly

associated with higher risk for obesity at 5 and 7 years of

age.

Rundle et al.

(96)

Cohort study 353 women enrolled in Krakow, Poland with valid

airborne PAH data. To assess exposure to PAHs, the

women were personally monitored over a 48-h period

during the second (n = 253) or third (n = 100) trimester

of pregnancy.

Higher prenatal exposure to airborne PAHs was found

associated with a statistically significant reduction in

scores on a test of non-verbal child intelligence in

5-year-old children.

Edwards

et al. (97)

Cohort study 151 children from a birth cohort study conducted by the

Columbia Center for Children’s Environmental Health

(CCCEH) residing in Krakow, Poland. Prenatal airborne

PAH exposure was measured by personal air monitoring.

PAH measures from prenatal personal air monitoring was

positively associated with adverse neurodevelopment in

children.

Genkinger

et al. (98)

As, arsenic; Hg, mercury; Cd, cadmium; Pb, lead; PCB, polychlorinated biphenyls; PAH, polycyclic aromatic hydrocarbons.

of placental T cells and alterations of cord blood cytokine
concentrations were observed in a Bangladeshi population
associated with high maternal As exposure (111). Along the
same line, Lambertini et al. (112) detected a placental-specific

imprinted gene expression panel associated with both maternal
psychosocial stress during pregnancy and birthweight. The
same authors, in a previous work, also showed that alterations
of placental imprinted gene expression were associated with
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FIGURE 2 | Graphical representation of the relationships among development phases, genetic predisposition, and environmental stressor factors that may interfere

with regulatory mechanisms during the early stages of life (from in utero development to puberty).

suboptimal perinatal growth and responsive to exposure to PCBs
and DDE (113). Finally, in a recent epigenome-wide study,
Maccani et al. identified evidence of hypomethylation of the
EMID2 gene in association with in-utero Hg exposure. This
altered methylation status was also found to be linked to adverse
neurobehavioral outcomes during infancy (114).

In addition to data from placental examination and the
bio-monitoring of multiple pollutants in maternal and cord
blood (internal exposome), maternal data collected through
questionnaires (diet, physical activity, lifestyle, stress factors,
socio-demographic characteristics, and use of medication during
pregnancy) and geo-spatial data associated with environmental
monitoring stations could be used to define the external fetal
exposome (both general and specific) and its association with
postnatal health outcomes.

In the context of a highly polluted site, cohort studies
concerning the fetal exposome may be useful for describing the
complexity of chronic multi-toxicant exposure, socioeconomic
determinants, and maternal life-style habits and their combined
effects on the derived population of children. In the case of
heavily contaminated sites, social and physical environmental
toxicants tend to cluster in the most socially disadvantaged
populations (115); thus, a better understanding of these complex
interdependencies may help to prevent health disparities.
Socioeconomic status during childhood has been found to
have greater influence on adult DNA methylation profiles than
socioeconomic status during adult life (116). Moreover, dietary
lifestyle and micronutrient supplementation may play a role in
maintaining DNA stability (117). Nevertheless, the studies on
the combined effects of lifestyles/socioeconomic determinants

and environmental pollutants are poorly represented in the
literature. Indeed, it is well-established that maternal stress
increases blood cortisol levels. The placenta is able to reduce
the amount of cortisol that can reach the fetus through the
11β-HSD2 enzyme (118). At the same time, exposure to Cd
influences the expression and activity of placental 11β-HSD2
(119). Thus, the contemporary presence of stressful conditions
during pregnancy and Cd exposure can irreversibly affect the
hypothalamic-pituitary-adrenal axis via fetal exposure to cortisol.
Another example of the joint effects of the social and physical
environment includes the interaction between NO2 air exposure
and elevated social stress on increasing risk for childhood
asthma (120).

Finally, it is essential to produce consistent data to uncover
the fetal developmental windows and molecular pathways most
vulnerable to the negative influence of toxicants. Discovering
specific biomarkers of prenatal exposure, which may be
predictive for the child health outcomes, will increase our
ability to develop early diagnostic and prophylactic/therapeutic
tools to be applied in pregnant women residing in highly
contaminated areas.

EXISTING BIRTH COHORTS ON PRENATAL
EXPOSOME AND METHODOLOGICAL
ASPECTS

Highly contaminated sites often present serious environmental
contamination scenarios, where pollutants can persist in
the environment for decades even after pollution sources
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are removed. Moreover, in these areas, interaction between
environmental pollutants and other health determinants, such
as social stress, poverty, and limited access to medical services,
may coexist (121). To date, the need to reduce environmental
exposures has been widely highlighted, focusing on the close
link between human health and the environment, as well as the
possible large-scale economic return (122). Birth cohorts are an
approach allowing the integration of the exposures as a whole,
including those related to socioeconomic status, with “omics”
data from biological samples collected at birth and throughout
life. One of the major advantages provided by birth cohort
design is the assessment of the early life environment, studying
in-depth several possible confounders and outcomes by means
of questionnaires, follow-ups based on clinical evaluation, and
biological samples collected at different time points.

