
A New Frontier in Studying Dietary Phytochemicals in Cancer and 
in Health: Metabolic and Epigenetic Reprogramming

Ahmad Shannar1, Md. Shahid Sarwar2, and Ah-Ng Tony Kong2

1Graduate Program in Pharmaceutical Science and 2Department of Pharmaceutics, Ernest Mario School of Pharmacy, 
Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA

Prev. Nutr. Food Sci. 2022;27(4):335-346
https://doi.org/10.3746/pnf.2022.27.4.335
ISSN 2287-8602

Review

Received 4 October 2022; Revised 25 October 2022; Accepted 25 October 2022; Published online 31 December 2022

Correspondence to Ah-Ng Tony Kong, Email: KongT@pharmacy.rutgers.edu
Author information: Ahmad Shannar (Graduate Student), Md. Shahid Sarwar (Researcher), Ah-Ng Tony Kong (Professor)

© 2022 The Korean Society of Food Science and Nutrition.
 This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/4.0) which permits 

unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

ABSTRACT: Metabolic rewiring and epigenetic reprogramming are closely inter-related, and mutually regulate each other 
to control cell growth in cancer initiation, promotion, progression, and metastasis. Epigenetics plays a crucial role in reg-
ulating normal cellular functions as well as pathological conditions in many diseases, including cancer. Conversely, certain 
mitochondrial metabolites are considered as essential cofactors and regulators of epigenetic mechanisms. Furthermore, 
dysregulation of metabolism promotes tumor cell growth and reprograms the cells to produce metabolites and bioenergy 
needed to support cancer cell proliferation. Hence, metabolic reprogramming which alters the metabolites/epigenetic co-
factors, would drive the epigenetic landscape, including DNA methylation and histone modification, that could lead to 
cancer initiation, promotion, and progression. Recognizing the diverse array of benefits of phytochemicals, they are gaining 
increasing interest in cancer interception and treatment. One of the significant mechanisms of cancer interception and 
treatment by phytochemicals is reprogramming of the key metabolic pathways and remodeling of cancer epigenetics. This 
review focuses on the metabolic remodeling and epigenetics reprogramming in cancer and investigates the potential mech-
anisms by which phytochemicals can mitigate cancer.
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INTRODUCTION

Epigenetics is the study of genomic changes that modu-
late gene expression and the corresponding phenotype 
without altering the genetic nucleotide sequence. The 
mechanisms of epigenetics involve chemical changes to 
DNA and/or the packaging of histone protein that alters 
how the genetic material is stored in the nucleus or ex-
pressed (Hughes, 2014). Epigenetics has been shown to 
play an essential role in regulating critical normal cellular 
functions such as X-chromosome inactivation (Payer and 
Lee, 2008), tissue-specific gene expression (Illingworth 
et al., 2008), genomic imprinting (Li et al., 1993), non- 
coding DNA regulation (Jones and Takai, 2001), and 
long-term memory formation (Lubin et al., 2011). How-
ever, epigenetic alterations have also been associated with 
various pathological conditions, including cancer (Jones 
and Baylin, 2002), metabolic syndrome (Bruce and Ca-
gampang, 2011), Alzheimer’s disease (Stilling and Fischer, 
2011), and neurological disorders (Gos, 2013). Interesti-
ngly, epigenetic mechanisms are highly affected by ex-

trinsic environmental stimuli such as dietary phytochemi-
cals, which can be a potential strategy for treating chronic 
life-threatening diseases such as cancer (Suter and Aaga-
ard-Tillery, 2009; Wu et al., 2022). Along with dietary 
phytochemicals, some mitochondrial metabolites which 
are basic cofactors of the basic epigenetic machinery, are 
considered essential regulators of epigenetic mechanisms.

