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Abstract

Among single-cell analysis technologies, single-cell RNA-seq (scRNA-seq) has been one of the 

front runners in technical inventions. Since its induction, scRNA-seq has been well received and 

undergone many fast-paced technical improvements in cDNA synthesis and amplification, 

processing and alignment of next generation sequencing reads, differentially expressed gene 

calling, cell clustering, subpopulation identification, and developmental trajectory prediction. 

scRNA-seq has been exponentially applied to study global transcriptional profiles in all cell types 

in humans and animal models, healthy or with diseases, including cancer. Accumulative novel 

subtypes and rare subpopulations have been discovered as potential underlying mechanisms of 

stochasticity, differentiation, proliferation, tumorigenesis, and aging. scRNA-seq has gradually 

revealed the uncharted territory of cellular heterogeneity in transcriptomes and developed novel 
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therapeutic approaches for biomedical applications. This review of the advancement of scRNA-seq 

methods provides an exploratory guide of the quickly evolving technical landscape and insights of 

focused features and strengths in each prominent area of progress.
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INTRODUCTION

Homogeneity and heterogeneity are proportionally co-existent in all phenotypical and 

genetic levels of humans. The extent of heterogeneity is increased from individuals down to 

molecules, whereas homogeneity is decreased [Figure 1A]. The diversity is observed in 

individuals, organs, tissues, cells, organelles, and molecules, and even more abundant in 

protein, DNA, and RNA molecules. The long-standing paradigm that cells of the same tissue 

origin are homogeneous based on bulk cell studies has lately been challenged by single-cell 

studies[1–5]. New data show that cells arising from the same tissue origins are far more 

heterogeneous than they seemingly appear [Figure 1B][6–8]. Even genetically identical cells 

cultured in the same conditions have shown variations in gene expression[9,10].

In the new paradigm, the diverse properties of cells are mainly reflected in the 

heterogeneous gene expression, genomic alterations, epigenomic modifications, and 

proteomic fluctuations[7,11–16]. Cellular transcriptomic heterogeneity helped to establish a 

new paradigm of cellular heterogeneity with the invention of scRNA-seq[17–19]. The cellular 

transcriptomic heterogeneity arises from stochasticity, differentiation, environmental stimuli, 

diseases, aging, and other factors[5,8,11,20–23]. The development of single-cell analysis was 

overshadowed by traditional bulk cell approaches and technically limited by the absence of 

high throughput single-cell isolation and minute initiation materials (picogram DNA and 

mRNA per cell)[3]. Combined technological advances in cell isolation, high throughput 

multiplexing, amplification, and next generation sequencing facilitated scRNA-seq and 

uncovered cellular heterogeneity[24]. Mapping transcriptomic changes at single-cell level has 

since revealed global gene expression profiles and exposed stochasticity, differentiation, cell 

fate plasticity, and diseases[25]. In this review, we highlight the novel scRNA-seq platforms 

and conduct a comparative analysis of each technology and their future applications in 

translational science.

SINGLE-CELL ISOLATION TECHNOLOGIES

Cell purity is paramount for scRNA-seq and other single-cell analysis methods. Tissues, 

organoids, and 2D and 3D cultured cells are multi-cellular, and the first step to dissociate 

aggregated cells into individual cells risks potential contamination with cell doublets, DNA, 

and RNA by incomplete enzymatic digestion and cell lysis. The impurity of single cells 

distorts the scRNA-seq data and leads to false interpretations. To ensure the purity and 

integrity of single cells, several instrumental technologies have been adopted to overcome 

these technical challenges.
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Manual cell picking (micromanipulation)

Manual cell picking presents a simple and cost-effective method for single-cell isolation. 

This technique involves an inverted fluorescent microscope, manipulator, and microinjector 

for precise cell location and picking after cells are labeled with markers[26]. The 

instrumental efficiency of picking individual cells exceeds old-fashioned mouth-

pipetting[17]. Specifically, cells are maintained in suspension and manually isolated by 

capillary pipettes connected with a microinjector. Cellular integrity is maintained for further 

analysis and is particularly workable with rare cells. However, high operator skills are 

required through training and practice. Additionally, the throughput is relatively low 

compared with the other methods[27].

Flow activated cell sorting

This high throughput method relies on antibody affinity to cell surface markers and has 

become the most common strategy for single-cell isolation. Cells are labeled with 

fluorescent or conjugated antibodies and run through flow cytometry, sensed by laser 

detectors or a magnetic field, and sorted with surface specific markers[27,28]. With advanced 

fluorochrome and microscope techniques, 18 fluorescent, inorganic semiconductor 

nanocrystals (Quantum Dots) are used to label antigens on cells, which increases the 

specificity and sensitivity of single-cell isolation from a bulk sample[29,30]. However, greater 

than 10,000 cells are required for this method and signal overlap may affect the purity of the 

target cells. Moreover, this method cannot perform single-cell analysis with rare cells.

Microfluidic technology

This technology for single-cell isolation can be divided into three main approaches: droplet-

based microfluidics, channel-based microfluidics, and hydrodynamic traps. These methods 

rely on cell adhesion, hydrodynamics, physical characteristics (e.g., size and shape), cellular 

density, and elasticity. Microfluidic technology platforms can actively or passively recognize 

and sort single cells from a heterogenic population[31]. In droplet-based microfluidics, each 

single cell is embedded in a hydrophilic droplet which suspends hydrophobic channels. The 

advantages of this approach are high throughput and yield, making it feasible to isolate rare 

cell types[32]. Besides, genetic barcodes can be added within the cell droplet that record the 

cell origin, allowing profiling of cells from simultaneous preparation of thousands of single-

cell libraries[33,34]. In channel-based microfluidics, single cell is controlled and confined by 

pneumatic membrane valves according to the biological requirements. This selection 

approach increases the accuracy of cell isolation and the flexibility of experimental design. 

However, it is limited by the low throughput compared with droplet-based microfluidics. 

Hydrodynamic traps such as Fluidigm C1 passively isolate and trap single cells based on cell 

size[31,32]. Both channel-based microfluidics and hydrodynamic traps enable long-term cell 

culture and high-resolution observation for further biological experiments such as drug 

treatment or cDNA library preparation[35].

Laser capture microdissection

This microscopy-based technology carries out isolation of specific single cells on a 

microscope slide without cell dissociation from solid samples. Tissue sections are either top-
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covered by or laid on a thermoplastic polymer film, which is heat-activated by infrared or 

ultraviolet laser. The boundaries of a single cell on a tissue section are recognized and 

severed precisely by laser, and the dissected cell is captured[36,37]. Laser capture 

microdissection is a rapid and precise isolation technology that maintains versatility for 

further analysis including scRNA-seq[38,39].

