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Abstract:
Personalized treatment of patients based on tissue-specific cancer subtypes has strongly increased the efficacy
of the chosen therapies. Even though the amount of data measured for cancer patients has increased over the
last years, most cancer subtypes are still diagnosed based on individual data sources (e.g. gene expression data).
We propose an unsupervised data integration method based on kernel principal component analysis. Principal
component analysis is one of the most widely used techniques in data analysis. Unfortunately, the straightfor-
ward multiple kernel extension of this method leads to the use of only one of the input matrices, which does
not fit the goal of gaining information from all data sources. Therefore, we present a scoring function to deter-
mine the impact of each input matrix. The approach enables visualizing the integrated data and subsequent
clustering for cancer subtype identification. Due to the nature of the method, no hyperparameters have to be
set. We apply the methodology to five different cancer data sets and demonstrate its advantages in terms of
results and usability.
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1 Introduction

Despite improvements in its therapy, cancer remains a major health threat worldwide. One reason for this is
the complexity of the disease, i.e. depending on their molecular bases, two tumors can behave very differently
despite originating from the same tissue. The molecular basis of a tumor comprises alterations in a number of
different characteristics of the cell, for instance gene expression [1], DNA methylation [2], and miRNA expres-
sion [3]. Although these characteristics influence each other, each of them adds new information concerning
the biology of the tumor. Therefore, in recent years, the amount of data that is available for cancer patients has
increased largely, not only in the number of samples and features, but also in the number of different platforms
used. One challenge that goes along with this mass of multidimensional data (i.e. data describing different
molecular levels of the tumor), is how to integrate and visualize it in a comprehensive and sensitive manner.

In the field of cancer research, a number of different methods have been developed that aim at using sev-
eral data sources in combination in an unsupervised fashion. Consensus clustering was applied to six different
data types (DNA copy number, DNA methylation, exome sequencing, mRNA expression, miRNA expression,
and protein expression) for breast cancer samples from TCGA [4]. In this approach, each data type is clustered
individually before generating a “cluster of clusters”. This final cluster was mainly correlated to the mRNA ex-
pression clusters, which indicates that this approach is not able to capture structures that are weak but similar
in different data sources. In the iCluster+ framework [5], these common associations are considered by the use
of latent variables representing molecular driving factors of the cancer. Applying iCluster+ to four data types
(exome sequencing, DNA copy number, promoter methylation, and mRNA expression) for colorectal carci-
noma samples revealed clusters that have distinct signatures in different data types. Another data integration
approach, similarity network fusion (SNF), was proposed by Wang et al. [6]. Here, each data source is repre-
sented as a sample (or patient) similarity network and these networks are combined iteratively using methods
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from message-passing theory. The authors applied SNF to five different cancer types with DNA methylation,
miRNA expression and mRNA expression data available. In this study, they identified subtypes based on the
combination of data types with distinct survival times. In contrast to these previous approaches, we employ
multiple kernel learning, which provides a useful framework to optimize a weight for each input data type.
In many applications, this optimization led to better results than approaches that give equal weights to the
different data sources. Moreover, due to the flexibility of kernel functions the multiple kernel learning allows
the integration of arbitrary data types and one does not need to know interactions or relationships between
the different data sources used. In order to visualize biological data, multiple kernel learning has been used in
combination with different dimensionality reduction schemes [7].

However, kernel principal component analysis (kPCA) [8], which is a widely used dimensionality reduc-
tion algorithm, is not easily extended using multiple kernel learning. The approach is based on the directions
of maximum variance in the data and benefits from several advantages: kPCA does not suffer from the out-of-
sample problem, one does not need to fix parameters that determine a neighborhood as in local dimensionality
reduction techniques like locality preserving projections, but due to the use of the kernel function, the method
provides enough flexibility to model different types of data. Although kPCA can be implemented in the graph
embedding framework [9], due to an ill-posed eigenvalue problem, multiple kernel PCA cannot be solved us-
ing the extended framework presented in [10]. To be able to use this algorithm with multidimensional data, we
introduce a scoring function for the optimization of the kernel weights before one applies kPCA to the ensem-
ble kernel matrix. The results of subsequent k-means clustering of the projected data show that the presented
method offers some advantages compared to naive kPCA approaches.

