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ABSTRACT
Bone scintigraphy is widely used to detect bone metastases, particularly osteoblastic ones, and F‑18 fluorodeoxyglucose (FDG) positron 
emission tomography (PET) scan is useful in detecting lytic bone metastases. In routine studies, images are assessed visually. In this 
retrospective study, we aimed to assess the osteoblastic, osteolytic, and mixed lytic‑sclerotic bone lesions semiquantitatively by measuring 
maximum standardized uptake value (SUVmax) on FDG PET/computed tomography (CT), maximum lesion to normal bone count ratio (ROImax) 
on bone scintigraphy, and Hounsfield unit (HU) on CT. Bone scintigraphy and FDG PET/CT images of 33 patients with various solid tumors 
were evaluated. Osteoblastic, osteolytic, and mixed lesions were identified on CT and SUVmax, ROImax, and HU values of these lesions were 
measured. Statistical analysis was performed to determine if there is a difference in SUVmax, ROImax, and HU values of osteoblastic, osteolytic, 
and mixed lesions and any correlation between these values. Patients had various solid tumors, mainly lung, breast, and prostate cancers. 
There were 145 bone lesions (22.8% osteoblastic, 53.1% osteolytic, and 24.1% mixed) on CT. Osteoblastic lesions had a significantly higher 
value of CT HU as compared to osteolytic and mixed lesions (P < 0.01). There was no significant difference in mean ROImax and mean SUVmax 
values of osteolytic and osteoblastic bone lesions. There was no correlation between SUVmax and ROImax, SUVmax and HU, and ROImax and HU 
values in osteolytic, osteoblastic, and mixed lesions (P > 0.05). Not finding a significant difference in SUVmax and ROImax values of osteoblastic, 
osteolytic, and mixed lesions and also lack of correlation between SUVmax, ROImax, and HU values could be due to treatment status of the bone 
lesions, size of the lesion, nonmetastatic lesions, erroneous measurement of SUVmax and ROImax, or varying metabolism in bone metastases 
originating from various malignancies.
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INTRODUCTION

Bone is one of the most common sites for metastatic spread 
of tumors. Tumors most commonly metastasizing to bone 
are prostate, breast, kidney, lung, and thyroid. In children, 
common causes of skeletal metastases include neuroblastoma, 
Ewing sarcoma, and osteosarcoma. In men, carcinoma of 
the prostate accounts for 60% of bone metastases, while in 
women, breast cancer accounts for 70% of such metastases. 
Metastases typically involve the axial skeleton, which is the 
region rich in red bone marrow. Bone metastases could 
be purely osteoblastic, mixed osteoblastic/osteolytic, or 

osteolytic. Prostate cancer metastases are purely osteoblastic, 
whereas metastases of thyroid and kidney carcinomas are 
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purely lytic. Mixed osteolytic/osteoblastic lesions occur in 
carcinomas of the breast, lung, cervix, ovary, and testis.

Bone metastasis can be identified only when the distortion 
of the compact bone structure in the direct X‑ray and 
computed tomography (CT) reach a certain level. Bone 
scintigraphy is the easiest and cheapest way to scan the 
whole body with a higher sensitivity than the specificity.[1‑6] 
Whole body bone scan allows scanning the whole skeletal 
system. Single photon emission CT (SPECT), particularly 
SPECT/CT, further increases the sensitivity and specificity of 
bone scintigraphy for the detection of bone metastases. F‑18 
fluorodeoxyglucose (FDG) positron emission tomography/
CT (PET/CT) imaging is commonly used in oncology for 
staging of the tumors as well as detecting recurrences and 
assessing response to treatments. While bone scintigraphy 
assesses the osteoblastic activity of bone metastases, FDG 
PET scan evaluates the glucose metabolism/glycolysis of the 
lesions. Bone scintigraphy has higher sensitivity in detecting 
osteoblastic bone metastases than osteolytic ones.[7,8] In 
detecting osteolytic bone metastases, FDG PET/CT has been 
reported to be superior to bone scintigraphy.[3,4,7] Metastatic 
bone lesions can be detected in early stage on magnetic 
resonance imaging (MRI) with the signal changes in the bone 
marrow which is hypointense in suppressed T1 images and 
hyperintense in T2 images. Diffusion‑weighted whole‑body 
MRI was found to be equivalent to bone scintigraphy and 
FDG PET/CT in assessing bone metastases in non‑small cell 
lung cancer.[9] There are various studies comparing FDG 
PET/CT with bone scintigraphy visually for the detection 
of bone metastases.[7,10‑17] However, to the best of our 
knowledge, there is no study determining and comparing 
semiquantitative values of bone lesions on bone scintigraphy 
and FDG PET in patients with malignancies.

In this study, we aimed to determine semiquantitative 
measurement values of osteolytic, osteoblastic, and 
mixed‑type bone lesions on bone scintigraphy and FDG PET/
CT images in patients with solid organ malignancies.

MATERIALS AND METHODS

Bone scintigraphy and F‑18 FDG PET/CT images of patients 
with various solid tumors were selected for further analysis. 
This retrospective study was approved by the Ethics 
Committee of Trakya University Faculty of Medicine.

