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Abstract. Cancer immunotherapy has recently drawn remarkable attention as promising
results in the clinic have shown its ability to improve the overall survival, and T cells are
considered to be one of the primary effectors for cancer immunotherapy. Enhanced and
restored T cell tumoricidal activity has shown great potential for killing cancer cells.
Bispecific T cell engagers (TCEs) are a growing class of molecules that are designed to bind
two different antigens on the surface of T cells and cancer cells to bring them in close
proximity and selectively activate effector T cells to kill target cancer cells. New T cell
engagers are being investigated for the treatment of solid tumors. The activity of newly
developed T cell engagers showed a strong correlation with tumor target antigen expression.
However, the correlation between tumor-associated antigen expression and overall response
of cancer patients is poorly understood. In this study, we used a well-calibrated quantitative
systems pharmacology (QSP) model extended to bispecific T cell engagers to explore their
efficacy and identify potential biomarkers. In principle, patient-specific response can be
predicted through this model according to each patient’s individual characteristics. This
extended QSP model has been calibrated with available experimental data and provides
predictions of patients’ response to TCE treatment.

KEY WORDS: cancer systems biology; immuno-oncology; cancer immunotherapy; computational
biology; colorectal cancer.

INTRODUCTION

Colorectal cancer (CRC) is the third most common
cancer diagnosed in the USA for both men and women.
Based on the American Cancer Society’s estimates, there
were about 100,000 new cases of colon cancer and 50,000 new
cases of rectal cancer in 2019. Colorectal cancer is the third
leading cause of cancer-related deaths for men and women
and the second most common cause of cancer deaths when
genders are combined. However, due to advances in screen-
ing techniques and improvements in treatments over the last
decades, the overall death rate from colorectal cancer has

been falling (1). Chemotherapy and targeted therapy have
shown great potential to improve overall survival, but the side
effects and the development of tumor resistance constrain
their applications and development prospects (2). Recently,
several immune checkpoint inhibitors such as anti-PD-1, anti-
PD-L1, and anti-CTLA4 monoclonal antibodies (mAbs) have
shown high clinical efficacy particularly in melanoma and in
lung cancer (3–5). However, existing immunological check-
point therapy has little effect on colorectal cancer, especially
for metastatic CRC (mCRC) patients with proficient mis-
match repair (pMMR) or microsatellite stable (MSS) tumors.
More effective therapeutic strategies are urgently needed for
these patients (6,7). All abbreviations are described in
Table S1.

T cell bispecific antibodies, known as bispecific T cell
engagers (TCEs), are a class of engineered bispecific mono-
clonal antibodies, which can simultaneously bind to a tumor-
selective cell surface antigen and receptor (TCR)–associated
protein CD3 to activate T cells in an MHC I–independent
pathway. The following release of cytokines, cytotoxic
granules, and chemokines and proliferation of cytotoxic T
cells lead to cancer cell apoptosis. Catumaxomab, the first
approved bispecific antibody, targets epithelial cell adhesion
molecule (EpCAM) in cancer cells, and CD3 in T cells
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showed promising therapeutic effects in the treatment of
malignant ascites. However, the major side effect of
catumaxomab was from the off-target binding of its active
Fc region to FcγR-expressing Kupffer cells in the liver,
leading to severe T cell–mediated hepatotoxicity. In addition,
catumaxomab was withdrawn in 2017 for commercial reasons,
but the outstanding therapeutic effect of catumaxomab
continues to inspire the development of bispecific antibodies.
Blinatumomab, an anti-CD19 and anti-CD3 bispecific anti-
body, has been approved by FDA for the treatment of B cell
acute lymphocytic leukemia. This antibody is made up of two
single-chain variable fragments (scFv) connected by a short
peptide linker without an IgG Fc domain. This design reduces
the risk of developing detrimental downstream immune
responses caused by other cells that are activated by Fc
domain; however, this also reduces the serum half-life of
blinatumomab to about 2 h in humans. A continuous
intravenous infusion device is needed for administrating
blinatumomab, which may limit its broader application (8).
In addition, TCEs have shown less success in solid tumors
than hematologic malignancies, most likely due to the poor T
cell infiltration (2).

Despite these challenges, several TCEs have entered
clinical trials and there are many more ongoing studies (8).
There are now over 20 technology platforms for creating and
designing TCEs (9). For colorectal cancer, Bacac et al. and
Lehmann et al. have reported the development of a novel T
cell bispecific CEA-TCB (T cell bispecific) antibody
(cibisatamab, RG7802, RO6958688) for targeting
carcinoembryonic antigen (CEA) on tumor cells and CD3
on T cells (10,11). The activity of their CEA-TCB was
assessed using 110 colorectal cancer cell lines. High potency
was demonstrated in cell lines with high CEA expression (>
10,000 CEA-binding sites/cell). Results showed promising
antitumor activity of TCEs against CRC both in vitro and
in vivo. Herrmann et al. reported the ability of MT110, an
epithelial cell adhesion molecule (EpCAM)/CD3-a antibody,
to eliminate colorectal tumor initiating cells (12). The activity
of MT110 is strongly dependent on EpCAM expression, and
the most frequent EpCAM expression in colorectal cancers
makes it a good candidate for this treatment.

Despite the recent progress in TCE development, there
is a lack of good predictive biomarkers that can efficiently
distinguish responders from non-responders (13). Many new
colorectal biomarkers for earlier diagnosis, selection of
therapy, and prognosis of colorectal cancer have been
identified by recent advances in the molecular subtypes of
colorectal cancer, such as methylation of DNA and micro-
RNA biogenesis. However, these biomarkers only showed
promising results in small-scale studies. Large-scale studies
are indispensable for validating their effectiveness. This is an
area where employing quantitative systems pharmacology
(QSP) models could be constructive and lead to further
progress.

