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Abstract

Deep brain stimulation (DBS) therapies have shown clinical success in the treatment of a number 

of neurological illnesses, including obsessive-compulsive disorder, epilepsy, and Parkinson’s 

disease. An emerging strategy for increasing the efficacy of DBS therapies is to develop closed-

loop, adaptive DBS systems that can sense biomarkers associated with particular symptoms and in 
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response, adjust DBS parameters in real-time. The development of such systems requires extensive 

analysis of the underlying neural signals while DBS is on, so that candidate biomarkers can be 

identified and the effects of varying the DBS parameters can be better understood. However, DBS 

creates high amplitude, high frequency stimulation artifacts that prevent the underlying neural 

signals and thus the biological mechanisms underlying DBS from being analyzed. Additionally, 

DBS devices often require low sampling rates, which alias the artifact frequency, and rely 

on wireless data transmission methods that can create signal recordings with missing data of 

unknown length. Thus, traditional artifact removal methods cannot be applied to this setting. We 

present a novel periodic artifact removal algorithm for DBS applications that can accurately 

remove stimulation artifacts in the presence of missing data and in some cases where the 

stimulation frequency exceeds the Nyquist frequency. The numerical examples suggest that, if 

implemented on dedicated hardware, this algorithm has the potential to be used in embedded 

closed-loop DBS therapies to remove DBS stimulation artifacts and hence, to aid in the discovery 

of candidate biomarkers in real-time. Code for our proposed algorithm is publicly available on 

Github.

Index Terms—

Deep brain stimulation; optimization; online periodic artifact removal algorithms

I. Introduction

Deep brain stimulation (DBS) is a treatment that regulates neural activity by sending 

electrical impulses through electrodes implanted in the brain. Currently, DBS is an existing 

therapy for obsessive-compulsive disorder (OCD), epilepsy, and Parkinson’s disease, among 

many other neurological illnesses, but strategies for maximizing the therapeutic effects of 

DBS while minimizing its side effects remain an active area of research [1]. To that end, 

one emerging area of interest is the discovery of biomarkers (i.e., neural signals correlated 

with symptoms) (see, for instance, [2], [3]). The discovery of biomarkers might allow for the 

development of closed-loop, adaptive DBS systems that are able to sense a biomarker and 

in response, adjust DBS parameters (e.g., stimulation frequency, amplitude, etc.) in real-time 

to effectively target symptoms as they arise, while minimizing adverse effects. In order to 

discover a biomarker and better understand the neurological responses to varying the DBS 

parameters, the underlying neural signals must be able to be studied while DBS is on. 

However, DBS creates high amplitude, high frequency stimulation artifacts that contaminate 

the electrical recordings of the brain. As a result, periodic artifact removal is essential 

for recovering the underlying neural signal and thus, for understanding the biological 

mechanisms underlying the qualitative successes of DBS. Furthermore, while biomarker 

discovery (and thus the corresponding artifact removal) may be done offline, closed-loop, 

adaptive DBS therapies necessitate the removal of these stimulation artifacts in real-time.

In DBS applications, the artifact removal problem is further complicated by the following: 

(1) while the stimulation frequency can be set by the DBS device, the device setting 

provides an estimate of the stimulation frequency that is not accurate enough for successful 

artifact removal; (2) power constraints of DBS devices often require low sampling rates 
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(e.g., 200–250 Hz), which in turn alias the stimulation frequency near the frequencies of 

underlying signals of interest; and (3) DBS recordings are often broken into many time 

segments with unknown phases, e.g., due to modulation of device settings or missing 

data of unknown length, the latter of which is a common limitation of the wireless data 

transmission methods used by some DBS devices [4]. While many methods for removing 

DBS stimulation artifacts exist (see, for instance, [5], [6], [7], [8], [9]), no single method, to 

the authors’ knowledge, addresses all of the aforementioned complications, which are often 

found in real data. We propose a new method for periodic artifact removal that addresses all 

of these complications.

The general formulation of our problem of interest is as follows. Given n + 1 segments of 

data, we model the i-th segment of the observed signal Si as:

Si(t) = A t +
δi*
ξ* + Bi(t) + ηi(t), i = 0, …, n, (1)

where δi* is the (unknown) phase shift between the 0-th and i-th segments, A is a periodic 

artifact with (unknown) period 1
ξ * , Bi is the neural signal in segment i, and ηi is the noise in 

segment i.