2 Methods

2.1 Multiple Kernel Learning

In general, multiple kernel learning describes the optimization of weights {β1, …, βM} for a fixed set of input
kernel matrices {K1, …, KM} according to their importance [11]. The aim is to find an optimal ensemble kernel
matrix K, which is a weighted linear combination of the individual input kernel matrices, i.e.

K =
u�
∑
u�=1

𝛽u�𝐾u�; 𝛽u� ≥ 0, 𝑚 = 1, … , 𝑀; and
u�
∑
u�=1

𝛽u� = 1.

In this specific setting, each kernel matrix can be used to represent one data type. Due to the variety of available
kernel functions, data with different characteristics can be included, for instance quantitative data from gene
expression measurements, or sequences from genome sequencing approaches.

2.2 Kernel Principal Component Analysis

Principal component analysis (PCA) is a global dimensionality reduction approach, which uses the directions
of maximum variance in the centered data. Having a data matrix X with data points xi, the first principal
component is found by optimizing

argmax
α

u�
∑
u�=1

||αu�𝑥u�||2, ||α || = 1.

The solution of this optimization problem is the eigenvector corresponding to the largest eigenvalue of the
sample covariance matrix, subsequent principal components are calculated analogously. In the kernelized ver-
sion, the data is implicitly projected into some (potentially higher dimensional) feature space using a mapping
function ϕ:xi → ϕ(xi) with k(xi, xj) = 〈ϕ(xi), ϕ(xj)〉 where k is the positive semi-definite kernel function [8]. The
directions of maximum variance are identified in the feature space, which is achieved by considering the largest
eigenvalues of the kernel matrix and their respective eigenvectors.
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2.3 Extending Kernel Principal Component Analysis

An extension of kPCA using multiple kernel learning would enable the user to project the data points into a
low-dimensional subspace that is based on several data sources and, thereby, to visualize different characteris-
tics of the data points in combination. However, the direct implementation, i.e.

argmax
α ,β

∥∥∥∥
⎛⎜⎜
⎝

u�
∑
u�=1

βu�𝐾u�
⎞⎟⎟
⎠
α

∥∥∥∥

2

,

||𝜆1α
u�α || = 1; βu� ≥ 0, 𝑚 = 1, … , 𝑀;

u�
∑
u�=1

𝛽u� = 1

does not allow for data integration. This becomes clear when looking at Thompson’s inequality concerning the
eigenvalues of sums of matrices [12]. Consider A and B being n×n Hermitian matrices and C=A+B, with their
respective eigenvalues λ(A)i, λ(B)i, and λ(C)i sorted decreasingly. Then, for any p≥1,

u�

∑
u�=1

𝜆(𝐶)u� ≤
u�

∑
u�=1

𝜆(𝐴)u� +
u�

∑
u�=1

𝜆(𝐵)u�

holds. If we extend this formula by including the kernel weight β1 with C=β1A+(1–β1)B and 0≤β1≤1, we obtain
the following inequality

u�

∑
u�=1

𝜆(𝐶)u� ≤ 𝛽1

u�

∑
u�=1

𝜆(𝐴)u� + (1 − 𝛽1)
u�

∑
u�=1

𝜆(𝐵)u�.

One can see, that the right hand side is maximized if the kernel matrix with the highest sum of the p largest
eigenvalues has a weight of 1. In that setting, the right hand side is equal to the left hand side and, thus, this
would also be the maximum of the left hand side. The extension to more than two kernel matrices can be made
recursively. Therefore, optimizing Problem [1] leads to weight vectors β with βi=1 and βj=0 for all j≠i, where i
is the index of the matrix with the p largest eigenvalues.

Although this behavior maximizes the variance, it might not be the best choice for biological data, where
we assume, that different data types can give complementing information and should therefore be considered
jointly. Hence, in the following, we will introduce a scoring function, that combines the idea of kPCA with the
assumption of different data supplementing each other.