Previous studies have demonstrated QSP modeling as a
promising approach for addressing current challenges in
translational pharmacology (14–20). A mechanistic PK/PD
model was used by Betts et al. to characterize the in vivo PK/
PD relationship for a P-cadherin/CD3 bispecific construct in
mouse (21). Yuraszeck et al. successfully used their QSP
model to identify key drivers of response to blinatumomab

(22). Demin et al. also reported using a QSP model to
demonstrate that treatment outcome of blinatumomab is
dependent on target expression, level of immune cells,
disease progression rate, and expression of PD-L1 on
leukemic cells (23). However, these studies focused on either
the efficacy in mice or hematological malignancy. A human
QSP model to simulate TCE treatment for solid tumors is
currently lacking. Our recent study has demonstrated the
development of a QSP model to explore the anti-tumor
immune response in human non-small cell lung cancer
(NSCLC) (24). The model has been calibrated with the
available clinical data. Potential biomarkers as well as
patient-specific response based on the patient parameters
were identified successfully by this model. The model thus
provides a solid starting point for modeling tumor immunity
and response to immunotherapy to identify biomarkers for
different cancer types and perform virtual clinical trials to
predict the response in a large cohort of virtual patients.

In this work, we have extended our QSP model by
adding a module describing TCE immunotherapy and applied
it to colorectal cancer in human. As an important feature of
TCEs, the activation of both effector T cells (Teffs) and
regulatory T cells (Tregs) is included in this model (25).
Taken together, this extended model aims to provide
understanding of the complex processes and identify impor-
tant biomarkers associated with the outcomes of TCE
treatment. The validation of these identified biomarkers is
essential for novel drug design and for design and analysis of
clinical trials.

METHOD

Model Structure

The quantitative systems pharmacology model was
developed by Jafarnejad et al. to study the anti-PD-1 therapy
in the context of NSCLC, and detailed governing equations
have been formulated and explained in detail (24). Four
compartments are included in this model as central (blood),
peripheral (other tissues and organs), tumor, and tumor-
draining lymph node (TDLN) to represent the patient, and
the whole model was defined by a system of ordinary
differential equations (ODEs) and algebraic equations. The
model has a modular structure to make it easier to add
additional modules or modify existing ones, and it includes
cancer cell, T cell, immune checkpoint, antibody PK, and
antigen presentation modules. Each module represents the
dynamics of one major cellular and molecular species such as
T cells, cancer cells, antigen-presenting cells, antigens, check-
point ligands and receptors, and antibodies. This cellular- and
molecularly detailed model makes it easier to expand with
additional modules describing other species or therapeutic
agents. To incorporate TCEs, a new TCE-centered module
describing its dynamics was added, and the pharmacokinetics
was added to previously published antibody PK module
(Fig. 1a). With the inclusion of TCE, the model comprises
68 ODEs and 105 algebraic equations in total. Full equations
describing reactions and model parameters were reported by
Jafarnejad et al. (24); however, for the sake of completeness
and for this paper to be self-contained, in the Supplementary
Information, we present the Systems Biology Markup
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Language (SBML) code for the entire model, including all
newly added equations for TCE. The SBML version of the
computer code includes all equations, rules, and events of
tumor growth process, antigen processing and presentation, T
cell activation, proliferation, and distribution. In this study,
we focused on cibisatamab, RO6958688; RG7802, which is
bivalent for the target carcinoembryonic antigen (CEA) on
cancer cells and monovalent for CD3 on T cells. PK
parameters were fitted to the data reported and the simulated
plasma concentration of cibisatamab together with the clinical
measurements at dose levels of 80, 160, 200, 300, 400 mg in
the central compartment (Vc 0 3.45 L) (Fig. S1). In our
model, we considered the CD3 expression on both Teff and
Treg cells; binding to CD3 on Teff or Treg leads to distinct
events and will be discussed in detail. However, it should be
noted that the model is general and could be readily adapted
to apply to other TCEs.

TCE-Induced Ternary Complex Formation in Tumor
Compartment

ATCE module was developed to describe the binding of
TCEs to CEA on cancer cells and CD3 on T cells in the
tumor compartment to form bivalent TCE ternary complex
(biTTC). The formation of stable biTTCs was assumed to
drive cancer cell killing by translating the density of biTTCs
to the TCE efficacy using the Hill equation. Description of all

parameters and abbreviations is presented in Tables S1 and
S2. In the tumor compartment, TCEs can bind to CEA or
CD3, respectively, to form CEA-TCE or CD3-TCE dimers or
bind to CEA and CD3 simultaneously to form the functional
biTTCs or nonfunctional monovalent TCE ternary complex
(moTTC) (Fig. 1b). Binding of TCEs to CD3 on Teff or Treg
cells was determined by kon_CD3TCE, koff_CD3TCE, and
number of CD3 on the surface of Teff or Treg cells. Similarly,
the other two arms of TCE can bind to one or two CEA on
the surface of cancer cells depending on the kon_CEATCE,
koff_CEATCE, and intrinsic antibody cross-arm binding
efficiency λ, which has been explored by Harms et al. (26).
The expressions of CD3 and CEA on cell surface were taken
from literature (10,27–30). The expression can vary widely for
different patients and thus was added to the list of parameters
for sensitivity analysis.