Our goal is to estimate and remove A from each Si. As a result, the underlying signals that 

we seek to recover are Bi + ηi, i = 0, …, n. In practice, Si is sampled at some collection of 

discrete times Tj. Then, the following loss function can be used to reconstruct and remove 

the artifact:

ℒ ξ, δi, θ = ∑
i = 0

n
∑

t ∈ Ti
Si(t) − a t ∣ ξ, δi, θ 2, (2)

where a( ⋅ ∣ ξ, δ, θ) ≈ A ⋅ + δ
ξ*  is a model for the artifact that depends on the artifact 

frequency ξ (or equivalently the artifact period 1/ξ) and a set (possibly empty) of other 

parameters θ. Equation (2) generalizes the loss function in [6] and [10] to allow for 

(multiple) unknown phases. In this paper, we consider the following parametric model for 

the artifact:

a t ∣ ξ, δ, α0, αk, βk, K

= α0 + ∑
k = 1

K
αkcos(2πk(ξt + δ)) + βksin(2πk(ξt + δ)),

(3)

where, in practice, the number of harmonics K must be chosen to be finite. Using this 

parametric model allows for fast computations in our proposed algorithms. Reference [6] 

uses the same model (3) and [10] experiments with a variety of models for A, including 

(3), but both without phase shifts. Meanwhile, [4] uses the same framework described above 

to estimate a single unknown phase from two segments (n = 1), but does not consider 

simultaneous inference of the model parameters. Instead, [4] first estimates the artifact 
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and its frequency from a single segment using [6] and then selects among a small finite 

collection of candidate phases corresponding to an unknown number of missing samples. 

This process is repeated sequentially to handle multiple phases (n > 1). Our method is not 

sequential; rather, it is based on optimization of (2).

Using the above model (3), a natural way to remove the artifact with the above framework 

is harmonic regression [11, Ch. 2], which for fixed (ξ, δi) is equivalent to minimizing (2) 

with respect to θ = (α0, αk, βk, k = 1, …, K}. However, in Fig. 1a, we see that harmonic 

regression requires accurate estimates of the frequency ξ. For example, using harmonic 

regression, 0.001% relative error in the frequency estimate, on average, corresponds to a 

relative root mean squared error (RMSE) in the reconstructed signal Si − a(·|ξ, δi, θ) of 

almost 10%. Relative RMSE is defined as follows:

relative RMSE =
∑i = 1

N f ti − f ti
2

∑i = 1
N f ti 2 , (4)

where f is the true signal of interest (e.g., f = B + η), f  is the estimated signal (e.g., 

f = S − a ⋅ ∣ ξ, δi, θ ), and ti are the sample times. Thus, even somewhat small errors in the 

frequency can lead to large reconstruction errors.

Many periodic artifact removal methods rely on the discrete Fourier transform (DFT) 

to estimate the frequency. However, DFT-based methods generally cannot handle phase 

shifts and, even segmentwise, are limited in their accuracy for frequency estimation. For 

example, consider the following simple DFT-based frequency detection method, where the 

artifact frequency is estimated as the frequency that maximizes the energy (magnitude 

squared of the DFT) of the observed signal. In Fig. 1b, we observe that even in the case 

where the observed signal only consists of the periodic artifact and the sampling rate is 

relatively high (fs = 1000 Hz), this DFT-based method is unable to accurately estimate the 

artifact frequency when the frequency does not lie on the DFT grid i N
fs

: i = 0, …, N
2 − 1 , 

which would be the case for most real-life applications. Specifically, we see that even 

with 105 samples, this method achieves, on average, greater than 0.001% relative error in 

the frequency estimate, which, as discussed above, is insufficiently accurate for harmonic 

regression. In contrast, Fig. 1b shows that our proposed Algorithm 1 (detailed in Section II) 

achieves much more accurate frequency estimates, e.g., close to machine precision with 105 

samples.