TECHNICAL ADVANCES FOR CDNA SYNTHESIS AND AMPLIFICATION

The uniform and full coverage of cDNA synthesis from single-cell mRNA/RNA is a crucial 

step for the success of scRNA-seq because the limited starting materials are as little as 5–30 

pg and need to be amplified for next generation sequencing. The cDNA synthesis from 

single cells has been attempted for qRT-PCR and microarrays, and the technical 

predecessors were adopted and modified for scRNA-seq[40,41]. The protocols of scRNA-seq 

have fruitfully advanced in a decade [Table 1][19,25,42–44]. The technical variations have 

strengths and weaknesses in linear amplification, length coverage, low copy RNA species 

detection, multiplexing, high throughputs, and cost reduction. Tang’s protocol was the first 

scRNA-seq modality and was based on single-cell RNA amplification from RNA microarray 

assays[45,46]. Tang’s protocol uses poly(T) primers to generate full-length cDNA of 

transcripts less than 3 kb and can detect ~13,000 genes, 65% of microarray genes[42]. Two 

years later, Single-cell Tagged Reverse Transcription sequencing (STRT-seq) introduced 

template switching to incorporate bead-linked barcoded primers for strand-specific 

amplification of 3’ ends and high throughput 96-cell multiplexing with 2000–4000 genes 

detected in individual cells[18,47,48]. In 2012, a significant advancement for full-length 

cDNA synthesis of 40% transcripts was made with Smart-seq, and it was updated with the 

Smart-seq2 in 2013[49–51]. Smart-seq has laid the foundation for future scRNA-seq methods, 

employing more stable template switching ribo(guanosine)3 oligos and having more unique 

mapping reads, higher recovery rates of low expression genes, and a two-fold increase in 

spliced forms discovered. At about the same time, Cell Expression by Linear amplification 

and sequencing (CEL-seq) utilized linear strand-specific in vitro transcript amplification 

mainly at 3’ ends, and an improved CEL-seq2 version reduced mRNA molecule counting 

biases with the introduction of unique molecular identifiers (UMIs)[52–55]. Single Cell RNA 

Barcoding and sequencing (SCRB-seq) is a protocol for high throughput of 12,000 cells at a 

low cost and one of the first scRNA-seq protocols to include UMIs[56]. Previous scRNA-seq 

platforms utilized relative measures such as reads per kilobase per million reads (RPKM), 

which masked differences in total mRNA content. As an example, a gene may be 

“upregulated” in terms of RPKM and have a decrease in absolute expression level. UMIs are 

short unique sequences integrated in cDNAs before PCR amplification to allow for unique 

identification of amplified DNAs carrying the same UMI sharing the same mRNA/RNA 

molecule origin and reduce nonlinear PCR amplification bias. For full length transcript 

coverage and analysis of noncoding RNA, Multiple Annealing and dC-Tailing-based 

Quantitative single-cell RNA-seq (MATQ-seq) and Random Displacement Amplification 

sequencing (RamDA-seq) can be employed, which allow for poly(A)+ and non-poly(A) 

scRNA-seq, useful for characterization of lncRNA or circRNA[57–59]. RamDA-seq also 

detects enhancer RNAs differentially expressed in a cell-type specific manner. Quartz-Seq 

builds upon both CEL-seq2 and STRT-seq to perform 3’ coverage scRNA-seq, vastly 
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improving poly(A) tailing and initial read UMI conversion and augmenting sequencing 

depth and accuracy[60].

Many methods employ cDNA amplification strategies, as mentioned above, but they each 

have unique methods of single-cell sorting and significant high throughput improvement. 

MAssively parallel RNA Single-cell sequencing (MARS-seq) uses fluorescence-activated 

cell sorting sorting to separate and sort 100–1000 cells into individual wells[61]. Drop-seq 

and InDrop are two similar methods that employ droplet capture microfluidic methods to 

isolate cells. The main differences are that Drop-seq uses reagent containing beads, while 

InDrop uses reagent carrying hydrogel microspheres. Both platforms can quickly process 

tens of thousands of cells daily[33,34]. Chromium is similar to both previous methods, 

employing a gel bead in emulsion[62] microfluidic capture method, but has the advantage of 

being able to process eight samples at once or a single sample more quickly due to its eight-

channel microfluidic chip[63]. Seq-Well is a low-cost alternative, not requiring any expensive 

microfluidic devices and instead utilizing semi-permeable membranes on a picowell plate 

with wells that contain one barcoded capture bead and space for one single cell per well[64]. 

Seq-Well plates have ~86,000 wells, but the actual capture efficiency varies. Similar to the 

other platforms (CEL-seq, STRT-seq, and SCRB-seq), CytoSeq employs a microfluidic 

method automating high throughput cell settling in 1/10 of 100,000-well plate by gravity[65]. 

It employs a similar plate system to Seq-Well with 30-μm well sizes only allowing one cell 

per well and one magnetic bead with a universal primer plus 106 diverse UMIs created by a 

split-pool synthesis process. It can easily reach up to 10,000 cells with detection of ~100 

genes per cell.

For harder to work with tissues, such as frozen samples, DroNC-seq is able to salvage 

samples and produce high quality data, employing single nucleus RNA-seq with 3’ 

coverage[66]. sci-RNA-seq performs the analysis of single cells or nuclei isolated from 

methanol-fixed whole organisms (~50,000 cells), with 3’ coverage and high depth 

sequencing employing double UMI barcoding[67]. Split-Pool Ligation-based Transcriptome 

sequencing (SPLiT-seq) is an extremely high throughput 3’ coverage method distinct from 

other methods, offering scRNA-seq analysis without single-cell isolation from 1.33% 

formaldehyde-fixed tissues[68]. It employs combinatorial indexing to identify single cells 

without isolation, by performing three successive barcoding steps through in situ reverse 

transcription on groups of cells and mixing after each time, leaving each cell with a unique 

identifier totaling up to 21 million for downstream data analysis. This invention posits 

potential cost reduction per cell and time effectiveness.

Not all methods employ UMIs. Designed Primer-based RNA-sequencing (DP-seq) is a 3’ 

coverage method useful for small samples, analyzes at least 50 pg of RNA, and employs 

random hexamer-based amplification and sequencing[69]. The protocol requires knowledge 

of the intended target’s genome prior to use. SC3-seq provides 3’ coverage method for only 

3’ end characterization of mRNA, allowing for higher reproducibility and reduced noise, 

thus it is useful for projects not requiring deep sequencing with a low budget[46,70].