TCE Module Calibration

The TCE module was first used to explore the effect of
TCE dosing and CEA expression on the Hill function used to
translate biTTC formation to TCE efficacy. For this purpose,
the TCE module is composed of the tumor compartment
only. This mini-model was calibrated based on the results of
Bacac et al. and Lehmann et al. (10,11) to identify several
important parameters that determine the efficacy of TCEs
such as the Hill equation parameters of biTTC density for

Fig. 1. a Diagram of the main cellular and molecular interactions implemented in the model. The figure is adapted from
reference (24). b (i) Structure of TCE ternary complex type 1—bivalent binding (biTTC). (ii) Structure of TCE ternary
complex type 2—monovalent binding (moTTC)
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half-maximal T cell killing, intrinsic antibody cross-arm
binding efficiency λ, Hill coefficient, and enhanced cancer
cell killing rate induced by TCEs. Some of these parameters
are part of the parameter sensitivity analysis. Specified
amounts of CD8+ T cells, peripheral blood mononuclear cells
(PBMCs), and cancer cells treated with different TCE
concentrations in a fixed effector vs target cells (E/T) ratio
proposed by Bacac et al. and Lehmann et al. were added to
this module. The mini-model was then fitted to in vitro
experimental data (10).

Parameter Sensitivity Analysis

Parameter sensitivity analysis (PSA) was performed to
assess the sensitivity of the QSP model with incorporated
TCE module to a set of parameters such as cancer cells killing
rate by effector T cells, tumor growth rate, antigen–MHC II
binding affinity, tumor mutational burden (TMB), antigen
expression level on cancer cells, CD3 expression level on Teff
cells and Treg cells, CEA-TCE, and CD3-TCE binding
affinity, as some of these parameters may vary widely among
different patients and result in significantly different thera-
peutic effects. Latin hypercube sampling (LHS) was used to
assign the values for this set of parameters with uniform
transformation to study the effect of these inputs on the
model outcomes such as tumor volume, Teff/Treg cell ratio in
tumor compartment, and CD8+ T cell clonality in blood.
Partial rank correlation coefficient (PRCC) analysis was
performed to identify the most influential factors from the
simulation results and was implemented by using MATLAB
(MathWorks, Natick, MA) Global Optimization Toolbox.

Statistical Analysis

Statistical analysis was performed for virtual patients’
subcohorts. Virtual patients were divided into responders
including complete response/partial response (PR/CR) and
non-responders including stable disease (SD) and progressive
disease (PD) based on response evaluation criteria in solid
tumors, RECIST v1.1. Wilcoxon test was used to analyze the
differences between responders and non-responders under
the TCE treatment using ggpubr package embedded in

RStudio v1.2. The impact of sensitive parameters on the
overall response rate was also studied with 95% Agresti-
Coull confidence intervals (CIs) (31).

RESULTS

TCE Module

Module Diagram

Our previously published immuno-oncology QSP model
(24) was extended by incorporating TCE dynamics as an
independent module (Fig. 2). The governing equations for the
module are presented in the Supplementary Information.
Mature Teff, Treg, and TCEs are transported from the central
compartment to the tumor compartment. Teff and Treg can
be recruited by TCEs to retarget tumor cells in an MHC-
independent pathway (32). TCE-induced activation of Teff
was translated to cancer cell killing, and activation of Tregs
was translated into Teff exhaustion using two distinct Hill
equations (Supplementary Information Eqs. 9–12). As an
independent module from the QSP model, it can be used to
study the in vitro activity of TCEs.

Module Simulation Results

Bacac et al. reported mechanistic insights into the activity
and mode of action of CEA-TCB; they found that tumor
activity of CEA-TCB was positively correlated with CEA
expression (10). The TCE module was calibrated against
in vitro experimental results by adding 20 nM CEA-TCB to a
constant number of PBMCs and tumor cells, using an E/T
ratio of 10:1. The aim was to explore the effect of CEA
expression on the Hill equation used to translate biTTC
formation to TCE efficacy. Similar to the results reported by
Bacac et al., our model found that percent tumor lysis was
significantly correlated to the number of CEA binding sites,
and a threshold of 1.0E+4 sites/cell was required for tumor
cell lysis (Fig. S2). MKN45, LS174T, HT-29, and CCD-841
cell lines, which have different levels of CEA expression,
were also simulated, and the results showed similar trends in
extent tumor lysis as reported by Bacac et al. (10) (Fig. S3).

Fig. 2. TCE module diagram. This diagram illustrates the interactions
between TCEs, cancer cells, and T cells. T cells or peripheral blood
mononuclear cells (PBMC) and cancer cells can be added based on
in vitro experiment settings when using this module alone or
determined by cancer cell growth rate, T cell transport, and antibody
pharmacokinetic when combining with QSP model
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The trend of these four cell lines is in a good agreement to
Bacac’s Fig. 3a except the cell line LS-174T. This difference
may due to the experimental error since the measurement of
tumor lysis was highly dependent on the time and release rate
of lactate dehydrogenase (LDH). However, it has confirmed
by their experiments that the high CEA expression always
leads to better killing of cancer cell and the CEA-TCB always
had very good killing of MKN45 cell line with the highest
CEA expression in their study, which was consistent with our
simulation results in Figs. S2 and S3. By fitting our module to
the findings of Bacac et al., we were able to estimate TCE
concentration required for half-maximal activation, Hill
coefficient, and intrinsic antibody cross-arm binding effi-
ciency λ.

Once the Hill equation parameters were determined, we
investigated the effects of several key parameters that may
influence formation of biTTC and TCE potency, including
intrinsic cross-arm binding efficiency λ, CEA expression,
CEA-TCE binding affinity, and CD3-TCE binding affinity.
An important assumption in this model is that the number of
biTTC formed in the immunological synapse determines
efficacy, since high-avidity binding to tumor targets can
facilitate T cell activation. Formation of moTTC or other
species such as CEA-TCE and CD3-TCE and binding to
soluble CEA do not affect activity in this model.