The main contribution of this paper is an iterative periodic artifact removal algorithm that 

can accurately estimate the artifact frequency in the presence of unknown phase shifts and 

that involves few (i.e., one) tuning parameters. We also provide an initialization algorithm 

that experimentally provides robust initial estimates of the frequency and phase shifts for 

our artifact removal algorithm. We demonstrate the performance of our algorithms on the 

following cases: a simulated artifact with no underlying signal, a simulated artifact with 

a chirp, an aliased simulated artifact with a simulated underlying signal and missing data, 

and a human local field potential (LFP) recording. Both algorithms use relatively simple 
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computations and demonstrate relatively short runtimes (in comparison to the length in time 

of the data processed), which show their potential to be used in embedded closed-loop DBS 

therapies in real-time.

The remainder of this paper is organized as follows. In Section II, we describe the details 

of our method. In Section II-A, we describe our artifact removal method, which fits the 

observed signal using harmonic regression while jointly estimating the frequency and phase 

shifts via a least squares regression. In Section II-B, we provide an initialization algorithm 

for the method described in Section II-A. In Section III, we provide some numerical 

examples, which demonstrate some of the capabilities of our proposed method. Finally, 

in Section IV, we provide some concluding remarks.

II. Proposed Algorithm

In this section, we describe our algorithm. First, we describe our artifact removal algorithm 

(Algorithm 1), which removes the artifact by estimating the frequency and phase shifts while 

jointly fitting the artifact using harmonic regression. Second, we describe an initialization 

algorithm (Algorithm 2), which finds an initial estimate of the frequency and phase shifts via 

an energy maximization method. The code for both algorithms and implementation details 

are available at https://github.com/pxchen95/artifact_removal.

Our model is as follows. We observe n + 1 segments of data Si, i = 0, …, n, where each Si 

is defined by (1) and δi* is the (unknown) true phase shift between the 0-th and i-th segments 

(by convention, δ0* = 0). We assume that the artifact can be represented by (3), where the true 

fundamental frequency ξ*, the true amplitudes α0*, αk*, βk*, and the true number of harmonics 

K are unknown. A key assumption for our method is that the energy of the artifact at its 

fundamental frequency and harmonics is sufficiently larger than the energy of the brain at 

those frequencies (or at the frequencies that they are aliased to). In practice, we do not have 

access to the continuous signals and only access each Si at some discrete sample times. 

While these sample times may be irregularly spaced, we only consider uniformly spaced 

sample times as, in practice, most DBS devices use uniformly spaced sampling based on 

relatively stable system clocks; i.e., we assume that the i-th segment is sampled at the times 

{ j
fs

: j = 0, …, Ni − 1}, where fs is the sampling rate.
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A. Artifact Removal Algorithm

Based on the assumed form of the artifact (3), harmonic regression [11, Ch. 2] is a natural 

choice for removing the artifact given an estimate of the frequency. However, as shown in 

Fig. 1a, small perturbations in the frequency estimate can result in large errors in the signal 

reconstructed by harmonic regression. To mitigate this issue, our method fits the observed 

signal using harmonic regression while jointly estimating the frequency and phase shifts. 

Specifically, we remove the artifact by solving the following optimization problem:

min
ω, δi, i = 1, …, n

g ω, δ1, …, δn ,
(6)

where the objective function g is defined by:

g ω, δ1, …, δn

= min
α0, αk, βk

∑
i = 0

n
∑
j = 0

Ni − 1
Ri

j
fs

, α0, αk, βk
2
,

(7)
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and we denote the i-th segment of the recovered signal by:

Ri t, α0, αk, βk = Si(t) − a t ∣ ω, δi, α0, αk, βk, K , (8)

where a(t\ω, δi, α0, αk, βk, K) is defined by (3). For each fixed (ω, δ1, …, δn), g(ω, δ1, 

…, δn) is the result of using harmonic regression to remove a periodic artifact of the form 

(3) with K = K harmonics, fundamental frequency ξ* = ω, and phase shifts δi from the 0-th 

observed segment S0. For our algorithms, the number of harmonics to fit K is effectively 

the only parameter that needs to be tuned. We note that minimizing over α0 in (7) means 

that the recovered signal will have mean 0. Including this amplitude is optional, and if α0 

is omitted in (8), then the recovered signal may have nonzero mean, but the reconstructed 

artifact will necessarily have mean 0. We also note that for each fixed (ω, δ1, …, δn), g(ω, 

δ1, …, δn) can then be computed exactly up to numerical precision errors. Specifically, we 

set the gradient of the objective function in (7) to zero and solve the resulting linear system 

using any appropriate numerical linear algebra solver.