Mitochondrial metabolism is involved in the catabolism 
of biomolecules and energy production, as well as pro-
viding essential precursors for many biomolecules, which 
makes it a central hub for cellular bioenergetics (Spinelli 
and Haigis, 2018). Mitochondria can rapidly adapt to dif-
ferent environmental stimuli and metabolic conditions 
(Anderson et al., 2018). In cancer cells, mitochondrial 
metabolism plays an important function where it modi-
fies metabolic pathways to obtain more energy and bio-
molecules to fuel cell proliferation. This phenomenon is 
known as metabolic reprogramming and is considered a 
hallmark of cancer (Hanahan and Weinberg, 2011). Fur-
thermore, mitochondrial metabolism has been regarded 
as a major regulator of epigenetic modifications by sup-
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Table 1. Examples of phytochemicals regulating chromatin-modifying enzymes and their epigenetic effect in cancer cell

Class Agent Epigenetic effect Biological and anti-cancer effects Reference

Allyl sulfides Diallyl disulfide HDAC inhibitor Activates Nrf2-mediating pathways and 
shows anti-proliferative properties

(Chen et al., 2004; Druesne-
Pecollo et al., 2007)

Flavonoids Epigallocatechin-
3-gallate

HAT inhibitor
DNMT inhibitor
Histone methyla-
tion inhibitor

Changes methylation patterns in the ER 
promoter, thereby reactivating ER expres-
sion and re-sensitizing breast cancer cells 
to tamoxifen

(Fang et al., 2003; Balasub-
ramanian et al., 2010; Choi
et al., 2009; Li et al., 2017b) 

Resveratrol DNMT and HDAC 
inhibitor

Sirtuins activator

Inhibits proteins that contribute to oxidative 
stress and tumors

(Kala and Tollefsbol, 2016; 
Gao and Tollefsbol, 2018)

Genistein DNA 
hypomethylation

Histone 
hyperacetylation

Reactivates tumor suppressor-related genes, 
such as p16, p21, RARβ, CCND2, GSTP1, 
MGMT, and BTG3

(Fang et al., 2005)

Curcumin DNMT inhibitor
HDAC inhibitor
HAT inhibitor

Modifies of CpG methylation; the demethyla-
tion was associated with reduced protein 
expression of DNMTs and HDACs and ulti-
mately cancer prevention

(Guo et al., 2015; Wu et al., 
2020)

Anthocyanidins DNMT inhibitor
HDAC inhibitor

Activates of antioxidant Nrf2-ARE pathway 
and attenuates NF-B and ERK1/2 redox 
pathways 

(Cremonini et al., 2019; 
Kuo et al., 2019)

Isothiocyanates Sulforaphane HDAC inhibitor Induces apoptosis and accumulation of cells 
at G0/G1 and G2/M and S phase arrest

(Ho et al., 2009; Jiang et al., 
2016) 

Triterpenoids Urosolic acid DNMT inhibitor 
HDAC inhibitor

Demethylates the CpG sites in the Nrf2 pro-
moter region, which reduces tumorigenesis

(Yang et al., 2019)

Herbal medicinal 
product

Ginseng 
compounds 
(compound K 
and Ginsenoside 
Rh2)

Demethylation 
and miRNAs 
regulation

Reactivates RUNX3 and inhibits proliferation 
of HT29 and human glioma cells 

(Wu et al., 2011; An et al., 
2013; Kang et al., 2013)

Salvia 
miltiorrhiza 
compounds 
(tanshinone I 
and IIA)

DNMTs inhibitor
HDACs inhibitor
Inhibited the 
over-expressed 
miR-155

Reduces the methylation of Nrf2 promoter, 
decreases inflammatory responses in LPS- 
induced macrophages, and triggers cell cy-
cle arrest in breast cancer cells

(Gong et al., 2012; Wang et 
al., 2014)

HDAC, histone deacetylase; HAT, histone acetyltransferase; DNMT, DNA methyltransferase; ER, estrogen receptor-; LPS, 
lipopolysaccharide. 

plying the epigenetic machinery with intermediary me-
tabolites (Chisolm and Weinmann, 2018; Wang and Lei, 
2018; Zheng et al., 2020). These metabolites act as cofac-
tors or substrates for catalytic epigenetic modification 
and transcriptional regulation. Hence, targeting metabol-
ic pathways engaged in cancer has gained increasing in-
terest in targeting cancer interception and treatment. In 
this regard, dietary phytochemicals are considered as a 
potential chemoprevention and treatment strategy tar-
geting metabolic reprogramming and epigenetic rewiring 
(Wu et al., 2022).