The Project on Human Early Life Exposome—HELIX is
the first attempt at developing a multistep statistical analysis
approach based on different tools and methods, also integrating
“omics” into the exposome. To do this, HELIX pooled six existing
longitudinal population-based birth cohort studies in Europe,
measuring the external exposome (individual and outdoor
exposures), integrating the external and internal exposome
(integrating molecular exposure signatures), and evaluating
the impact of the early-life exposome on child health (also
including the effect of multiple exposures) (32). HELIXmeasured
over 200 single environmental exposures of concern for child
health, allowing a detailed analysis of the structure of the
early life exposome, including its correlations, patterns, and
variability (123). On the same emerging line, the Project Health
and Environment-wide Associations based on Large Population
Surveys—HEALS was aimed at identifying the complex links
among genes, environment, and many human diseases by
means of a large collaborative action among existing cohorts in
Europe (124).

Recently, Sarigiannis and Karakitsios, in the context of
COST Action IS1408 on “Industrially Contaminated Sites and
Health Network,” developed a model for the characterization of
the exposome in children living close to a very large landfill
area (125). With a design especially developed for a highly
contaminated area, this project is an attempt to use the exposome
paradigm to better understand the relationships that exist among
the co-determinants of exposures and its effects on the health of
exposed individuals and their progeny.

The exposure of pregnant women to environmental
contaminants present in highly contaminated areas can
severely impact the wellbeing of future generations. The
Italian International Centre of Advanced Study in Environment,
Ecosystem and Human Health (CISAS) project is aimed at
understanding the chemical-physical and biological processes
that regulate the distribution of contaminants in various
environmental matrices, as well as their transfer to the ecosystem
and the human body and consequent health sequelae (126). In
the context of the CISAS project, the “Neonatal Environment and
Health Outcomes” (NEHO) birth cohort has been established
by enrolling pregnant women residing in these contaminated
sites and in surrounding areas. The CISAS project evaluates
pollutants in all the environmental matrices (air, soil, sediment,

inland waters, and sea) as well as the food chain (fish, meat,
eggs, milk, and dairy products, sampled from local producers
of each evaluated area) within three heavily contaminated
sites in southern Italy: two widely industrialized coastal sites
characterized by petrochemical complexes and power plants and
one disused industrial area. Environmental data will be linked
to georeferenced maternal residences, also taking into account
possible daily commuting to work. The NEHO questionnaires
collect information on maternal pre-pregnancy and gestational
health status, lifestyle, and socio-demographic characteristics,
along with smoking habits and possible chemical exposures. The
protocol includes the collection of maternal and cord blood,
along with placental tissue at delivery (126). In the context of
the NEHO cohort, measurements of the levels of toxicants will
be taken from maternal and cord blood as well as the placenta.
Because the placenta has an active role in fetal development,
and the impairment of placental formation, differentiation,
and/or function may affect fetal development, in the context of
the NEHO cohort we will investigate the relationship between
exposure to environmental toxic compounds (both HMs and
POPs) and shifts in gene expression by means of a whole
transcriptome analysis. Finally, follow up of the offspring will
be conducted to uncover the possible consequences of specific
toxicants. The follow-up on children will allow the evaluation of
the possible relationship between the fetal exposome and long-
term health outcomes. To this aim, after delivery, information is
collected on newborns regarding use of medicine, characteristics
of home environments, breastfeeding and nutritional outcomes
(including growth), respiratory disease, metabolic disorders,
neurocognitive development, infections and injuries, and
hospitalizations (also collecting hospital discharge records). The
main objectives of the NEHO cohort are: (1) to understand
processes and mechanisms for the transfer of HMs and POPs
from the environment and the ecosystem to the developing
fetus, (2) discover specific placental biomarkers informative of
fetal exposure, and (3) identify possible primary intervention
strategies aimed at reducing fetal exposure. The implementation
of these milestones could have an impact on the early detection
of negative outcomes during childhood based on placental omics,
as well as on our ability to prioritize intervention strategies.

CONCLUSIONS

The fourth session of the United Nations Environment
Assembly of the UN Environment Programme, Nairobi 2019,
recommended increasing efforts to overcome common health-
related challenges as well as addressing the role of pollution as
a cause of disease (127). Accordingly, the health of pregnant
women in heavily polluted areas is an absolute priority for public
health strategies.

To this end, in our opinion, the use of birth cohorts in
heavily polluted areas represents a great opportunity for a better
comprehension of the mechanisms underlying the relationship
between environment and human health, adopting the in-utero
developmental phase as a useful time window for identifying
the origin of health and disease in childhood and adult life.
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In this context, the human placenta represents a useful matrix
for exploring fetal exposure to environmental contaminants and
possible predisposition to adverse health effects later in life.
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