In Algorithm 1, we use a Newton’s descent method to solve (6). The numerical complexity 

of Algorithm 1 is dominated by the computation of the descent direction, which requires us 

to solve an (n + 1) × (n + 1) and a K × K linear system. Thus, the numerical complexity 

of the algorithm is O n3 + K3 . In practice, we expect both n and K to be relatively 

small since the data can always be segmented so as not to consider too many gaps at a 

time and many DBS devices have built-in low-pass filters that effectively bandlimit the 

recorded signals. Note that we can apply Newton’s descent to this problem since g is twice 

differentiable, where the differentiability of g follows from [12, Ch. 4.3, Th. 4.13]. Also 

note that while g is not convex, it is locally convex at the global minimizer. Hence, the 

initialization for Algorithm 1 is crucial for convergence. In the next section, we introduce an 

initialization algorithm (Algorithm 2) for Algorithm 1. Based on our numerical experiments, 

we found that Algorithm 2 typically has relatively short computational runtime and provides 

sufficiently accurate initializations for Algorithm 1.

B. An Initialization Algorithm

In this section, we present an initialization algorithm for Algorithm 1. Specifically, our 

algorithm locally maximizes the energy of the observed signal using discrete samples but 

without being constrained to frequencies on the DFT grid.

Define the Fourier transform for our problem as

ℱ ω, δ1, …, δn

= ∫
0

N0
fs S0(t)e−2πiωtdt + ∑

ℓ = 1

n ∫
0

Nℓ
fs Sℓ(t)e−2πi ωt + δℓ dt .

(9)

We interpret (9) as trying to align all of the segments Sℓ(ℓ = 0, 1, …, n) in time to be in phase 

with a single wave e−2πiωt. Next, define the energy as
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E ω, δ1, …, δn = ℱ ω, δ1, …, δn
2 . (10)

By straightforward calculation, it is easy to verify that E is twice differentiable and 

nonconcave. We propose to recover the true frequency ξ* and true phase shifts δi* by solving 

the following optimization problem:

max
ω, δ1, …, δn

E ω, δ1, …, δn .
(11)

Note that for fixed ω, δj, j ≠ i, the function δi ↦ (ω, δ1, …, δn) (and hence, the function δi 

↦ E(ω, δ1, …, δn)) is 1-periodic. Thus, solving (11) can only recover the phase shifts δi* up 

to a multiple of 1. Moreover, since E is nonconcave, the maximizers of (11) are not unique.

In Algorithm 2, we solve (11) numerically by applying a modified Newton’s ascent method 

(based on modified Cholesky [13]) with backtracking line search and random initialization. 

Since we only have access to discrete samples (and not the continuous signals), we 

approximate all of the integrals in the definitions of the energy E (10), its gradient ∇E, 

and its Hessian ∇2E using trapezoidal rule [14, Ch. 8.1]. The computational effort for each 

iteration of Algorithm 2 is proportional to (n + 1)3. As before, we note that, in practice, the 

data can always be segmented so that n is relatively small. Additionally, the implementation 

of Algorithm 2 can be made more efficient by parallelizing the computations for each 

random initialization.
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III. Results

In this section, we present several numerical examples that demonstrate some of the 

capabilities of our proposed algorithms. In examples 1–3, we set the artifact A to be of the 

form (3) with 5 harmonics and true fundamental frequency ξ* ≈ 150.6117 Hz. In example 

4, we use a human local field potential (LFP) dataset, where the stimulation frequency is set 

by the DBS device to 150.6 Hz. Examples 3–4 contain missing data. For these examples, 

the phase shifts δi correspond to the time gaps in the data, and we define the segments 

Si to be the contiguous segments of observed data. In all of the examples, we remove the 

reconstructed artifact from Si to recover the underlying signals Bi + ηi using Algorithm 1 

with K = 5, maxiter = 1000, tol1 = 1e − 8, and tol2 = 1e − 16 and initialized using the 

outputs of Algorithm 2 with m0 = 150.6, Δω = 5, numInit = 25, maxiter = 5000, and tol1 = 

tol2 = 1e − 8. Since Examples 1–3 all use simulated data, we report the corresponding results 

in arbitrary units (a.u.); we note that, unless stated otherwise, the scaling of the units are 

consistent between the subfigures of each figure corresponding to these simulated examples. 