Biologically active phytochemicals are compounds with 
diverse chemical structures found in plants that exert 
many health beneficial biological effects and possess di-
verse molecular mechanisms including epigenetics (Table 
1) (Fang et al., 2003; Chen et al., 2004; Fang et al., 2005; 
Druesne-Pecollo et al., 2007; Choi et al., 2009; Ho et al., 
2009; Balasubramanian et al., 2010; Wu et al., 2011; 
Gong et al., 2012; An et al., 2013; Kang et al., 2013; 
Wang et al., 2014; Guo et al., 2015; Jiang et al., 2016; 

Kala and Tollefsbol, 2016; Li et al., 2017b; Gao and 
Tollefsbol, 2018; Cremonini et al., 2019; Kuo et al., 
2019; Yang et al., 2019; Wu et al., 2020). For a long time, 
they have been used for the protection and treatment of 
various diseases, such as diabetic nephropathy (Hudlikar 
et al., 2021), obesity (Martin et al., 2013; Dincer and 
Yuksel, 2021; Li et al., 2022c), and cancer (Lee et al., 
2011; Kotecha et al., 2016). In general, mounting evi-
dence shows that dietary phytochemicals are potent che-
mopreventive/cancer interceptive agents due to their an-
tioxidant, metabolic modulation, and epigenetic regula-
tion properties (Gerhauser, 2013; Thakur et al., 2014; 
Russo et al., 2017; Wu et al., 2022). In this review, we 
will discuss the potential cancer interceptive effects of di-
etary phytochemicals by targeting metabolic rewiring and 
epigenetic reprogramming in cancer. Furthermore, we 
will summarize the metabolic pathways and epigenetic 
mechanisms involved in cancer and will attempt to inte-
grate metabolism and epigenetics in cancer development 
and treatment.
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Fig. 1. Metabolites regulating major 
epigenetic mechanisms through 
phytochemicals. CoA, coenzyme A; 
NAD, nicotinamide adenine dinu-
cleotide; NADH, nicotinamide ad-
enine dinucleotide hydride; HDAC, 
histone deacetylase; HAT, histone 
acetyltransferase; EGCG, epigallo-
catechin-3-gallate; SIRT, sirtuin; 
HDM, histone demethylase; TET, 
ten-eleven translocation; SAM, 
S-adenosyl methionine; SAH, S-ad-
enosyl-L-homocysteine; HMT, his-
tone methyltransferase; DNMT, 
DNA methyltransferase.

ROLE OF PHYTOCHEMICALS IN EPIGENETIC 
REGULATION IN CANCER CELLS

While there are many epigenetic mechanisms have been 
revealed, three of the most prominent ones have been 
identified as major epigenetic modulators, which are DNA 
methylation, histone de/acetylation and de/methylation, 
and non-coding RNAs (Choudhuri, 2011). Here, we will 
summarize some of the major cancer epigenetic pathways 
and the role of different classes of phytochemicals in tar-
geting these pathways (Table 1 and Fig. 1).

DNA methylation
DNA methylation is the transfer of a methyl group to the 
5’ position of cytosine residue that precedes guanine in a 
CG dinucleotide sequence (i.e., CpG island). This meth-
ylated sequence is found in abundant in the gene promot-
er region in the mammalian genome. The methylation re-
action is enabled by a group of enzymes known as DNA 
methyltransferases (DNMTs). S-Adenosyl methionine 
(SAM), one of the mitochondrial metabolites, serves as 
the methyl group donor and is directly converted to S-ad-
enosyl-L-homocysteine (SAH). SAM/SAH ratio is consid-
ered a universal biosensor of the cellular metabolic abil-
ity of DNA methylation state (Shyh-Chang et al., 2013). 
Hypermethylated CpG islands are usually linked with 
gene silencing in many cancer cells. For example, NRF2 
is a nuclear factor that activates the expression of antioxi-
dant genes, that protect the cells from oxidative stress-in-
duced DNA or other damages in normal cells, but in ad-
vanced tumor cells, it could lead to cancer resistance 
against chemotherapeutic agents and or oxidative stress- 
induced cell death. In colorectal cancer (CRC) cells with 
a hypermethylated KEAP1’s promoter, a negative regula-
tor of NRF2, showed decreased mRNA levels, which sug-