Effect of CEA Expression on the Density of biTTC and
moTTC

Different antibodies targeting CEA have different cross-
arm binding affinities, thus varying parameter λ. Harms et al.
have reported that the value of intrinsic cross-arm binding
efficiency can significantly affect functional affinity in a
context dependent manner (26). The affect of λ on biTTC
formation was investigated by varying CEA expression from
5E+3 to 5E+5 sites/cell. The total number of CD3 binding
sites (6.1E+4 sites/cell) was fixed (27–30). In the case of low
or moderate CEA expression (5E+3 and 5E+4 binding sites/
cell), λ was observed to have a large impact on biTTC density
(Fig. 3a, b). Low levels of biTTC formation were observed for
antibody concentration greater than 100 nM when λ was set
equal to 1 or 100. However, biTTC formation was relatively
insensitive to TCE concentration when λ was greater than
100. The sensitivity of biTTC formation to λ decreased as the
number of CEA binding sites increased from 5E+3 to 5E+5
(Fig. 3). When CEA expression was high (5E+5 sites/cell), λ
had minimal impact on biTTC density, for TCE concentra-
tions ≤ 100 nM (Fig. 3c).

Effect of CEA-TCE Binding Affinity Kd on the Density of
biTTC and moTTC

It is widely recognized that tumor antigen affinity is a key
factor governing the potency of monoclonal antibodies, as
well as TCEs. Higher affinity has been reported to show
better potency (33–36). Bivalent binding results in much
higher functional affinity between TCEs and tumor cells
resulting in better potency (37–39). CEA binding affinity
played an important role with respect to TCE activity and is
an important factor for achieving high avidity. To assess the
impact of λ and affinity on extent biTTC formation, CEA

binding affinity was varied from 0.01 to 100 nM and CEA
expression was fixed to 5E+4 binding sites/cell.

When CEA monovalent binding affinity was high
(0.01 nM), biTTC density was less sensitive to TCE concen-
tration and λ, compared with weaker monovalent binding
affinities (Fig. 4a). For intermediate (1 nM) and low (100 nM)
monovalent CEA binding affinities, λ played key role in
reducing the sensitivity of biTTC density to TCE concentra-
tion (Fig. 4b, c). This indicates that when designing TCEs
with bivalent binding, monovalent tumor antigen affinity is
unquestionably important; however, if this binding affinity
does reach a threshold level, the assistance of a high λ is
required.

Effect of CD3-TCE Binding Affinity Kd on the Density of
biTTC and moTTC

With few exceptions, TCEs are designed with monova-
lent CD3 binding to prevent T cell activation in the absence
of tumor target engagement. The impact of CD3 affinity on
TCE activity remains unclear, and published literature has
shown conflicting results (34,40,41). The effect of varying
CD3 affinity, with constant CEA affinity and avidity (anti-
CEA 0 130 nM and λ 0 1000 for cibisatamab), showed that for
low CEA expression (5E+3 and 5E+4 sites/cell), higher anti-
CD3 affinity did not lead to higher biTTC density. On the
contrary, low anti-CD3 affinity resulted in higher biTTC
density, which corresponds to better potency (Fig. 5a, b). The
reason for this counterintuitive behavior is that higher anti-
CD3 affinity leads to the formation of more stable TCE-CD3
and CEA-TCE complexes, which impeded further generation
of ternary complexes such as biTTC. This phenomenon was
not observed for high CEA expression (5E+5 sites/cell) since
there were more CEA binding sites available to form ternary
structures with stable TCE-CD3 complexes (Fig. 5c). Increas-
ing λ could reduce the effect CD3 affinity (Fig. 5e); however,
since these parameters were known in this study for
cibisatamab, and the impact of these parameters on the
effects of TCEs was not the focus of this study, we will not
discuss it in depth here. It is obvious that the effects of CD3
are complex and need to be carefully considered and tested
when designing TCEs.

Bell-Shaped Concentration Relationship Observed for TCEs

The efficacy of TCEs is dependent on the extent of
biTTC formation. A bell-shaped concentration-response
relationship has been reported for other TCEs with monova-
lent tumor antigen binding (21). This phenomenon was
shown to be true for bivalent binding TCEs, based on model
simulations (Fig. 6a). The percentage of tumor lysis followed
a bell-shaped relationship with a wide plateau, which was
dependent on the formation of biTTC (light blue line in Fig.
6b). When the TCE concentration was low from 0.001 to
0.1 nM, biTTC density increased until reaching a peak around
0.1 nM. However, biTTC density slowly decreased when the
TCE concentration increased from 0.1 to 10,000 nM, which
did not significantly affect potency. When the concentration
increases further beyond 10,000 nM, the density of other
species increased significantly such as CEA-TCE dimer,
CEA-CEA-TCE dimer, and CD3-TCE dimer, causing a
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significant drop in potency. However, the concentration
ranges mentioned above depend on Kd, tumor-associated
antigen expression, CD3 expression, and the ratio of cancer
cells to Teff. Appropriate drug dosing regimen still requires
detailed parameters of each drug and toxicological studies.
Currently, we can only compute the changes in biTTC density
following the increase in antibody concentration from a
kinetic perspective.

QUANTITATIVE SYSTEMS PHARMACOLOGY
MODEL INCLUDING THE TCE MODULE

The results from the first part proved the reliability of
our TCE module to describe the in vitro dynamics of CEA-
TCEs. After incorporating the TCE module into the
previously described QSP model (24), we were able to
predict the objective response for a virtual cohort of
colorectal patients following cibisatamab monotherapy.
RECIST category responses were calculated after a treat-
ment period of 400 days when all patients who had PR/CR
and SD almost reached convergence and their tumor size
would not change anymore for a virtual cohort of 1750
patients that were created by sampling parameters within
certain ranges based on clinical and experimental evidence.
The baseline parameters of these virtual patients
(Supplementary Information, Table S2) and their ranges
(Supplementary Information, Table S3) are based on

published literature. The ranges for parameters were
chosen to be physiologically reasonable if experimental
measurements are unavailable. Though we do not have the
exact distribution of all parameters, we made an effort to
ensure that the patients generated by the model are
plausible. Those abnormal virtual patients with implausible
physiological status were screened out and excluded; that
was how we screened out 250/2000 patients, with 1750/2000
virtual patients remaining. A sensitivity analysis was
performed for primary model parameters to identify the
most influential ones. It is worth mentioning that we also
varied the CEA-TCE and CD3-TCE binding affinity in
order to study the effect of these parameters on the
therapeutic effect, even though these parameters are
known for cibisatamab. Although varying these two pa-
rameters will affect the overall response rate, the focus of
the model is to find the most reliable predictive biomarkers
rather than the overall response rate.