We run all of the numerical examples using a simple MATLAB implementation on an 8th 

Gen Intel Laptop Core i5-8250U with a 1.60GHz processor.
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A. Example 1: A Simulated Artifact With No Underlying Signal and No Phase Shifts

In this example, we set the underlying signals B0 = η0 = 0 and use the sampling rate 

fs = 1000 Hz, 104 samples, and no phase shifts (n = 0). Since there are no phase shifts 

in this example, it is possible to initialize Algorithm 1 using the output of other existing 

frequency estimation algorithms. However, we use the initialization from Algorithm 2 to 

demonstrate our algorithms’ ability to perform basic frequency detection and to visualize the 

key functions being optimized by our algorithms.

Fig. 2a depicts plots of the energy E, which is computed using trapezoidal rule to compute 

the integrals in (10). In Fig. 2a, we see that E is nonconcave and that Algorithm 2 converges 

to the numerical maximizer of E, but the approximation errors resulting from the trapezoidal 

rule cause the numerical maximizer of E to be slightly offset from the true frequency of the 

artifact. Fig. 2b depicts plots of the least squares objective function g, as defined by (7). In 

Fig. 2b, we see that g is nonconvex and that Algorithm 1 converges to the true frequency 

and obtains a much more accurate estimate in comparison to Algorithm 2. Specifically, the 

frequency estimate resulting from Algorithm 1 has a relative error of 3.7742 × 10−14%, 

whereas the frequency estimate resulting from Algorithm 2 has a relative error of 3.2337 × 

10−6%. In Fig. 2c, we observe that the artifact reconstructed by our algorithms matches the 

true artifact very well with a relative RMSE of 1.7918 × 10−10%. In Fig. 2d, we see that 

the signal recovered by our algorithms is approximately 0 with an RMSE of 3.0106 × 10−10. 

Finally, in Figs. 2e and 2f, We observe that in the frequency domain, the artifact is no longer 

detectable in the recovered signal.

B. Example 2: A Simulated Artifact With a Chirp and No Phase Shifts

In this example, we set the underlying signals B0 to be a chirp with frequencies ranging from 

0 Hz to 500 Hz and η0 = 0 and use the sampling rate fs = 1000 Hz, 104 samples, and no 

phase shifts (n = 0). In this example, the amplitude of the simulated artifact is approximately 

15 times larger than that of the chirp. We use this example to demonstrate the performance 

of our algorithms in the presence of underlying signals consisting of short snippets with 

frequencies at or near the frequency of the artifact.

In Fig. 3a, our reconstructed artifact matches the true artifact with a relative RMSE of 

0.5837%, where our frequency estimate has relative error 7.7068 × 10−6%. In Fig. 3b, the 

recovered underlying signal matches the true underlying signal with a relative RMSE of 

5.5508%. In Fig. 3c, we see that most of the power at the artifact frequencies is removed 

by our algorithms, but some small peaks are present near the frequencies corresponding to 

the artifact harmonics. Similarly, in Fig. 3d, we observe that the artifact is mostly removed 

(the difference in the power at the artifact frequencies in the observed signal versus in the 

recovered signal is about 50 dB), while the power of the chirp remains intact. These results 

show that our algorithms are able to accurately recover the underlying signal even when it 

contains frequencies at or near the artifact frequency.
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C. Example 3: An Aliased Simulated Artifact With a Simulated Neural Signal, Noise, and 
Missing Data

In this example, we set the underlying signals Bi to be a simulated neural signal (computed 

as the sum of short snippets of sinusoidal waves with random frequencies and random 

lengths and demeaned) and ηi to be independent and identically distributed (iid) Gaussian 

noise and use the sampling rate fs = 250 Hz. In this example, the amplitude of the simulated 

artifact is approximately 1.4 times larger than that of the underlying signal Bi + ηi. To 

simulate missing data, we create 10 segments of contiguous data containing 250 samples 

each, where the gaps between segments are of random length. Recall that many real-life 

applications require low sampling rates to handle the battery constraints of DBS devices. In 

these cases, the fundamental frequency of the stimulation artifact often exceeds the Nyquist 

frequency [14] and is aliased to potential frequency ranges of interest. Here, the fundamental 

frequency of the artifact is aliased to approximately 99.3883 Hz. Additionally, recall that 

the recording methods used by DBS devices can lead to missing data, where the length of 

the missing data is unknown and the length of the segments of contiguous data is relatively 

short. Thus, we test the performance of our algorithms in this worst-case scenario, which 

includes aliasing, short segments of recorded data, and missing data.