gests that mRNA level is regulated by the methylated 
KEAP1 promoter (Hanada et al., 2012; Wu et al., 2019). 
Furthermore, in 53% of tumor tissues from 40 surgical 
CRC specimens, hypermethylated KEAP1 promoter was 
revealed, potentially correlating to a decrease in the effi-
cacy of anticancer drugs (Hanada et al., 2012). In this 
context, butyrate significantly decreases the KEAP1 pro-
moter methylation and can promote the KEAP1 mRNA 
and protein expression levels resulting in decreased NRF2 
protein levels and potentially contributing to the buty-
rate-mediated cancer prevention and treatment (Wang 
et al., 2022a). In the same study, butyrate treated cells 
showed decreased SAM/SAH ratios which is an indicator 
of potential reduced cellular methylation ability. These 
findings together support the interplay connections be-
tween mitochondrial metabolite and epigenetic regulation. 
On the other hand, epigallocatechin-3-gallate, a major 
polyphenolic constituent of green tea, is a potent deme-
thylating agent by inhibiting DNMTs leading to the re- 
expression of epigenetically silenced tumor suppressor 
genes such as glutathione-S transferase (Fang et al., 2003; 
Pandey et al., 2010). Another example of a demethylation 
agent is sulphorafane. Sulphorafane successfully reversed 
the ultraviolet radiation B (UVB)-induced CpG methyla-
tion in HaCaT skin cancer cells (Li et al., 2022a). Further-
more, next generation sequencing (NGS) studies showed 
a significant increase in differentially methylated regions 
in the transgenic adenocarcinoma of the mouse prostate 
(TRAMP) cancer model as compared to wild type (Li et 
al., 2022a). However, this increase in DNA methylation 
was reversed in TRAMP mice fed diet enriched with 
0.05% phenethyl isothiocyanate (PEITC), which is a phy-
tochemical found abundant in cruciferous vegetables. 
Furthermore, 6 out of 7 TRAMP mice developed pros-
tate cancer while wild type and PEITC fed TRAMP mice 
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both showed similar normal prostate appearance, which 
suggests potential protective effects of PEITC through 
DNA demethylation epigenetic mechanism (Wu et al., 
2021). 

Histone modification
Histone modification includes de/acetylation or de/meth-
ylation. Histone de/acetylation is carried on by two main 
groups of enzymes called histone deacetylases (HDACs) 
and histone acetyltransferases (HATs), which result in 
histone deacetylation and histone acetylation, respective-
ly (Wang et al., 2009; Hassell, 2019). While lysine hu-
mane methyltransferases (KMTs), such as SETD7, cata-
lyze histone methylation, and lysine demethylases 
(KDMs) demethylate histone (Chen et al., 2020). In eu-
karyotic chromatin, the DNA is wrapped around histone 
proteins. The acetylation and methylation status of the 
N-terminal of the histone proteins affect how the DNA is 
packed in the nucleus, affecting its interaction with dif-
ferent transcriptional factors and its expression (Strahl 
and Allis, 2000). HATs catalyze the addition of acetyl 
group on the N-terminal tail of histones, which neutral-
izes the positive charge. Consequently, histone acetyla-
tion relaxes the chromatin and facilitates the binding of 
transcriptional factors to the DNA and increases the cor-
responding gene expression (Struhl, 1998). Acetyl-coen-
zyme A (acetyl-CoA), a mitochondrial tricarboxylic acid 
(TCA) cycle metabolite, is required for the activity of all 
HATs, as it’s the sole donor of acetyl moiety. Interesting-
ly, acetyl-CoA availability for histone acetylation is influ-
enced by chromatin recruitment of acetyl-CoA-producing 
enzymes, such as adenosine triphosphate (ATP)-citrate 
lyase (ACLY) and acyl-CoA synthetase short chain family 
member 2 (Sivanand et al., 2018). It is worth mentioning 
that besides acetyl-CoA there are four other acyl-CoA 
metabolites that are also known to modify histones: suc-
cinyl-CoA, propionyl-CoA, crotonoyl-CoA, and butyryl- 
CoA (Trefely et al., 2020).