Attempts have been made to evaluate diverse scRNA-seq protocols using systematic 

comparisons[71]. Six commonly used methods - CEL-seq2, Drop-seq, MARS-seq, SCRB-
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seq, Smart-seq, and Smart-seq2 - were performed side by side using mouse embryonic stem 

cells. Overall, Smart-seq2 detected the most genes per cell, while the other methods 

displayed less amplification noise due to the use of UMIs. Power analysis showed that Drop-

seq provides a less costly option for a larger number of cells analyzed, whereas MARS-seq, 

SCRB-seq, and Smart-seq2 were suitable for fewer cells. To evaluate sensitivity and 

accuracy as performance metrices for 15 different methods, in silico power analysis of 

External RNA Controls Consortium spike-in standards was performed in those scRNA-seq 

studies[72]. The vast majority of methods displayed high accuracy. The exceptions were 

CEL-seq and MARS-seq data, which show more variations among cells. Better sensitivity 

appeared in SMARTer (C1), CEL-Seq2 (C1), STRT-Seq, and InDrop-seq that could detect 

digital copies of spike-ins; however, the sensitivity was sequencing depth-dependent. For the 

droplet-based high-throughput platforms (InDrop, Drop-seq, and 10x Genomics Chromium), 

a thorough comparative study revealed insights regarding their efficacy and limits[73]. The 

10X Genomics Chromium protocol was maturely developed with a higher cost and delivered 

high degree of sensitivity and accuracy with less technical noise. Drop-seq provided similar 

data quality with fewer cells, but a more affordable cost. InDrop is also less expensive with 

high compatibility with other protocols, such as Smart-seq2. In a large-scale validation of 13 

protocols by multi-centered collaboration effort using mixed human and murine cells, CEL-

seq2, Quartz-seq2, SMAR-seq2, and Chromium platforms were superior in producing high-

resolution transcriptomic profiles[74].

PROCESSING OF NEXT GENERATION SEQUENCING DATA OF SCRNA-SEQ

Synthesized and amplified cDNAs are subsequently subject to library preparation and NGS 

to generate massive sequencing short reads, as depicted in Figure 2. The current state-of-the-

art computational tools and algorithms widely used in bulk RNA-seq analysis can be 

extended for processing scRNA-seq data. However, the transcriptome at single-cell 

resolution presents specific analytical challenges, which requires dedicated analytical power 

and specific packages. Some of the key challenges encountered during single-cell 

transcriptional data analysis includes greater dimensionality, high level of noise, absence of 

biological replicates, and data sparsity[44,75]. However, major efforts in the development of 

advanced algorithms and computational strategies as well as adaptations of existing 

workflows have shown great promise for comprehensive and detailed analysis of scRNA-seq 

data [Table 2]. Several programming- (R- or Python-based) and web interface-based toolkits 

have been proposed to facilitate systematic analysis that can be scaled up as per 

requirements[75,76]. Seurat[77,78] and Single Cell ANalysis in PYthon[79] are the two most 

comprehensive packages that can, respectively, integrate scRNA-seq data with other single-

cell data and enable scaling-up to simultaneously analyze millions of cells at the same time. 

Of note, the core analysis pipelines show higher resemblance with the bulk RNA-seq and 

can be broadly categorized in the following: (1) quality control; (2) read alignment and 

generation of counts; (3) removal of confounding factors; and (4) normalization and 

annotation of cell types and cellular states. The quality of individual single-cell libraries 

needs to be carefully assessed to abolish the underlying noise as downstream interpretation 

relies heavily on the preprocessing steps. Generic quality control (QC) metrics including 

FastQC (http://www.bioinformatics.babraham.ac.uk/projects/fastqc/), High-Throughput 
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Quality Control[80], or Kraken[81] provide insights into overall quality of raw sequence files. 

Characterization of heterogeneity is one of the primary purposes of performing single-cell 

analysis, however not all outliers contribute to unique cell populations. Single-cell specific 

quality evaluation tools such as SinQC[82], SCell[83], and Celloline[84] enable identification 

of technical artifacts that interfere with gene expression patterns. Mapping sequencing reads 

to a reference genome or transcriptome allows identification of the specific location from 

which the transcripts originate and subsequent quantification. Although dedicated mappers 

for scRNA-seq are not available, existing aligners such as TopHat[85], STAR[86], and 

Hierarchical Indexing for Spliced Alignment of Transcripts[87] have shown considerable 

precision and accuracy. Recently, two pseudo-alignment tools, Kallisto[88] and Salmon[89], 

have been proposed which pseudo-align splicing isoforms to a reference transcriptome and 

overcome the requirement of significant amount of computational power and time to process 

the reads. An improved Salmon with Selective Alignment and expanded decoy sequences 

was introduced recently and significantly reduced false mappings[90]. However, careful 

consideration should be made while implementing pseudo-alignment with scRNA-seq data 

since the data themselves can have lower depth in the first place and 3’ coverage bias. 

Another important step in the analysis pipeline is normalization of the expression data, 

which is particularly important in single-cell analysis as many technical parameters 

including cell capture efficiency, drop out events, read depth, and coverage bias can induce 

variation[91,92]. Tagging individual RNA molecules using UMIs enables absolute 

quantification of the transcripts from each cell. In the cases without the use of UMIs, 

external spike-in RNAs (i.e., ERCCs) can be used as internal controls. Additionally, several 

single-cell specific normalization approaches including SAMstrt[93], Bayesian Analysis of 

Single-Cell Sequencing (BASiCS)[94], Gamma Regression Model[95], sctransform[92], 

Scran[96], SCnorm[97], and Linnorm[98] can be utilized, of which the last three do not require 

incorporation of additional spike-ins. Eight commonly applied normalization methods 

(trimmed mean of M-values[99], count-per-million[100], and DESeq2[101], as well as others 

tailored for scRNA-seq, namely scone, BASiCS, SCnorm, Linnorm, and scran) were subject 

to benchmarking[102]. Data show that scRNA-seq normalization methods outperformed bulk 

RNA-seq counterparts. However, a bulk RNA-seq normalization method using Differentially 

Expressed Genes Elimination Strategy is competitive with scRNA-seq normalization 

methods[103,104]. Three scRNA-seq imputation methods, namely K-Nearest Neighbor 

smoothing (kNN-smoothing)[105], DrImpute[106], and Single-cell Analysis Via Expression 

Recovery (SAVER)[107], were evaluated for their capacity to tackle the zero-inflation issue 

either derived from a technical contribution or a normal distribution[102,108,109] [Table 2]. 