In Fig. 4a, the reconstructed artifact matches the true artifact with a relative RMSE of 

5.5521%, while our frequency estimate has relative error 2.3023 × 10−3%. In Fig. 4b, we see 

that in the time domain, the recovered underlying signal matches the true underlying signal 

with a relative RMSE of 11.0553%, but the two signals visually match very well despite 

the relative RMSE being somewhat high. Note that in Fig. 4b, we overlay each sample of 

the recovered signal on top of the corresponding sample of the true underlying signal. In 

other words, the length of the gaps in the recovered signal in this figure do not necessarily 

correspond to the lengths estimated by Algorithm 1 (recall that Algorithm 1 can only recover 

phase shifts up to some multiple of 1). In Fig. 4c, we observe that in the frequency domain, 

the power of the artifact frequencies is no longer detectable in the recovered signal, and 

the recovered signal and true underlying signal are visually indistinguishable. These results 

show that our algorithms are able to remove stimulation artifacts even in this worst-case 

scenario.

D. Example 4: Human LFP Recording With Missing Data

In this example, we consider a real recording of a resting state human LFP signal with 

DBS from a clinical trial (ClinicalTrials.gov #NCT04281134). The research participant 

(37y/o female) had a history of long-standing OCD and underwent clinically indicated 

DBS surgery for treatment of OCD using a Summit RC+S (Medtronic, Minneapolis, MN, 

USA) device. DBS leads (Model 3778) were intracranially placed bilaterally in the VC/VS. 

The participant gave fully informed consent according to study sponsor guidelines, and 

all procedures were approved by the local institutional review board at Baylor College of 

Medicine (H-40255, H-44941, 5/4/2021). LFP was sensed with bipolar contacts around the 

stimulation contact at a sampling rate of fs = 1000 Hz. The stimulation parameters were set 

by the device as follows: stimulation frequency of 150.6 Hz, stimulation amplitude of 4.5 

mA, and pulse width of 90 μs. We simulated missing data by segmenting the recorded data 
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into 10 segments of contiguous data containing 250 samples each with gaps between the 

segments that are of random length.

In this example, Algorithm 1 gives us a frequency estimate of approximately 150.6093. In 

Fig. 5a, we see that using our estimates of the artifact period and the time gaps, the observed 

signal generally looks like a noisier version of our reconstructed artifact. In Fig. 5b, we 

observe that the bands corresponding to the frequencies of the DBS artifact are removed by 

our algorithm. Note that in this figure, the “No DBS” plot cannot be directly compared with 

the “Recovered” plot since they each represent signals that were recorded at different times 

and under different conditions (i.e., with DBS off or on, respectively); however, since we do 

not have access to the true underlying signal, the former plot provides a baseline for what 

the plot for the true artifact-free underlying signal may look like. These results demonstrate 

that our algorithms work on real datasets of interest, even in the presence of many gaps of 

unknown length.

IV. Discussion and Future Directions

We have proposed a periodic artifact removal algorithm (and a corresponding initialization 

algorithm) that is able to accurately remove stimulation artifacts in the presence of unknown 

phase shifts (e.g., missing data of unknown length) and in some cases where the stimulation 

frequency exceeds the Nyquist frequency. Our algorithms effectively require only one tuning 

parameter – the number of harmonics K to fit. Choosing K too small corresponds to 

underfitting the artifact, while choosing K too large corresponds to overfitting the artifact. 

Thus, the parameter K is easily interpretable and could be roughly estimated by counting 

the number of bands corresponding to the harmonics of the artifact that are visible in 

a spectogram of the observed signal, although using more sophisticated techniques (e.g., 

information criteria, such as AIC or BIC [15]) to pick K could be of interest for future study. 