2.4 Scoring Function

Dimensionality reduction methods are helpful in reducing noise while keeping the actual structure in the data.
Proceeding in the spirit of kPCA, the aim of this approach is to find the ensemble kernel matrix that best pre-
serves the global variance, but also integrates data from different sources such that they complement each other.
So, for integrating M different kernel matrices K1,…, KM to an ensemble kernel matrix K = ∑u�

u�=1 βu�𝐾u� with
∑u�

u�=1 𝛽u� = 1, we propose the following gain function:

𝑔u� = exp⎛⎜⎜
⎝

𝜆(K)u�
max(max

u�
(𝜆(𝐾u�)u�), 1)

− 1⎞⎟⎟
⎠

for each dimension i, with λ(Km)i being the i-th eigenvalue of Km. Then the overall score for a projection into
a p-dimensional space is calculated as 𝐺 = 1/𝑝 ∑u�

u�=1 𝑔u�, which is the average gain over the p dimensions con-
sidered. The main idea is that we define a baseline, i.e. max(max

u�
(𝜆(𝐾u�)u�), 1), that represents the variance we

can have by using only one matrix. Due to the use of the exponential function, gains of variance in comparison
to this baseline have a strong positive impact on the score while losses of variance are penalized only slightly.
Thereby, we can account for the fact that small losses of variance in one direction often do not change the global
structure of the data, but allow for more variance in a subsequent direction. Additionally, we ensure that the
baseline is not smaller than 1, which is the variance each direction would have in case of an equal distribution
of the variance. This scoring function G is maximized to find the best kernel weights β.

3

http://rivervalleytechnologies.com/products/


Au
to

m
at

ica
lly

ge
ne

ra
te

d
ro

ug
h

PD
Fb

yP
ro

of
Ch

ec
kf

ro
m

Ri
ve

rV
al

le
yT

ec
hn

ol
og

ie
sL

td
Speicher and Pfeifer DE GRUYTER

3 Application

3.1 Materials

We applied the approach to five different cancer sets from TCGA [13], which were preprocessed by Wang et
al. [6]. The data sets are breast invasive carcinoma (BIC; 105 samples), colon adenocarcinoma (COAD; 92 sam-
ples), glioblastoma multiforme (GBM; 213 samples), kidney renal clear cell carcinoma (KRCCC; 122 samples),
and lung squamous cell carcinoma (LSCC; 106 samples). For all cancer types, gene expression, DNA methy-
lation, and miRNA expression measurements, as well as survival data are available. The first three data types
are used in the dimensionality reduction and clustering process, the latter is used to perform survival analysis
in the evaluation of the identified clusters. Each of the three input data types is represented by a kernel ma-
trix generated using the Gaussian radial basis kernel function k(x, x′)=exp(−γ∗||x−x′||2). The kernel width
parameter γ was chosen according to the rule of thumb γ = 1/2d2, with d being the number of features in the
matrix [14]. The kernel matrices were centered in the feature space and normalized using spherical normaliza-
tion [15]. Since these two steps affect each other, they were repeated iteratively until we obtained a normalized
kernel matrix that is centered at the origin.

3.2 Results

For each cancer type, we generated results using a two-step procedure: First, we optimized the kernel weights
according to the proposed scoring function and ran the dimensionality reduction approach in order to inte-
grate the three data types and reduce the noise in the final projection. In similar approaches, the number of
projection dimensions is usually determined either using the elbow method [16] or based on a chosen threshold
for the remaining variance [17]. Here, we benefit from the scoring function, which indicates if we gain vari-
ance in comparison to using only one matrix. Since this function does not have a global maximum, we start
by considering only the first eigenvalue (corresponding to a projection into one dimension) and increase the
number of eigenvalues considered. Then, we use its first local maximum to determine the number of projection
directions. Thereby, we avoid adding directions with no gain in combined variance.