Both kNN-smoothing and DrImpute analysis gave more reliable results compared with 

SAVER.

Single-cell RNA isolation at different time points or in different laboratories can induce 

systemic variations and batch effects which may compromise biologically meaningful 

interpretation of signals[110,111]. Batch correcting algorithms such as Mutual Nearest 

Neighbors Correct[111], Seurat 3[112], Harmony[113], scGen, and scMerge[114], among many 

others, can compensate the discrepancy. In unsynchronized cells, cell-cycle variation can 

also mask other important physiological variations, which can be overcome by eliminating 

cell-cycle factors using packages such as single-cell Latent Variable Model (scLVM)[115] 
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and ccRemover[116]. Drop-out, high number of zero counts, sparsity, and multimodality are 

some of the unique events encountered in single-cell expression analysis which demand 

more sophisticated algorithms for identifying differentially expressed genes (DEGs)[117].

Algorithms for scRNA-seq data analysis

Algorithms for scRNA-seq data analysis have been developed recently in different computer 

languages, such as R program or Python, and few are designed as a website interface or 

software package [Table 3]. scRNA-seq data are high-dimensional datasets among a great 

number of cells. Therefore, application of appropriate algorithms is necessary to have better 

analysis and visualization of scRNA-seq data. After QC and normalization, scRNA-seq data 

can be processed using diverse algorithms according to variant purposes, such as 

investigation of DEGs, identification of cell subpopulations, and cell fate trajectories 

(pseudotime analysis), which are the most common methods to process scRNA-seq data. 

Visualizations of scRNA-seq data are also diverse. The heatmap is the most common method 

to present DEGs between groups or within different cell types. Heatmaps are generated by 

most algorithms for DEGs analysis. T-distributed stochastic neighbor embedding (tSNE), 

scatter plot, and uniform manifold approximation, and projection (UMAP) are used for 

visualization of dimension reduction results in cell clustering or cell subpopulations[118–120].

CELL CLUSTERING AND SUBPOPULATION IDENTIFICATION

Cell clustering and cell type identification are critical features of scRNA-seq and, unlike 

bulk cell RNA-seq, can reveal heterogeneous cell types using entire transcriptomes from an 

enormous quantity of cells[25,44,121]. Recently, many software algorithms have been 

developed to achieve cell clustering and cell type identification [Table 3] through 

unsupervised dimensionality reduction based on principal component analysis (PCA), tSNE, 

or diffusion maps[28,122]. Based on an unsupervised clustering method, such as Seurat or 

Monocle 3, novel cell types or populations might be revealed with scRNA-seq data[77,78,123]. 

Recently, cell type identification of scRNA-seq data has been exponentially applied to 

studies in developmental biology, neurology, cancer biology, and immunology and can 

provide the type, quantity, and gene signature of different cell populations[124–129].

DIFFERENTIAL EXPRESSION ANALYSIS

Differential expression analysis can reveal significant DEGs to identify novel pathways or 

biological functions in different cell types or treatments. Identification of DEGs can be 

performed by comparing gene expression between two predetermined groups or treatments. 

For example, Horning et al.[130] identified a group of cell-cycle genes upregulated in a 

subpopulation which had an attenuated androgen response using Single Cell Differential 

Expression (SCDE) algorithm in R program. DEGs can also be identified among different 

cell types in a tissue or organ based on unsupervised algorithms, such as Seurat or Monocle 

3. Wang et al.[131] identified single-cell transcriptome profiling of cardiopharyngeal lineages 

and characterized their cell fate using Seurat package in R program. SCDE[132], PAthway 

and Gene[133] set OverDispersion Analysis (PAGODA), Model-based Analysis of Single-

cell Transcriptomics, Monocle, and SigEMD[134] algorithms and SINgle CEll RNA-seq 

profiling Analysis[135] workflows have addressed some common challenges to some extent 
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and improved sensitivity in calling DEGs. Since each single cell has the potential to behave 

as a unique entity, oftentimes the curse of high dimensionality can impose restrictions in 

clustering and data visualization[122]. UMAP, Zero Inflated Factor Analysis, Single-cell 

Interpretation via Multikernel LeaRning, and scvis belong to recent dimensionality reduction 

techniques that can address the underlying confounding factors and enable proper 

visualization of diverse expression patterns over conventional PCA analysis[120,136,137]. 

With the advent of automated advanced tools and packages including SingleR and scMatch, 

cell-type annotations have significantly improved, leading to the identification of rare events 

or specific cell populations with the ability to scale-up[138–140]. Cell BLAST is a cell type 

query algorithm for the analysis of new scRNA-seq data. It utilizes a neural network-based 

generative model to extract low-dimensional cell-to-cell relationships from high-dimensional 

transcriptomic data and predicts cell types via batch correction with a large-scale curated 

reference cell type database[141].

CELL LINEAGE AND CELL FATE RECONSTRUCTION

Following cell type identification, cell fate trajectory is the next step to uncover how 

different cell types coordinate in many aspects of biology including the developmental 

process or cancer progression[142,143]. Based on transcriptome information, some algorithms 

provide a pseudotime scale and cell fate branches within all the cells to reveal potential 

progression or direction of cell types based on cell phenotypic clusters[123,144]. Cell fate 

trajectory analysis provides an opportunity to investigate the dynamic processes of large-

scale cells in developmental processes, cellular differentiation, or drug responses[145,146]. 

Several software packages can perform trajectory inference. Monocle 3[123], Diffusion 

PseudoTime[144], and Single-cell Trajectories Reconstruction, Exploration And 

Mapping[145] are well-developed algorithms to perform cell fate trajectory prediction but 

require a mastery of computer programming skills. Tools for Single Cell ANalysis (TSCAN) 

provides a friendly webpage interface to access and perform cell fate trajectory[147].

Of note, transcriptional dynamics represent an important feature of single-cell analysis 

which enables the analysis of gene expression in given time series such that the output can 

generate biological signals inferring potential cellular lineages. Seurat[77,78], Slingshot[148], 

Monocle 2[149], Waterfall[150], Single-cell Clustering Using Bifurcation Analysis[151], and 

TSCAN[147] can allow construction of pseudotime trajectory and assessment of expression 

kinetics that can provide novel insights into cellular differentiation of stem cells as well as 

oncogenic progression during tumor development. Tian et al.[102] evaluated five trajectory 

analysis methods in a thorough combination of normalization and imputation of four 

independent scRNA-seq datasets and found that Slingshot and Monocle 2 led to more robust 

results. Integration of single-cell transcriptome profiling with other single-cell or bulk 

analysis and spatial measurements can significantly enhance our understanding of molecular 

basis of cellular heterogeneity[77] and crosstalk among cellular populations in in-vivo 
studies[152,153].