Potential Biomarkers for TCE Monotherapy

The overall response of cibisatamab monotherapy in
colorectal cancer was investigated by simulating 2000
virtual humans characterized by different sets of model
parameters. Parameters and their ranges are listed in the
Supplementary Information. In the simulations, for each
individual, the tumor starts growing from a single cell and

Fig. 3. Effect of intrinsic cross-arm binding efficiency λ on biTTC and moTTC density when varying CEA
expression on cancer cells. a CEA expression 0 5E+3 sites/cell. b CEA expression 0 5E+4 sites/cell. c CEA
expression 0 5E+5 sites/cell. biTTC density at λ 0 1 ( ), moTTC density at λ 0 1 ( ). biTTC
density at λ 0 100 ( ), moTTC density at λ 0 100 ( ). biTTC density at λ 0 10,000 ( ),
moTTC density at λ 0 10,000 ( )
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continues to grow until it reaches a certain cell number or
diameter. During this simulation, there were 1750 virtual
patients whose tumor size reached the preset initial tumor
diameter; the rest of them (i.e., 250) who did not develop
tumors or with implausible physiological status were
considered non-patients. These were considered the initial
conditions for this cohort of virtual patients. From that
point, we studied the patients’ response to cibisatamab
monotherapy. Under condi t ions mimicking the
NCT02324257 trial, virtual patients with metastatic colo-
rectal cancer (mCRC) were treated with once weekly
cibisatamab doses of 60–600 mg. We compared the overall
response rates of all virtual patients treated with 60 mg or
600 mg cibisatamab and found no significant differences (<
1%), which was consistent with the clinical trial results.
Thus, for subsequent simulations, we chose a 60-mg dose
administered once weekly, after the tumor size reached its
preset value. The simulated time-dependent percent tumor
size changes are shown in Fig. 7a (spider plot) based on
RECIST criteria (42). Among these patients, at 400 days,
130/1750 had PR/CR (7.4%), 123/1750 had SD (7.0%), and
1497/1750 had PD (85.5%). Note that the simulations show
a number of cases where tumor growth was non-monotonic,
i.e., the diameter initially increased and then tumor growth
reversed and the tumor responded. Conversely, there were
cases where the tumor initially responded, and then the
tumor began to regrow. We note that the predicted percent

response at present cannot be compared with clinical data
since the only data reported were from a small and short-
term clinical trial. In this trial, CT scans within days after
the first dose showed 5% PR; 11% showed preliminary
tumor size reduction, and at week 4–6, 28% of patients
showed a metabolic partial response by PET scan (43). For
example, in phase 1a and 1b, the response rates among 31
patients were reported as 6%, 39%, and 52% for PR/CR,
SD, and PD, respectively. Thus, quantitative comparisons
between the model-predicted and observed responses have
to await data from larger clinical trials. Even then, it is
possible that important parameters from treated patient
will not be available such as distribution of all patients’
TMB, density of Teff and Treg in tumor, and expression of
target antigens. Nevertheless, virtual patients in our model
simulations can reflect a realistic parameter set. The main
goal of simulating a larger patient sample size is to capture
important biomarkers that may affect patient outcomes. We
will further explore the variation of parameters within the
simulated cohort below and show how these variations
affect response rates (Fig. 9).

We investigated the sensitivity of predicted tumor
volume against some of the parameters using partial rank
correlation coefficient (PRCC), whose values range be-
tween − 1 (negative effect) and + 1 (positive effect) (44).
The results are presented as a heatmap in Fig. 7b; the
values of the PRCC are color-coded as indicated on the

Fig. 4. Effect of intrinsic cross-arm binding efficiency λ on biTTC and moTTC density when varying
binding affinity Kd (CEA-TCE) a Kd 0 0.01 nM. b Kd 0 1 nM. c Kd 0 100 nM. biTTC density at λ 0 1
( ), moTTC density at λ 0 1 ( ). biTTC density at λ 0 100 ( ), moTTC density at λ 0 100
( ). biTTC density at λ 0 10,000 ( ), moTTC density at λ 0 10,000 ( )
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vertical strip. Tumor growth rate, TMB, patients’ initial
tumor diameter, and CEA expression on cancer cells were
significantly positively correlated to the tumor volume. We
should point out that TMB in our model is defined as the
number of activated T cell clones (24). This measure is
related to the conventionally defined TMB as the number
of mutations found in the DNA of cancer cells (45). In
addition to tumor volume, tumor CEA expression and
intrinsic cross-arm binding efficiency λ affected the TCE
Hill equation, which is predicted to be an important factor

for cibisatamab efficacy. These results explain how different
parameter sets affect the immune response, resulting in
distinct therapeutic effects. To better illustrate the effect of
several sensitive parameters, the results are also shown as
waterfall plots (Fig. 7c). Higher TMB and higher CEA
expression on cancer cell corresponded to smaller tumor
volume, indicating better efficacy (Fig. 7c (i), (ii)), whereas
CD3 expression on Teff and Treg cells did not affect the
outcome and no correlation was observed from the
waterfall plot (Fig. 7c (iii), (iv)).