For bone scintigraphy, the patients were injected 20–25 mCi 
(740–925 MBq) technetium‑99 m methylene diphosphonate, 
and images were obtained 2–4 h after the injection. Images 
included anterior and posterior whole body (10–15 cm/min 

scan speed), and SPECT (64 images for 20–40 s each), and 
spot (500–1000 kct) images of the area of interest. Images 
were obtained at dual‑head gamma camera (Siemens E. CAM, 
Erlangen, Germany and Philips BrightView, Milpitas, CA, USA) 
using low‑energy high‑resolution collimator with 120 keV 
energy settings and 20% window. 1024 × 512 matrix was 
used for whole body images and 64 × 64 matrix for SPECT. 
Images were evaluated visually and semiquantitatively. For 
semiquantitative analysis, a region of interest (ROI) was drawn 
over the bone lesion and normal bone to obtain maximum 
lesion to normal bone count ratio (ROImax). JETStream 
Workspace version 3.0 was used for this semiquantitative 
analysis.

For FDG PET/CT study, the patients fasted 6 h before imaging. 
Blood glucose level was checked before FDG injection. The 
patients were given oral contrast1 h before the study. FDG was 
injected when the blood glucose level was <150 mg/dl. PET/
CT images were obtained at GE discovery 8 PET/CT camera 
(GE Medical Systems, Waukesha, USA) 60 min following 
intravenous injection of 296–555 MBq (8–15 mCi) F‑18 FDG. 
Before PET image acquisition, a low‑dose CT was obtained for 
attenuation correction and anatomic localization purposes. 
PET acquisition was 3 min/bed from top of the head to mid 
thighs. PET images were corrected for attenuation on the 
basis of the CT data and reconstructed using a standard 
iterative algorithm and reformatted into transaxial, coronal, 
and sagittal views. Maximum intensity projection images 
were also generated. Both attenuation corrected and non‑
corrected PET images as well as PET/CT fusion images were 
visually evaluated. Low‑dose CT images were also assessed 
by a radiologist to determine osteoblastic, osteolytic, 
and mixed lesions which are consistent or suspicious for 
bone metastases. For semiquantitative analysis, maximum 
standardized uptake value (SUVmax), and Hounsfield unit (HU) 
values were measured from the lesions.

Number Cruncher Statistical System 2007 and PASS 2008 
Statistical Software (Utah, USA) program were used for 
statistical analysis. Mann–Whitney U, Spearman’s correlation 
coefficient, Pearson’s Chi‑squared, and Kruskal–Wallis tests 
were used.

RESULTS

A total of 33 patients were included in this study. Fifteen 
patients were female and 18 were male with an age range of 
37–79 years (mean 60.09 ± 8.77). Patients had various solid 
tumors including lung cancer (42.4%), breast cancer (30.4%), 
prostate cancer (6.1%), and other (endometrial cancer, 
pancreatic cancer, malignant melanoma, parathyroid tumor, 
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renal cell carcinoma, soft‑tissue sarcoma, and oral cavity 
tumor). There were 145 bone lesions (22.8% osteoblastic, 
53.1% osteolytic, and 24.1% mixed osteoblastic‑osteolytic 
metastases) on CT. Distribution of bone metastases 
included pelvis (24.1%), lower thoracic spine (17.9%), lumbar 
spine (16.6%), ribs and sternum (10.3%), lower limbs (9.7%), 
upper thoracic spine (7.6%), upper limbs (4.8%), and other 
regions (9%).

Mean SUVmax of osteolytic bone lesions (7.73 ± 4.35) was 
higher than mean SUVmax of osteoblastic (6.84 ± 3.03) and 
mixed (6.88 ± 3.10) lesions, but it was not statistically 
significant (0.876) [Tables 1 and 2].

Mean ROImax of osteoblastic bone lesions (6.42 ± 4.22) was 
higher than mean ROImax of osteolytic lesions (5.33 ± 3.60), 
but it was not statistically significant (0.077) [Tables 1 and 2]. 
Mean ROImax of mixed metastases was 6.32 ± 4.03.

Mean HU SUVmax of osteoblastic bone lesions (344.09 ± 140.62) 
was higher than mean HU of osteolytic (233.39 ± 125.29) 
and mixed (254.86 ± 105.69) lesions and it was statistically 
significant (P < 0.01) [Tables 1 and 2].

In osteoblastic metastases, there was no correlation between 
SUVmax and ROImax, SUVmax and HU, and ROImax and HU 
values [Table 3].

In osteolytic metastases, there was no correlation between 
SUVmax and ROImax, SUVmax and HU, and ROImax and HU 
values [Table 3].

In mixed metastases, there was no correlation between SUVmax 
and ROImax, SUVmax and HU, and ROImax and HU values [Table 3].