Lieberman et al. Page 9

J Transl Genet Genom. Author manuscript; available in PMC 2021 July 27.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



APPLICATIONS OF SCRNA-SEQ

Heterogeneity of cell fate determination in embryogenesis

In the last decade, cumulative efforts have been undertaken to explore the uncharted territory 

of cellular heterogeneity in different species, organs, tissues, developmental stages, and 

microenvironments. The first attempt was to interrogate the transitional transcription profiles 

in the formation of pluripotent embryonic stem cells (ESCs) in early embryogenesis[17]. The 

differentiational modulation from the inner cell mass to blastocysts and ESCs was not fully 

understood based on bulk cell studies, but they provided a good initial model for scRNA-seq 

analysis[17,154]. DEGs showed self-renewal and pluripotency signals with high gene 

expression variations, particularly for genes with medium expression levels. While 

epigenetic repressor expression was increased, a suppressive transcription became apparent 

during the development. A group of miRNAs targeting early differentiation genes and 

pluripotency genes plays a role in transcriptional alterations. Meanwhile, many spliced 

forms were discovered for the first time. The same approach was also applied to profile the 

transcriptional dynamics of earlier embryonic stages, preimplantation human embryos, using 

124 cells from oocyte to blastocyst stage[155]. Previous bulk studies have shown that the 

expressions of ~1900 genes were mainly transcriptionally suppressed during the stages. In 

this study, about 2,495 and 2,675 genes were significantly up- and downregulated between 

the four- and eight-cell stages. Splicing isoforms of 4,822 transcripts were enriched in 

different stages and 20% of transcripts displayed more than two splicing variants. FOXP1 

with exon 18b transcripts, ESC-specific splicing species, are 25-fold more abundant than 

those with exon 18a in undifferentiated ESCs. From the 90 single embryonic cells analyzed, 

64% of the total known human lncRNAs (28,640) were found to be expressed. Another 

study using Smart-seq method with deep sequencing analyzed the cell fate determination 

between two- and four-cell embryos and later stage blastomeres[156]. However, this scRNA-

seq study discovered that dozens of protein-encoding genes, including Gadd45a, showed 

significant differential bimodal expression between blastomeres at two- and four-cell 

embryonic stages. Differential monoallelic expression in 24% genes was clearly observed to 

be independently regulated in early embryonic development using scRNA-seq[157]. In later 

embryonic developmental stages within 5–7 days, X-chromosome dose compensation was 

found in single-cell transcriptomes of 1,529 individual cells from 88 human preimplantation 

embryos[158]. The cell lineage expression patterns were concurrent as an intermediate status 

before the establishment of the trophectoderm, epiblast, and primitive endoderm lineages 

that are contemporary with blastocyst formation. Linnarson’s group studied the differential 

expression between mouse embryonic stem cells and fibroblasts with a high throughput 

scRNA-seq method[18]. Nematode embryogenesis between two- and eight-cell stage was 

dissected with CEL-seq with RNA linear amplification by scoring single-cell 

transcriptomes[54]. Seventeen genes had significant two-fold mean difference between AB 

and P1 cells. EMS had more genes expressed compared to P2 cells, while P3 had fewer new 

genes expressed than C lineage. Taken together, the single-cell transcriptome data map the 

cell fates in early embryonic differentiation and ESC pluripotency establishment.
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Heterogeneity in complex differentiated tissues and systems

With multiplexing and high throughputs improvements, scRNA-seq has served as a 

molecular scalpel directed at the heterogeneity of cells in much more complex tissues, 

systems, and organisms. The immune system is a complex of bone-marrow-derived 

differentiated cells. More and more scRNA-seq technologies are adopted for exploring 

transcriptomes and functional relevance in this biological system[159]. Dendric cells (DCs) 

are a group of highly heterogeneous antigen-presenting cells and important for pathogen 

recognition and immune defense[160]. The bulk RNA-seq of marker-sorted subpopulations 

did not sufficiently capture their complex functions and led to great controversy[161]. An 

unbiased global transcriptomic mapping of 18 bone-marrow-derived DCs exposed to 

lipopolysacharrides (LPS)[162] using Smart-seq revealed hundreds of genes expressed in 

high variability and unique bimodal profiles that were similarly observed during early 

mammalian embryogenesis[13,156]. Among them, 137 genes are anti-virus genes. The spleen 

is the largest lymphatic organ in the human body. The heterogeneity of 1,536 splenic cells 

was explored using massively parallel MART-seq with low-depth RNA sampling[61]. From 

them, the method coupled with a probabilistic mixture model demonstrated sensitive cell 

classification for distinct identification of B cells, natural killer cells, macrophages, 

monocytes, and plasmacytoid DCs. In DCs, four subpopulations were found either 

significantly linked or supported by internal combinatorial marker gene expressions. After 

exposure to LPS, 1,536 spleen cells’ scRNA-seq displayed the heterogeneity in DCs with 

enriched CD11c expression and their response to LPS. In the adaptive immune system, 

differentiation of naïve T cells into T helper 2 (Th2) cells is a feedback loop to restrain 

immune overreaction[163]. From 91 single Th2 cells acquired post infection of naïve T cells, 

scRNA-seq revealed unique subpopulations with transcriptional profiles and changes in 

transcription factors, cytokines, surface receptors, and other pathways[115,164].