In contrast, HDACs catalyze the deacetylation of his-
tones resulting in the compaction of chromatin packag-
ing suppressing the gene transcription (Kuo and Allis, 
1998). HDACs are classified into zinc/iron-dependent de-
acetylases (class I, II, and IV HDACs) (Hassell, 2019) and 
NAD+-dependent deacetylases (class III HDACs; known 
as sirtuins) (Sauve et al., 2006). Curcumin, a major bioac-
tive phytochemical extracted from turmeric, was found 
to be a potent HDAC inhibitor (Bora-Tatar et al., 2009). 
For example, the treatment of B-NHL Raji cells with cur-
cumin reduced HDAC-3, HDAC-8 and HDAC-1 protein 
expression in a concentration-dependent manner, result-
ing in elevated H4 acetylation and reduced p300/CREB 
binding protein (CBP) levels (Liu et al., 2005; Chen et al., 
2007). This decrease in p300/CBP levels is related to cur-
cumin-mediated inhibition of Notch1 and nuclear factor- 

B, which resulted in decreased proliferation and apo-
ptosis of Raji cells. Targeted inhibition of p300/CBP HAT 
by curcumin is deemed a potential target for the cancer 
treatment (Balasubramanyam et al., 2004; Marcu et al., 
2006; Dekker and Haisma, 2009). This inhibition of 
HDACs by curcumin is also seen in vivo, in the rats (Bo-
yanapalli et al., 2018) as well as in human healthy volun-
teers (Cheng et al., 2019). Histone methylating enzyme 
SETD7 knockdown decreases Nrf2 and Nrf2-target genes 
expression in prostate cancer LNCaP and PC-3 cell line 
(Wang et al., 2018). In the same study, PEITC and UA 
phytochemicals were reported to induce SETD7 expres-
sion. 

ROLE OF PHYTOCHEMICALS IN METABOLIC 
REPROGRAMMING IN CANCER CELLS 

Fast growing cancer cells require more energy and build-
ing blocks to proliferate. To meet these increased de-
mands, tumor cells undergo metabolic reprogramming, 
which became a hallmark for all cancers (Park et al., 
2020). It all started when Otto Warburg described the in-
creased production of lactate even in the presence of ox-
ygen in cancer cells (i.e., aerobic glycolysis), a phenom-
enon then termed Warburg effect (Warburg et al., 1927; 
Pavlova and Thompson, 2016). Now, more metabolic 
pathways have been discovered to be rewired in cancer 
cells such as deregulated uptake of various nutrients, 
TCA, nicotinamide adenine dinucleotide phosphate 
(NADP) and nicotinamide adenine dinucleotide phos-
phate hydrate (NADPH+) biosynthesis, elevated nitrogen 
requirement, and metabolite-driven epigenetic repro-
gramming (Martinez-Outschoorn et al., 2017). Preclini-
cal and clinical data indicate that targeting tumor metab-
olism approach is a promising field for the development 
and investigation of new chemotherapeutics potentially 
successfully mitigate tumor progression (Tennant et al., 
2010; Vander Heiden, 2011). Still, targeting metabolism 
clinically is challenging and limited due to metabolic het-
erogeneity of different tumors even within the same en-
tity, metabolic plasticity, drug resistance, systemic tox-
icity and unwanted side effects (Fendt et al., 2020).

Phytochemicals inhibiting major cancer metabolic 
pathways
To overcome challenges associated with traditional ap-
proaches (surgery and chemotherapy), such as organ 
damage, toxicity, and cancer resistance, a wide range of 
relatively safe phytochemicals can be used in the intercep-
tion and treatment of cancer. Among the advantages of 
these phytochemicals are immune-modulatory activity, 
selective toxicity, oral administration, and synergistic ef-
fects in combination with other drugs (Liu, 2004; Samec 
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Table 2. Examples of phytochemicals regulating major cancer metabolic pathways and their target enzymes and biological effects

Metabolic 
pathway/

metabolites
Phytochemical Affected enzyme Biological effect Reference

Glycolysis Hesperetin
Apigenin
Bavachinin
Galbanic acid

Reduce GLUT Reduce glucose uptake and cancer 
cell apoptosis

(Yang et al., 2013; Xu et al., 
2014; Fang et al., 2015)

Oroxylin
Deguelin
Curcumin

HK inhibitor (Wei et al., 2015; Geng et 
al., 2016; Li et al., 2017a)

Resveratrol
Epigallocatechin-3-gallate
Berberine

Inhibiting PFK1 (Gomez et al., 2013; Tan et 
al., 2015; Li et al., 2016)

Pentose 
phosphate 
pathway

Polydatin
Epicatechin gallate 
Resveratrol

Inhibiting G6PD Depletion of cellular NADPH+ levels 
and induction of oxidative stress in 
cancer cells

(Vanamala et al., 2011; 
Sánchez-Tena et al., 2013; 
Mele et al., 2019)

Amino acid 
metabolism

Resveratrol
Morin
Esculetin

Solute carrier family 
1 member 5 
transporters

Decreased intake of glutamine (van Geldermalsen et al., 
2016; Sharma et al., 2017; 
Liu et al., 2018)

Diallyl sulphide Reversed the NNK-upregulated ami-
no acid such as tyrosine, proline, 
serine, etc.