Fig. 5. Effect of CD3 binding affinity Kd (CD3-TCE) on biTTC and moTTC density. a CEA expression 0
5E+3 sites/cell. b CEA expression 0 5E+4 sites/cell. c CEA expression 0 5E+5 sites/cell. d Density of CD3-
TCE dimer. e Effect of elevated λ (0 10,000) on the density of biTTC and moTTC. biTTC density at Kd 0

0.01 ( ), moTTC density at Kd 0 0.01 ( ). biTTC density at Kd 0 1 ( ), moTTC density at
Kd 0 1 ( ). biTTC density at Kd 0 100 ( ), moTTC density at Kd 0 100 ( ). CD3-TCE dimer
density at Kd 0 0.01 ( ), 1 ( ) and 100 nM ( )
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Statistical Analysis for Non-responders and Responders

Due to the high sensitivity of tumor growth rate to TMB
and CEA expression, the color of other sensitive parameters
in PRCC was weakened so that it cannot be clearly seen in
Fig. 7b. Statistical comparisons were conducted between the
non-responders (SD and PD) and responders (PR/CR) to
identify the most significant differences between them and to
more clearly present the effect of other important parameters
of interest. We carefully analyzed the distributions of TMB,
MHC II antigen affinity, tumor CEA expression, intrinsic
cross-arm binding efficiency λ, CD3 expression on Treg and
Teff cells, Teff and Treg densities in tumor as well as their
ratio (Teff/Treg), and CD3 binding affinity. Clearly TMB was
significantly higher in responders than non-responders
(Fig. 8a), whereas MHC II antigen affinity did not signifi-
cantly affect the response (Fig. 8b). Responders had much
higher CEA expression on cancer cells and stronger intrinsic
cross-arm binding efficiency λ, leading to stable formation of
biTTC (Fig. 8c, d). However, neither CD3 expression on Teff
or Treg affected the response (Fig. 8e, f). Responders also
had so-called hot tumors with high levels of both Teff and
Treg infiltration (Fig. 8g, h). The Teff/Treg ratio was also
higher in responders (Fig. 8l). Since the kon of CD3-TCE was
set to a constant, changing koff represents a change in Kd of
CD3-TCE. Although not particularly significant, higher koff
(low affinity) instead corresponds to better response (Fig. 8i),
which was consistent with the aforementioned in vitro results
(“Effect of CD3-TCE binding affinity Kd on the density of
biTTC and moTTC” section).

In order to more intuitively express the impact of these
parameters on the overall response rate, we divided the 1750
virtual patients into several subgroups and then calculated the
overall response rate with 95% confidence intervals for
patients in these subgroups, with parameters above and
below the median value (Table I). It is notable that the
overall response rate of virtual patients who had TMB or
Teff/Treg ratio lower than the median was 0%, which
indicated that the overall response rate was highly dependent
on the values of these two parameters. CEA expression,
intrinsic cross-arm binding efficiency λ, CD3 binding affinity,
and the density of Teff and Treg in tumor also lead to
significantly different overall response rates. However, MHC

II antigen affinity and CD3 expression on Teff and Treg had
relatively little effect on the overall response rate.

To gain insight into the impact of various parameters on
how well cancer patients respond to cibisatamab treatment
based on RECIST, all plausible virtual patients in our study
were divided into different intervals according to the distri-
bution of various parameters to calculate the overall response
rate when the parameters were increasing; the results are
presented in Fig. 9. The virtual patients are evenly divided
into 17 subgroups, and within each subgroup are sorted by
the selected parameter values in ascending order. The
response status of each subgroup is plotted against the
median parameter values in each subgroup. The number of
patients falling in the PR/CR and SD region gradually
increased with the increase of TMB and CEA expression on
tumor cells (Fig. 9a, b) but did not change with CD3
expression (Fig. 9c, d). A negative correlation was found
between patients with PR/CR or SD and tumor growth rate,
indicating that faster tumor growth rates generally lead to
poorer responses (Fig. 9e). Although patients’ subgroups with
lower or higher MHC II antigen affinity showed similar
overall response rate (Table I), a negative correlation was
found between patients with PR/CR or SD and MHC II
antigen affinity when MHC II antigen affinity was larger than
10−7 M, indicating that MHC II antigen affinity determines
the efficiency of antigen-presenting cells and low MHC II
antigen affinity (> 10−7 M) lead to poorer responses (Fig. 9f).
This analysis provides rational hypotheses for the possible
discrepancy between the outcome of clinical trials and the
current simulations. Figure 9 shows a wider range of possible
outcomes depending on the characteristics of patient cohorts.

DISCUSSION

T cell engagers, as a class of bispecific antibodies, have
attracted a lot of attention recently due to their unique ability
to activate cytotoxic T cells in an MHC-independent manner,
thereby releasing cytokines and cytotoxic granules that inhibit
tumor growth. Currently, two approved bispecific antibodies
(one of the two is a TCE) are in clinical practice and about
100 are in clinical development (8,9). As an engineered
antibody, there are many factors to consider carefully in the
design process, such as the antibody format, target antigen on

Fig. 6. a Schematic of the bell-shaped concentration relationship observed for TCEs. b Primary axis:
density of biTTC ( ), moTTC ( ), CEA-TCE dimer ( ), CEACEA-TCE trimer ( );
secondary y-axis: CD3-TCE dimer ( )
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the T cell, tumor target antigen, and affinity and valency for
both T cell and tumor antigens. These factors will ultimately
determine TCE potency. These factors may be dependent on
the cancer cell type, and there is currently a lack of effective
ways to study the impact of changes in these factors. The
TCE module described here provides a tool to solve this issue
and provides a means for guiding the design of new TCEs,
improving current TCEs, and can be used as an aid for
designing and analyzing clinical trials.