DISCUSSION

Bone scintigraphy and FDG PET/CT imaging play an important 
role in the management of patients with malignancies. Bone 
scintigraphy images, whole body, spot, or SPECT, are usually 
assessed visually. Several studies have been published on 

semiquantitative analysis of bone scintigraphy. Erdi et al. 
developed a semiautomated image segmentation program 
to determine the total fraction of skeletal involvement with 
bone metastases.[18] Bone scan lesion area, bone scan lesion 
intensity, and bone scan lesion count were calculated from 
identified lesions to determine response to treatment.[19] 
Regional activity concentration of the injected tracer was 
measured on SPECT images.[20] In our study, we obtained 
maximum uptake ratio of bone lesion to normal bone to 
determine the degree of osteoblastic activity of the bone 
lesions.

SUVmax is a commonly used parameter on FDG PET/CT 
studies to assess the metabolic activity of the lesions which 
can help to differentiate benign from malignant lesion and 
determine the aggressiveness of the tumor. In a study by 
Cook et al., 81% of lytic bone metastases showed increased 
FDG uptake; however, only 40% of sclerotic bone lesions 
were detected on FDG PET.[21] Abe et al. found that FDG PET 
was superior to bone scintigraphy in detecting osteolytic 
metastases, while bone scintigraphy was superior to FDG 
PET in detecting osteoblastic lesions.[12] In a study by Hur 
et al., SUVmax was significantly higher in osteolytic metastasis 
than in osteoblastic lesions.[16] Cook et al. found that the 
FDG uptake of osteoblastic metastases (mean SUVmax: 0.95) 
was significantly lower than the FDG uptake of osteolytic 
metastases (mean SUVmax: 6.77).[21]

As opposed to literature, in our study, we did not find a 
significant difference in mean SUVmax and ROImax values of 
osteoblastic, osteolytic, and mixed lesions and there was also 
no correlation between the SUVmax, ROImax, and HU values. 
Various factors may alter the mean SUVmax and ROImax values. 
In our cases, some of the lesions seen on CT could be active 
metastatic disease and some inactive. For example, some 
of the sclerotic lesions on CT could be active osteoblastic 
metastases and some could be treated old lesions. Increased 
uptake on bone scan in a sclerotic lesion could be due to flare 
phenomenon in a treated osteoblastic, osteolytic, or mixed 
metastases.[22] Lack of increased activity on bone scan in a 
sclerotic lesion may be due to treated very old osteoblastic 

Table 1: Kruskal‑Wallis test comparing mean maximum standardized uptake value, region of interest, and hounsfiled unit values in 
osteoblastic, osteolytic and mixed lesions

Metastaz tipi P
Osteoblastic Osteolytic Mixed

Mean±SD (median) Mean±SD (median) Mean±SD (median)
PET SUVmax 6.84±3.03 (6) 7.73±4.35 (6.3) 6.88±3.10 (5.9) 0.876
Bone ROImax 6.42±4.22 (5.2) 5.33±3.60 (4.2) 6.32±4.03 (5.1) 0.077
CT HU 344.09±140.62 (347) 233.39±125.29 (203) 254.86±105.69 (222) 0.001**
**: Significant, P<0.01; HU: Hounsfiled unit; SUVmax: Maximum standardized uptake value; PET: Positron emission tomography; CT: Computed tomography; ROImax: Maximum region 
of interest; SD: Standard deviation
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metastasis. Sclerotic changes on CT in a treated bone 
metastasis may last longer than osteoblastic activity on bone 
scan. Increased uptake on bone scan due to flare is usually not 
seen on follow‑up bone scan at 6 mos.[23] Flare phenomenon 
in bone metastases has also been reported with FDG PET/CT 
study.[24] Development of fracture in a lytic lesion may cause 
increased uptake on bone scan. Some sclerotic, lytic, or 
mixed lesions on CT may not be metastatic and could be due 
to various benign pathologies such as cyst or hemangioma. 
Measurement of SUVmax is also affected by various factors 
such as blood glucose level at the time of injection, duration 
of the uptake period, body weight, and body composition. 
SUVmax may be overestimated in sclerotic lesions due to over 
attenuation correction by CT, and it may be underestimated in 
osteolytic lesions due to under attenuation correction by CT. 
In small lesions, partial volume averaging may cause erroneous 
results for bone scintigraphy and FDG PET scan. For example, 
uptake of a small osteolytic lesion on bone scintigraphy may 
be overestimated and uptake of a small osteoblastic lesion 
may be underestimated. ROImax value of bone lesion is affected 
by underlying normal bone uptake on planar imaging. SPECT 
or SPECT/CT may provide more accurate ROImax values. Lytic 
lesions, particularly large ones, are not always seen cold on 
bone scan as seen in Figure 1 which can further increase 
mean value of the ROImax. Our study consisted of various 
malignancies. Metabolic behavior of the osteoblastic and 
osteolytic bone lesions may vary in malignancies.

CONCLUSION

We did not find a significant difference in SUVmax and ROImax 
values of osteoblastic, osteolytic, and mixed lesions and also 
lack of correlation between SUVmax, ROImax, and HU values 
which could be due to various technical or patient‑related 
causes or varying metabolism of bone metastases from 
various malignancies. A study with a larger number of patients 
who had untreated and proven bone metastases and also 
using SPECT instead planar bone imaging can be valuable 
to assess the metabolic and osteoblastic activities of bone 
metastases.
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