Mining efforts on heterogeneity of other tissues are ongoing in muscle, lung, intestine, testis, 

pancreas, and the nervous system. The sci-RNA-seq was applied to profile nearly 50,000 

cells from nematodes (Caenorhabditis elegans) with more than 50-fold somatic cellular 

coverage at the L2 larval stage[67]. From the data, consensus expression profiles for 27 cell 

types were defined and rare neuronal cell types with one or two cells were sensitively 

recovered. The global view of regulatory networks for human skeletal muscle myoblast 

differentiation has been masked by the low resolution of bulk genomic data[149]. ScRNA-seq 

coupled with a nonlinear MONOCLE pseudotime trajectory prediction model discovered 

dynamic expression in 1,061 genes that clustered in gene regulatory groups responsible for 

activation and suppression at three time points after differentiation initiation. During 

Embryonic Days 16.5–18.5, murine lung cell lineages at respiratory airway tips are 

developed from columnar epithelial progenitor cells into flat alveolar type 1 (AT1) or 

cuboidal type 2 (AT2) cells for gas exchange or surfactant secretion, respectively[165]. A few 

markers have been identified for four cell types but the global transcriptomic dynamics 

during the transition is unknown[166]. Microfluidic scRNA-seq of 196 cells have delineated 

transcriptional signatures for an intermediate bipotential progenitor cells that precede AT1 

and AT2 cells, in addition to Clara and ciliated cells[167]. CEL-seq of 238 randomly selected 

cells from intestinal organoids composed of major intestinal cell lineages brought a better 

understanding of diversity in intestinal differentiation[168]. Hierarchical clustering of gene 
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expression correlation and rare cell identification method identified the major intestinal cell 

lineages and 10 clusters as novel diverse subtypes of cells. Spermatogenesis in testes is a 

complicated and highly orchestrated process including the differentiation of diploid 

spermatogonia into haploid sperm[169]. The whole picture of spermatogenesis is still far 

from complete. Two research groups have run scRNA-seq on thousands of dissociated cells 

from testis samples using Drop-seq and STAR[170,171]. A conserved continuous temporal 

trajectory of transcriptional dynamics was consistent in both murine and monkey 

reproductive models. Novel subpopulations were identified in several time points of 

differentiation and displayed unique transcriptional regulators and signatures. Based on 

CEL-seq2 data of pancreatic islet cells from four deceased patients, cell clusters by t-

distributed Stochastic Neighbor Embedding (t-SNE) analysis showed the classical pancreatic 

cell types with marker genes and additional novel markers that have not been reported 

previously[172].

The central nervous system is composed of large amounts of neuronal and glial cells with 

numerous types, and the classical methods to identify them with some molecular markers 

were limited and not definitive[173]. Single-cell transcripts of ~3000 cells from mouse 

somatosensory S1 cortex and hippocampus Cornu Ammonis (CA) were analyzed by 

STRT/C1[174]. Cell type classification identified nine major classes and 47 molecularly 

distinct subclasses. scRNA-seq of 30,000 nuclei from mouse and human archived brain 

tissues from hippocampus and prefrontal cortex was carried out by DroNc-seq[66]. With 

fewer genes detected, cell clustering analysis still identified novel cell types along with well-

known cell types.

In other independent studies, there were more than 100 subclasses of cells found in mouse 

brain and spinal cord[68,175]. Ribosomes And Intact Single Nucleus (RAISIN) RNA-seq and 

MIning RAre Cells sequencingMIRACL-seq processed transcriptomes of thousands of 

neurons in mouse and human enteric nervous system for species-specific transcription 

signatures and dozens of neuronal subtypes[176]. From 44,808 mouse retinal cells, 39 

transcriptionally distinct cell populations were identified, creating an atlas of gene 

expression for the classification of retinal cells and novel rare subtypes[33].

Heterogeneity in cancers

The transcriptomic heterogeneity of tumors evolves temporospatially during tumor 

progression with genetic, epigenetic, and tumor immune microenvironmental 

fluctuations[5,7,177]. ScRNA-seq is a powerful tool to address the tumoral heterogeneity, 

particularly for rare cells and previously unrecognizable subpopulations[128]. Smart-seq was 

applied to stratify heterogenous cell subpopulations in 672 cells from five glioblastoma 

tumors[14]. Despite apparent cell-to-cell variability, unbiased cell hierarchical clustering 

showed four meta-signatures comprised of cell-cycle, hypoxia, complement/immune 

response, and oligodendritic function. Gene expression profiling of 4,347 cells from six 

Isocitrate dehydrogenase 1(IDH1) or IDH2 mutant human oligodendrogliomas displayed 

distinct expression signatures[178]. With bulk exome sequencing and copy number variation 

estimation, a hierarchical cell lineage map with variant stem/progenitor cell components was 

delineated in each tumor. Noncanonical WNT activation signaling was noted in retrospective 
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analysis of 77 circulating tumor cells from 13 prostate cancer (PCa) patients following 

tumor progression compared with stable counterparts undergoing androgen deprivation 

therapy[179]. This study indicated a potential novel therapeutic target and predictive 

biomarker for PCa. From multicellular ecosystem of metastatic melanoma, 4,645 single cells 

isolated from 19 patients were subject to analysis for profiling malignant, immune, stromal, 

and endothelial cells[180]. The principle component analysis of scRNA-seq data showed that 

the transcriptomic expression could discern malignant cells from tumor and nonmalignant 

cells (immune cells, stromal cells, endothelial cells, and fibroblasts) independent of biopsy 

sites. The transcriptional signatures for malignant cells consist of a core set of cell-cycle 

genes and a set of immediate early-activation transcription factors that displayed spatial 

difference. Meanwhile, a drug-resistant subpopulation with high AXL or MITF signals was 

present in treatment-naive tumors. Treatment-naïve tumors are usually sensitive to initial 

therapy and generally respond to first-line therapy. However, most advanced tumors acquire 

drug resistance and lead to poor survival outcomes. Androgen deprivation therapy[8] is 

effective for the majority of PCa but biochemical recurrence occurs in 30% of patients 

subject to treatment, and there is a limited understanding of the underlying mechanisms. 

From 144 cells treated or untreated with androgen, subpopulations of heterogeneous LNCaP 

cells were revealed and exhibited high levels of ten cell-cycle-related genes using Smart-

seq2 analysis[130]. The subpopulations of cells showed cancer stemness phenotype and 

became resistant to cell-cycle targeting agents. ScRNA-seq and imaging found 

transcriptional variation and a pre-adapted subpopulation that exhibited resistance to 

endocrine therapy[181]. ScRNA-seq identified a stem-like subpopulation of PCa cells from 

monolayer and organoid culture[182].

Smart-seq2 was deployed to sequence single cells derived from treatment naïve, residual 

disease, and progressive disease following tyrosine kinase inhibitor (TKI)-based therapies in 

tumor derived from non-small cell lung cancer patients for mapping transcriptional 

alterations unique to drug-sensitive and drug-resistant tumor cell populations[183]. The 

scRNA-seq data of 23,261 cells from 49 samples show high-power resolution of high 

cellular heterogeneity and that residual disease tumors have fewer proliferative markers and 

increased alveolar cell markers. In TKI-resistant tumors, the upregulated genes were related 

to oncogenesis and inflammation. Moreover, progressive disease had increased infiltration of 

immune cells, predominant MF2 macrophages, and suppressive T cells in tumor 

microenvironments.