Our TCE module has corroborated the importance of the
biTCC formation for potent anticancer activity, and high-avidity is
an important prerequisite for maintaining high biTCC density
especially for those cells with low tumor antigen expression.
Moderate to high monovalent binding affinity was also essential,
since lowaffinity tumor antigenbinding, even in thepresenceof high
λ, resulted in suboptimal biTCC density. In addition to handling
bivalent TCEs, our module can be readily modified to study
monovalent TCEs by modifying the governing equations.

Optimization of CD3 binding affinity is another viable
path for improving TCE potency. To avoid tumor target-
antigen–independent T cell activation, monovalent binding to
CD3 is preferred. Interestingly, increasing CD3 affinity was
not beneficial for stable biTTC formation in this model. This
finding is consistent with Bortoletto et al. who observed

reduced T cell activation with increasing CD3 binding affinity
(41). In other studies, a positive correlation between the
tumor cell killing and CD3 binding affinity was also reported
by Ellwanger et al. using different anti-CD3 antibodies, target
antigens, and formats (34). High anti-CD3 binding affinity has
been associated with preferential distribution to CD3-rich
lymphoid tissues and less effective tumor distribution. Opti-
mization of CD3 affinity needs to consider many factors, and
our model can provide some aspects of the impact of anti-
CD3 affinity on drug efficacy (46).

The relationship between biTTC density and antibody
concentration can also be monitored by our model under the
influence of various factors. The amount of all TCE-related
species can be monitored to study how they change with
increasing TCE concentration. For TCEs with fixed parame-
ters, our model can quickly find a reasonable range of
antibody concentrations for optimal efficacy. When designing
bispecific antibodies, our model can also be used to predict
the appropriate range of binding parameters to support an
optimal dose regimen, especially when considering combina-
tion therapies.

In addition to providing theoretical guidance for molecular
design using the newly developed TCE module, our previously
published QSP models demonstrated the ability to model tumor

PD

a

b

SD

PR/CR

Fig. 7. a Percent change in tumor size represented using RECIST criteria (a “spider” plot);
note the diversity of the responses for different virtual patients. b The partial rank
correlation coefficient (PRCC) for individual parameters. c (i) Waterfall plots for 1750
simulations while varying (i) TMB, (ii) CEA expression, (iii) CD3 expression on Teff cells,
and (iv) CD3 expression on Treg cells
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immunity and response to immune checkpoint inhibitors
(16,18,24). The models were also used for biomarker discovery
and performing virtual clinical trials by integrating anti-tumor
immune response, antigen processing/presentation, and T cell
priming in lymph nodes. The validated model provided a starting
point for the study of TCEs. We integrated the new TCE module
with the whole QSP model while keeping the main QSP model
unchanged, enabling a virtual clinical trial to be performed for
cibisatamab in colorectal cancer patients. All simulations started
from a single cancer cell, thereby capturing individual initial
conditions before cibisatamab treatment. Progression of the tumor
was then simulated over the next 400 days to observe tumor size
changes and identify potential biomarkers.

TMB was one of the most important predictive biomarkers
affecting tumor size. It directly affects the expansion of Teff cells
and higher TMB corresponds to higher Tcell density andTeff/Treg
ratio in tumor.As predicted by ourmodel, lowTMB corresponded
to a low response rate. There was no responder found when either
TMB or Teff/Treg ratio was below the median. Other potential
biomarkers such as CEA expression and intrinsic cross-arm
binding efficiency λ showed a positive correlation with overall
response rates. Interestingly, patient cohorts with different CEA
expression levels showed different sensitivity to λ. For patients with
intermediate CEA expression (1E+4–3E+5 sites/cell), λ has
significant impact on tumor diameter, sinceλ ensured the formation
of stable biTTC for cells with lowerCEAexpression; for highCEA
expression cells (3E+5–1E+6 sites/cell), the sensitivity was reduced
since the effect of λ on high expression tumor cells was moderate
(Fig. S4A,B). These observations are also consistent with the
results in “Effect of CEA expression on the density of biTTC and

moTTC” section, i.e., λ had little effect on cells with high tumor
target antigen expression. Anti-CD3 affinity (koff of CD3-TCE)
was negatively correlated with overall response rates. These are
consistent with the predictions of the stand-alone TCE module.

CD3 expression on Teff and Treg cells was based on
available experimental measurements; our model limited the
CD3 expression to the data reported in the literature and
within this range had little effect on TCE efficacy. Impor-
tantly, it has been reported that Treg cells can also be
activated by TCEs and have the potential to inhibit the
activity of Teff cells, even though the overall response rate
was highly dependent on the Teff/Treg ratio. However, our
model predicted that the impact of Treg on Teff cells can be
ignored. The reason being that there are three main ways of
T cell exhaustion including basic apoptosis of T cells,
additional death caused by Treg and cancer cells. Typically,
non-responders had faster tumor growth rate resulting in
larger tumor with more cancer cells. These cancer cells would
kill more Teff through several pathways. The death of Teff by
Treg may not be able to show significant impact on the
number of Teff, but the overall death rate of Teff was a very
sensitive parameter, which corresponded to Teff density in
tumor and Teff/Treg ratio. Other related reports also pointed
out that CD8+ T cells respond much faster by cross-linking
via bispecific antibodies than do CD4+ T cells and many other
studies have shown successful treatment with bispecific
antibodies in the presence of Tregs (9,12,46,47). It has been
reported that E/T ratio changed the rate of T cell killing
activity (48–50). T cell killing activity may have been
saturated with high E/T ratio (10:1), which would result in

PD

SD

PR/CR
CEA expression on cancer cells < 1.72e4 molecule (median)
CEA expression on cancer cells > 1.72e4 molecule (median)

PD

SD

PR/CR
Tumor Mutational Burden < 96 (median)
Tumor Mutational Burden > 96 (median)

PD

SD

PR/CR

PD

SD

PR/CR

CD3 expression on Teff < 5.19e4 molecule (median)
CD3 expression on Teff > 5.19e4 molecule (median)

CD3 expression on Treg < 5.22e4 molecule (median)
CD3 expression on Treg > 5.22e4 molecule (median)

c
i. ii. 

iii. iv. 