(Hudlikar et al., 2022)

Glutathione 
metabolism

SFN Upregulation of 
GCLC and NQO1

UVB-regulated metabolites such as 
N-acetyl-leucine, hypoxanthine, 
3-methyl-2-oxovalerate, and crea-
tine were reversed by SFN

(Li et al., 2022a)

Fucoxanthin Blocked TPA-induced ROS and oxi-
dized GSSG/reduced GSH in Nfe2l2 
wild-type but not Nfe2l2-knockdown 
cells

(Wang et al., 2022b)

Methionine 
metabolism

Butyric acid Inhibited SAM/SAH ratios in colon can-
cer HCT 116 cell line indicated the 
reduced cellular methylation poten-
tial

(Wang et al., 2022a)

Ursolic acid Regulated (SAM) and methionine (Li et al., 2022b)

GLUT, glucose transporter; HK, hexokinase; PFK1, 6-phosphofructo 1-kinase; G6PD, glucose-6-phosphate dehydrogenase; NADPH, 
nicotinamide adenine dinucleotide phosphate hydrate; NNK, 4-[methyl(nitroso)amino]-1-(3-pyridinyl)-1-butanone; SFN, suphor-
aphane; GCLC, glutamate-cysteine ligase catalytic subunit; NQO1, NAD(P)H quinone oxidoreductase-1; UVB, ultraviolet radiation 
B; TPA, 12-O-tetradecanoylphorbol-13-acetate; ROS, reactive oxygen species; GSSG, oxidized glutathione; GSH, glutathione; SAM, 
S-adenosyl methionine; SAH, S-adenosyl-L-homocysteine. 

et al., 2020). Recognizing this vast array of benefits of-
fered by phytochemicals, they are gaining interest and 
are steadily being listed under the drugs effective in the 
cancer interception and treatment (Wang et al., 2012; 
Guerra et al., 2018). However, there are caveats in trans-
lating these potentially health beneficial effects in many 
animal models to human patients. Hence more clinical 
studies would need to be done in the future to prove their 
utility in clinical medicine. One of the potential mecha-
nisms of cancer interception and treatment by phyto-
chemicals is the reprogramming of the key metabolic path-
ways (Khan et al., 2021). Here, we will summarize some 
of the major cancer metabolic pathways and the role of 
different classes of phytochemicals in targeting these 
pathways (Table 2) (Vanamala et al., 2011; Gomez et al., 
2013; Sánchez-Tena et al., 2013; Yang et al., 2013; Xu et 
al., 2014; Fang et al., 2015; Tan et al., 2015; Wei et al., 
2015; Geng et al., 2016; Li et al., 2016; van Geldermalsen 
et al., 2016; Li et al., 2017a; Sharma et al., 2017; Liu et 

al., 2018; Mele et al., 2019; Hudlikar et al., 2022; Li et al., 
2022a; Li et al., 2022b; Wang et al., 2022a; Wang et al., 
2022b).

Glycolysis
To meet the increased demands of energy and biomole-
cules, almost all cancer cells show an upregulated glyco-
lysis which gives tumor cells the ability to produce energy 
regardless of oxygen availability and ultimately supports 
the accelerated growth (Vander Heiden et al., 2009; Lunt 
and Vander Heiden, 2011). Cancer cells reprogram glyco-
lysis by regulating several transporters and enzymes re-
lated to glucose transportation and metabolism.

Cancer cells showed significantly upregulated expres-
sion of glucose transporters (GLUTs) compared to nor-
mal cells, which supports the continuous uptake of glu-
cose (Moreno-Sánchez et al., 2007; Harshani et al., 2014). 
After entering the cell, glucose is first converted to glu-
cose-6-phosphate (G6P) by the rate-limiting enzyme hex-
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okinase (HK). Then, G6P can be further oxidized to pro-
duce the major cellular energy macromolecule ATP 
through glycolysis or pentose phosphate pathway (PPP). 
Glycolysis is performed through several steps; each step 
is catalyzed by a specific enzyme such as 6-phosphofruc-
to 1-kinase (PFK1), aldolase, phosphoglycerate mutase, 
enolase, and lastly pyruvate kinase. Targeting these en-
zymes and transporters by phytochemicals could be a po-
tential anticancer strategy.