In order to be able to evaluate the dimensionality reduction, we clustered the projected samples using
k-means in the second step. The number of clusters was determined using the silhouette width [18] of all results
from 2 to 15 clusters. For each cancer type, we evaluated the resulting clusterings by comparing the survival
of the patients among the different groups using the log rank test of the Cox regression model [19]. Note that
this test is based on a χ2 distribution whose degrees of freedom is equal to the number of clusters, such that
correction for multiple testing is not necessary. For comparison, we also used kPCA based on the average kernel
(i.e. fixed kernel weights of 1/M) and based on the kernel with the highest variance in the first p dimensions,
which would be the trivial solution to multiple kernel PCA. The number of dimensions with the highest gain
G and the p-values of the survival analysis for all three approaches can be seen in Table 1.

Table 1: Survival analysis of clustering results of kPCA used with an integrated kernel (gain function PCA), the kernel
with the largest variance in the first p dimensions (max variance PCA) and average kernel PCA (average kPCA).

Cancer type p (dimensions) Gain function kPCA Max variance kPCA Average kPCA

BIC 3 6.65E−3 (4) 0.59 (2) 5.70E−4 (4)
COAD 2 6.47E−3 (2) 6.47E−3 (2) 3.28E−2 (3)
GBM 3 0.11 (5) 0.11 (5) 1.59E−2 (4)
KRCCC 3 1.37E−2 (14) 2.27E−2 (14) 0.17 (8)
LSCC 4 7.52E−3 (3) 7.52E−3 (3) 9.22E−3 (3)

In brackets, the number of clusters determined by the silhouette value are given. Bold p-values refer to significant results with respect to
the threshold α = 0.01.

The number of dimensions p determined by the scoring function was for all cancer types rather small, at
most four, which can be due to the fact that we used three input data types. However, as we can see in the
survival analysis, this projection allowed the identification of biologically significant clusters within the cancer
types.

Using the conservative significance threshold of α≤0.01 we can see that our method was able to find signifi-
cant clusters in three cancer types (all but GBM and KRCCC), while both other methods identified significant
clusters only for two out of the five cancer types. In the GBM data, the gene expression kernel is very domi-
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nant in terms of variance, therefore, it obtains a high weight. However, there is no clear group structure in this
matrix, such that neither max variance kPCA nor gain function kPCA is able to find a clustering that correlates
with the survival of the patients. For KRCCC, there is a very small group of patients with different survival be-
havior. The survival analysis of this clustering shows that trend for max variance kPCA and gain function kPCA
(p-values < 0.05) but due to the small number of samples in each cluster, the result is not significant according
to α≤0.01. However, in this example, one can see that with the unweighted average of the kernel functions, the
signal of interest is not captured (p-value = 0.17). In general, the results for the LSCC data are very stable; for all
other cancer types, at least one of the naive approaches results in a clustering with no significant difference in
survival times between the patient groups. This shows that using this gain function is beneficial since in cases,
where only one of the naive approaches results in a significant clustering, it allows the flexibility to determine
appropriate weights for the different kernel matrices.

4 Discussion

In this work, we presented a data integration method based on kernel principal component analysis. We showed
that the direct extension of kPCA for several data sources does not allow for data integration. Thus, we pro-
posed a scoring function to determine the best combination of the input data. On five cancer data sets, we
showed that this procedure works in most cases better or as good as naive approaches in terms of survival
analysis. Additionally, our scoring function can help to determine the number of projection dimensions. New
samples from the same cancer type can be easily projected into the learnt subspace to observe similarities in
the neighborhood.

Besides the survival data, the clusters could also vary in other clinical aspects (e.g. response to treatment).
Investigating the response to treatment in combination with an analysis of the molecular foundation of the
clusterings, for instance the identification of differentially methylated sites or differentially expressed genes,
could reveal beneficial insights concerning the molecular mechanisms in tumor cells and consequently their
treatment.

Conflict of interest statement: Authors state no conflict of interest. All authors have read the journal’s Publi-
cation ethics and publication malpractice statement available at the journal’s website and hereby confirm that
they comply with all its parts applicable to the present scientific work.
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