Fig. 7. (continued)
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underestimation of both T cell activity and TCE efficiency.
Thus, we have taken the uncertainty of it into consideration
by adding the T cell killing activity to the list of sensitivity
analysis parameters to explore the effect of underlying
underestimation of T cell killing activity. Within the range
we defined for T cell activity (Table S3, Rate of cancer death
by T cell), it did not show significant effect on the treatment
outcomes (Fig. 7b).

By assessing the tumor response using RECIST vs. a
set of parameters, we can more intuitively assess the impact
of a parameter on the patients’ response. The increase in
some parameters is positively correlated with treatment
effect while others are negatively correlated. Interestingly,
for some parameters, once they exceed a threshold value,
the patients’ overall response rate will significantly increase,
and further increases in these parameters has little effect on

Fig. 8. Distributions of potential biomarkers in NR and R. a TMB. b Kd of antigen. c CEA expression on tumor. d λ. e CD3 expression on
Treg. f CD3 expression on Teff. g Teff density in tumor. h Treg density in tumor. i Teff/Treg ratio in tumor. j koff of CD3-TCE
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the overall response rate. An example of such behavior is
the CEA expression on tumor cell, where a poor response
was found for those patients with low CEA expression (<
1.0E+4 sites/cell). For patients with higher CEA expression
(> 1.0E+4 sites/cell), the overall response rate was enhanced
significantly, but no correlation was found between CEA
expression and overall response rate above this level.
Patients with CEA expression ranging from 1.0E+4 to
3.0E+5 have a similar overall response rate of ~ 12%.

Enhanced antitumor activity of cibisatamab in combina-
tion with anti-PD-L1 antibody atezolizumab has been re-
ported in phase 1a and 1b studies (clinical trials:
NCT02324257 and NCT02650713). The current TCE-
extended QSP model can be used to identify potential
predictive biomarkers for such combinations by comprehen-
sive analysis of patients’ response and the differences
between the non-responders and responders. Increased
emphasis on the clinical development of monoclonal and
bispecific antibodies that harness a patient’s own immune
system to kill cancer cells necessitates the availability of
highly parameterized QSP models that can be used to
optimize clinical study design and the selection of combina-
tion partners for oncology targets. Our modular model makes
the process of simulating virtual clinical trials faster and
easier, by enabling the incorporation of additional modules as
new immune mechanisms are discovered.

Even though we have calibrated the TCE module using
experimental data, there are still some factors that have not
been considered completely. In the current model, one
assumption is that moTTC does not contribute significantly
to the activation of T cells. Because of their lower affinity
and stability compared with biTTC, their effects were

ignored as a first approximation; however, further validation
is needed. Tregs have been reported to have potent
cytotoxic effects through the granzyme-perforin pathway
(47). The death of cancer cells by Treg needs to be added
and calibrated based on available experiments. Currently
the TCE module only applies to bivalent TCEs. The
dynamics of monovalent TCEs needs to be modified and
related parameters also need to be recalibrated. The
numbers of naïve CD8+, and CD4+ T cells are constant in
central and tumor-draining lymph node compartments.
Dynamics of the naïve T cells is important in large tumors
in which T cell activation could result in depletion of
antigen-specific naïve T cells and in turn cause non-
response. The assumption of constant density of naïve T
cells could hold true for smaller tumors but most likely will
overestimate the response in large tumors. In our next
version of the model, we will modify the model by
incorporating naïve T cell dynamics including the naïve T
cell selection in thymus, proliferation in the peripheral
tissues as well as differentiation and death. Importantly, this
whole QSP model has limitations in predicting the overall
response rates of patients since we cannot accurately
estimate the range and distribution of patient parameters
and the estimation is highly dependent on the clinical
measurements. Certain parameters are difficult to measure
in the clinic, and their values have to be extrapolated from
animal experiments, which will affect the accuracy of the
predicted overall response rate and the reliability of the
relevant biomarkers. The problem of how to generate
virtual patients and virtual cohorts is an area of active
research in academia and pharmaceutical industry (14,51–
53), and more reliable ways should emerge in the future to

Table I. Response Rate in Subgroups of 1750 Virtual Patients
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improve model predictions. We also envision that the
predictive power of QSP modeling will increase with each
application in different cancer types (54,55).

CONCLUSION

We extended the application of a whole-patient QSP
model by adding a TCE module and applied the model to
TCE monotherapy in colorectal cancer. The newly added
module was calibrated based on the available in vitro data on
over 100 colorectal cancer cell lines. It has been shown to be
able to reproduce the in vitro experimental data and the
effect of some parameters has been determined by varying
them in our model. By studying the overall response rate of a
cohort of virtual colorectal patients, we were able to
determine the most influential and sensitive parameters and
quantified their impact on overall tumor response rates. The

TCE module can be used to help design new antibodies and
provide instant information on the impact of various param-
eters on antibody properties and their dynamics. Once more,
accurate parameters from the patient populations become
available from future clinical trials such as their TMB,
distribution of tumor-associated antigens’ expression, Teff
density in tumor as well as Treg. The model can be
recalibrated to improve the predictions of patients’ overall
response rate based on their individual characteristics. In
addition, our TCE module as well as the whole QSP model
can be readily extended to other novel antibodies and cancer
types, as long as the corresponding parameters are amended.
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