Melanoma-associated immune and stromal cells were isolated and analyzed by Smart-seq2 

at three time points during tumor development[184]. The three temporal subpopulations of 

stromal cells displayed unique functional signatures. The lymphocytes from lymph nodes 

underwent activation and clonal expansion in tumors. To map the heterogeneity in the 

immune cells within hepatocellular carcinoma tumors, scRNA-seq methods were used to 

study CD45+ cells isolated from tumors and four immune-relevant sites of 16 treatment-

naïve liver cancer patients[129]. it was found that LAMP3+ dendric cells contain unique 

transcriptional features affecting other immune cell types and show the ability to migrate to 

lymph nodes. Exhibiting distinct transcriptional states, tumor-associated macrophages were 

associated with poor prognosis[185]. The inflammatory roles of SLC40A1 and GPNMB were 

clearly demonstrated in these cells.
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CONCLUSION

Cell heterogeneity has been more appreciated under the light of a new paradigm due to the 

advances of scRNA-seq and other single-cell analysis technologies. Since its induction, 

scRNA-seq has been well received and undergone fast-paced technical advances in uniform 

cDNA amplification, length coverage, rare copy detection, multiplexing, high throughput, 

processing of metadata, DEG calling, cell clustering, subpopulation identification, and cell 

fate trajectory predictions. Along with the new technology progress with higher sensitivity 

and accuracy, our understanding about the extent of cellular heterogeneity has been swiftly 

updated and repeatedly brought to another level. The discovery of new cell subpopulations 

and rare cell types with transcriptomic signatures posit new mechanisms for cell functions 

and defects that lead to novel biomedical applications and rising therapeutic venues.
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Figure 1. 
A new paradigm for cellular heterogeneity: heterogeneity and homology coexistent in all 

levels of phenotypes and genotypes in humans, as heterogeneity is increased from individual 

level down to molecular level (A); a new paradigm predicts that cells from the same tissue 

are not created equally and heterogeneity of cells are far more than we previously perceived 

based on bulk studies (B)
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Figure 2. 
Schematic illustration of scRNA-seq analysis
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Table 1.

cDNA synthesis and amplification techniques for scRNAseq

Methods coverage UMI Strand 
specific cDNA synthesis Detected genes References

Tang’s Nearly full-
length

No No poly(T) primer 13K Tang et al.[43], 2009

STRT-seq and 
STRT/C1

3’and 5’-only Yes Yes tailed oligo-dT primer; a 
barcoded r(G)3 helper oligo 
primer

~2–4K Islam et al.[18,48], 2011, 
2014

Smart-seq Full-length No No tailed oligo(dT) priming 
using the

~8K Ramskold et al.[49], 2012

CDS primer

CEL-seq (CEL-
seq2)

3’-only Yes Yes 8bp-barcoded poly(T) primer ~5K Hashimshony et al.[54,55], 
2012; 2016

Smart-seq2 Full-length No No tailed oligo(dT) priming 
using the CDS primer

~10K Picelli et al.[50,51], 2013; 
2014

Quartz-Seq Full-length No No poly(T) primer 5.8–6.3K Sasagawa et al.[60], 2013

DP-seq 3’-only No No hexamer 11K transcripts Bhargava et al.[69], 2013

SCRB-seq 3’ only Yes Yes cell-barcoded UMI-Poly(T) 
primer

3k transcripts Soumillon et al.[56], 2014

MARS-seq 3’-only Yes Yes barcoded Poly(T) primer ~200–1500 
transcripts

Jaitin et al.[61], 2014

Drop-seq 3’-only Yes Yes bead-based barcoded UMI-
poly(T) primer

6–7K genes Macosko et al.[33], 2015

InDrop 3’-only Yes Yes hydrogel sphere encapped 
cell barcoded UMI-poly(T)

29KUMIFM Klein et al.[34], 2015

SUPeR-seq Full-length No No Random (AnchorX-T15N6) 
primers

~10K Fan et al.[65,186],2O15

CytoSeq 3’-only Yes Yes Illumina universal PCR 
primer & cell UMI-Poly(T)

~100 Fan et al.[65], 2015

SC3-seq 3’ only No No V1(dT)24 4–6K Nakamura et al.[70], 2015

MATQ-seq Full-length Yes Yes GATdT primers; MALBAC 
primers

~14K Sheng et al.[57], 2017

Chromium 3’-only Yes Yes Gel bead based 14x GEM 
index-lOx barcoded-poly(T) 
primer

~500 Zheng et al.[63], 2017

SPLiT-seq 3’-only Yes Yes random hexamer and 
anchored poly(dT)15 
barcoded RT primers

4.5.−5.5K Rosenberg et al.[68], 2018

sci-RNA-seq 3’-only Yes Yes 10bp barcoded-8bp UMI- 
Poly (T)30 primer

4–5.5K Cao et al.[67], 2017

Seq-Well 3’-only Yes Yes bead-based 12bp barcoded 
8bp UMI- Poly(T)30 primer

6–7 K Gierahn et al.[64], 2017

DroNC-seq 3’-only Yes Yes bead-based barcoded UMI-
poly(T) primer

1.7–3.3K Habib et al.[66], 2017

Quartz-Seq2 3’-only Yes Yes cell-barcoded UMI-poly(T) 
primer (v3.1:73-mer)

8K Sasagawa et al.[187], 2018

STRT-seq: single-cell tagged reverse transcription sequencing; CEL-seq: cell expression by Linear amplification and sequencing; DP-seq: designed 
primer-based RNA-sequencing; SCRB-seq: single cell RNA barcoding and sequencing; MARS-seq: MAssively parallel RNA single-cell 
sequencing; MATQ-seq: Multiple annealing and dC-tailing-based quantitative single-cell RNA-seq; SPLiT-seq: split-pool ligation-based 
transcriptome sequencing
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Table 2.