However, we also observed that picking a slightly higher K makes little difference in the 

results. For instance, if we instead use K = 10 in Example 1 (Section III-A), then all of the 

resulting errors are identical to the corresponding reported errors up to three decimal places; 

meanwhile, using K = 10 in Example 3 (Section III-C) results in relative errors that differ 

from the corresponding reported values by less than 1%. We also note that, in some sense, 

K can be treated as a fixed parameter since the true number of harmonics of the artifact is 

fixed for any given set of device settings of any given DBS device. As such, for each fixed 

set of DBS device settings, K only needs to be tuned once offline and the corresponding 

online artifact removal algorithm becomes effectively parameterless. Additionally, while 

the numerical examples provided in this paper provide promising results, they are not 

exhaustive. For example, many real-life DBS artifacts consist of semi-rectangular waves 

(i.e., have infinitely many harmonics), which were not considered in this paper and could be 

explored in a future study.

Since our algorithms are relatively simple computationally, they have the potential for 

efficient implementation on dedicated hardware, such as digital signal processors (DSPs) 

or field-programmable gate array (FPGAs). In each of the examples in Section III, each 

of which corresponds to roughly 4–18 seconds of DBS recording, our simple MATLAB 
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implementation of Algorithm 1 took 0.6–1.5 seconds to run, while Algorithm 2 took 0.4–

1.0 seconds to run. However, these runtimes would be greatly shortened by more efficient 

implementations of our algorithms. As such, our algorithms have the potential to be used in 

embedded closed-loop DBS therapies to remove stimulation artifacts and thus to discover 

candidate biomarkers in real-time. Our algorithms may also be applicable to more general 

settings. For example, we defined our algorithms using uniform sample times, but they 

could be easily extended to handle nonuniform sample times. Furthermore, (7) could be 

reformulated to minimize over the mean α0 segmentwise to handle cases where the mean of 

the underlying signal varies between segments.
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Fig. 1. 
(a) Relative error of frequency vs. relative RMSE of reconstructed signal using harmonic 

regression. Each point represents the average over 40 trials. For each trial, we use harmonic 

regression to fit the observed signal with a sinusoid with 5 harmonics and a given frequency 

estimate. (b) Number of samples vs. relative error of the frequency estimated using a 

DFT-based method (−·) or Algorithm 1 (-*). Each point represents the average over 10 trials. 

In both (a) and (b), each trial uses an observed signal sampled at 1000 Hz that consists only 

of an artifact of the form (3) with no phase shifts, K = 5, and a random true fundamental 

frequency ξ ∈ (25, 200).
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Fig. 2. 
Removing a well-sampled artifact with no underlying signal. (a) Plot of the energy E, 

as computed using trapezoidal rule. (b) Plot of the least squares objective function g, as 

defined by (7). (c) Plot of the true and reconstructed artifacts (with time modulo the true 

and Algorithm 1 estimate of the period, respectively). (d) Plot of the true and recovered 

underlying signals. (e) Welch’s power spectral density, (f) Spectrogram using short-time 

Fourier transforms. (a.u. = arbitrary units).
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Fig. 3. 
Removing a well-sampled artifact from a chirp. (a) Plot of the observed signal and 

reconstructed artifact (with time modulo the period estimated by Algorithm 1) and the true 

artifact (with time modulo the true period). (b) Plot of the true and recovered underlying 

signals. (c) Welch’s power spectral density, (d) Spectrogram using short-time Fourier 

transforms. (a.u. = arbitrary units).
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Fig. 4. 
Removing an aliased artifact from a simulated neural signal with missing data. (a) Plot of 

the observed signal and reconstructed artifact (with time modulo the period estimated by 

Algorithm 1) and the true artifact (with time modulo the true period). (b) Plot of the true and 

recovered underlying signals. (c) Spectrogram using short-time Fourier transforms. (a.u. = 

arbitrary units).
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Fig. 5. 
Removing a real DBS artifact from a human LFP recording with missing data. (a) Plot 

of the observed signal and reconstructed artifact (with time modulo the period estimated 

by Algorithm 1). (b) Spectrogram using short-time Fourier transforms. Note that the 

“Recovered” and the “No DBS” plots are not directly comparable as they represent signals 

that were recorded at different times and under different conditions (i.e., with DBS on or off, 

respectively).
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