NGS data analysis tools and software for scRNA-seq

Category Tools Software References

Quality control MultiQC http://multiqc.info Ewels et al.[188],2016

SinQC http://www.morgridge.net/SinQC.html Jiang et al.[82], 2016

SCell https://github.com/diazlab/SCell Diaz et al.[83], 2016

Celloline https://github.com/Teichlab/celloline Llicic et al.[84],2016

Kraken http://ccb.jhu.edu/software/kraken/ Wood and Salzberg[81] 2014

HTQC https://sourceforge.net/projects/htqc/ Yang et al.[80], 2013

FastQC https://www.bioinformatics.babraham.ac.uk/projects/fastqc/ 2010

Alignment Kallisto https://github.com/pachterlab/kallisto Bray et al.[88], 2016

HISAT https://github.com/infphilo/hisat Kim et al.[87], 2015

TopHat2 https://github.com/infphilo/tophat Kim et al.[189], 2013

STAR https://code.google.com/archive/p/rna-star/ Dobin et al.[86], 2013

GSNAP https://bioinformaticshome.com/tools/rna-seq/descriptions/
GSNAP.html

Wu et al.[190], 2010

MapSplice http://www.netlab.uky.edu/p/bioinfo/MapSplice Wang et al.[191], 2010

Quantification StringTie http://ccb.jhu.edu/software/stringtie/ Pertea et al.[192], 2015

HTSeq https://htseq.readthedocs.io/en/master/ Anders et al.[193], 2014

FeatureCounts http://subread.sourceforge.net Liao et al.[194], 2013

RSEM http://deweylab.github.io/RSEM/ Li and Dewey[195], 2011

Cufflinks http://cole-trapnell-lab.github.io/cufflinks/ Trapnell et al.[196], 2010

Normalization sctransform https://github.com/ChristophH/sctransform Hafemeister and Satija[92], 2019

SCnorm https://github.com/rhondabacher/SCnorm Batcher et al.[97], 2017

Linnorm http://www.jjwanglab.org/linnorm Yip et al.[98], 2017

SCran https://rdrr.io/bioc/scran/ Lun et al.[96], 2016

BASiCS https://github.com/catavallejos/BASiCS Vallejos et al.[94], 2015

GRM http://wanglab.ucsd.edu/star/GRM/ Ding et al.[95], 2015

SAMstrt https://github.com/shka/R-SAMstrt Katayama et al.[93], 2013

Analysis pipeline Seurat https://github.com/satijalab/seurat Butler et al.[77], 2018

SCANPY https://github.com/theislab/Scanpy Wolf et al.[79], 2018

Scater https://rdrr.io/github/davismcc/scater/ McCarthy et al.[197], 2017

Granatum https://github.com/lanagarmire/Granatum Zhu et al.[198], 2017

ASAP https://github.com/DeplanckeLab/ASAP Gardeux et al.[199], 2017

SCran https://rdrr.io/bioc/scran/ Lun et al.[96], 2016

SINCERA https://research.cchmc.org/pbge/sincera.html Guo et al.[135], 2015

Batch correction Seurat 3 https://github.com/satijalab/seurat Stuart et al.[112], 2019

Harmony https://github.com/immunogenomics/harmony Korsunsky et al.[113], 2019

scGEN https://github.com/theislab/scgen Lotfollahi et al.[200], 2019

scMerge https://sydneybiox.github.io/scMerge/ Lin et al.[114], 2019

MNN Correct https://github.com/MarioniLab/MNN2017/ Haghverdi et al.[111], 2018
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Category Tools Software References

Alternative splicing Expedition https://github.com/YeoLab/Expedition Song et al.[201], 2017

BRIE https://github.com/huangyh09/brie Huang and Sanguinetti[202], 2017

Census https://github.com/cole-trapnell-lab/monocle-release Qiu et al.[203], 2017

SingleSplice https://github.com/jw156605/SingleSplice Welch et al.[204], 2016

Other ccRemover https://cran.r-project.org/web/packages/ccRemover/index.html Barron and Li[116], 2016

cofounding scLVM https://github.com/PMBio/scLVM Buettner et al.[115], 2015

factor removal COMBAT https://github.com/Jfortin1/ComBatHarmonization Johnson et al.[205], 2007

HTQC: high-throughput quality control; HISAT: hierarchical indexing for spliced alignment of transcripts; BASiCS: bayesian analysis of single-
cell sequencing; GRM: gamma regression model; SCANPY: single cell analysis in python; SINCERA: SINgle cell RNA-seq profiling analysis; 
MNN: mutual nearest neighbors; scLVM: single-cell latent variable mode
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Table 3.

Software/packages for single-cell RNA-seq analysis: differential expression, subpopulation identification, 

clustering, and peudotime projection

Software/
package

Differential 
expression

Clustering cell 
type

Cell fate 
trajectories Language Programing skill Reference

PAGODA Yes Yes No R +++ [133]

SCDE Yes No No R +++ [132]

Seurat Yes Yes No R +++ [77,112]

SCENIC Yes Yes No R or Python +++ [132]

Destiny No Yes Yes R ++ [206]

TSCAN Yes no Yes R or website 
interface

+ [147]

Monocle 3 Yes Yes Yes R +++ [123]

Waterfall Yes no Yes R +++ [150]

Wishbone No No Yes Python +++ [29]

GrandPrix No Yes Yes Python +++ [207]

DPT No No Yes R or Python +++ [144]

SCUBA No Yes Yes MATLAB + [151]

STREAM No Yes Yes Python +++ [145]

Slingshot Yes Yes Yes R +++ [148]

CellRouter Yes Yes Yes R +++ [208]

PAGODA: pathway and gene set overdispersion analysis; SCDE: single cell differential expression; TSCAN: tools for single cell analysis; DPT: 
diffusion pseudotime; SCUBA: single-cell clustering using bifurcation analysis; STREAM: single-cell trajectories reconstruction, exploration and 
mapping

J Transl Genet Genom. Author manuscript; available in PMC 2021 July 27.


	Abstract
	INTRODUCTION
	SINGLE-CELL ISOLATION TECHNOLOGIES
	Manual cell picking (micromanipulation)
	Flow activated cell sorting
	Microfluidic technology
	Laser capture microdissection

	TECHNICAL ADVANCES FOR CDNA SYNTHESIS AND AMPLIFICATION
	PROCESSING OF NEXT GENERATION SEQUENCING DATA OF SCRNA-SEQ
	Algorithms for scRNA-seq data analysis

	CELL CLUSTERING AND SUBPOPULATION IDENTIFICATION
	DIFFERENTIAL EXPRESSION ANALYSIS
	CELL LINEAGE AND CELL FATE RECONSTRUCTION
	APPLICATIONS OF SCRNA-SEQ
	Heterogeneity of cell fate determination in embryogenesis
	Heterogeneity in complex differentiated tissues and systems
	Heterogeneity in cancers

	CONCLUSION
	References
	Figure 1.
	Figure 2.
	Table 1.
	Table 2.
	Table 3.