Many phytochemicals were found to diminish tumor 
growth by interfering with glucose uptake. In vivo and in 
vitro cancer studies showed apigenin and hesperetin re-
duce GLUT1 protein expression and induce apoptosis 
(Yang et al., 2013; Xu et al., 2014; Fang et al., 2015). Par-
ticularly, hesperetin not only plummeted the expression 
of GLUT1 but also decreased the translocation of GLUT4 
to the cytoplasmic membrane (Yang et al., 2013). Galban-
ic acid and bavachinin inhibit GLUT1 by downregulating 
its transcriptional factor HIF- (Nepal et al., 2012; Es-
kandani et al., 2015). HK has been shown to be downreg-
ulated by many phytochemicals, including oroxylin (Wei 
et al., 2015), deguelin (Li et al., 2017a), and curcumin 
(Geng et al., 2016). Resveratrol, epigallocatechin-3-gal-
late, and berberine induced apoptosis potentially by in-
hibiting PFK1 (Gomez et al., 2013; Tan et al., 2015; Li et 
al., 2016).

PPP
The PPP is a crucial anabolic pathway for cancer cells that 
generates not only ATP as an energy unit but also other 
essential biomolecules NADPH+ and ribose sugar. Ribose 
sugar is required for nucleotide synthesis, and NADPH+ 
is essential for fatty acid synthesis and is considered a 
key component of the antioxidant defense system against 
the increased oxidative stress in cancer tissues (Patra and 
Hay, 2014). In the first step in PPP, G6P is irreversibly 
converted to 6-phosphogluconolactone catalyzed by G6P 
dehydrogenase (G6PD) (Kruger and von Schaewen, 2003). 
G6PD, among a group of PPP-regulating enzymes, was 
reported to be upregulated in many cancer types (Jiang et 
al., 2013; Zhang et al., 2017). 

Polydatin, epicatechin gallate, and resveratrol inhibited 
G6PD activity in breast and colon cancer (Vanamala et al., 
2011; Sánchez-Tena et al., 2013; Mele et al., 2019). Tar-
geting the PPP pathway by these phytochemicals may re-
sult in reduced nucleic acid production and depletion of 
cellular NADPH+ levels, which induce oxidative stress 
in cancer cells. Ultimately, this can lead to apoptosis and 
mitigate cancer cell proliferation.

Amino acid metabolism
Amino acids are biomolecules for both anabolic and ca-
tabolic pathways. They are the building units of proteins 
and one of the energy sources in cells. Isoleucine amino 

acid was reported to be a primary metabolic source of 
propionyl-CoA and histone propionylation, which revealed 
a new mechanism of crosstalk between amino acid me-
tabolism and epigenetics (Trefely et al., 2022). Amino ac-
ids are more important in cancer cells as they provide an 
alternative bioenergetic and biosynthetic source. There-
fore, cancer cells rewire amino acid metabolism to their 
advantage, adapting it to the available nutrient conditions 
and thus supporting their growth and survival. For in-
stance, glutamine is the second most required nutrient by 
tumor cells, coming just after glucose (Yang et al., 2017). 
Phytochemicals such as resveratrol, morin, and esculetin 
showed decreased intake of glutamine through downreg-
ulation of solute carrier family 1 member 5 transporters, 
which is reported to be elevated in cancer cells (van 
Geldermalsen et al., 2016; Sharma et al., 2017; Liu et al., 
2018). Nonetheless, Poillet-Perez et al. (2018) showed 
that autophagy-deficient (Atg7-deficient) hosts attenu-
ated tumor xenograft growth, and dietary supplementa-
tion with arginine partially restored tumor growth.

TCA cycle
The TCA cycle acts as a central metabolic hub for aerobic 
organisms, and it generates energy and intermediates for 
cellular anabolic pathways. Once the glucose is initially 
oxidized into pyruvate in the cytoplasm, pyruvate enters 
the mitochondrion to be further metabolized through the 
TCA cycle. Through oxidative phosphorylation, the re-
duced equivalents in nicotinamide adenine dinucleotide 
hydride and reduced form of flavin adenine dinucleotide 
produced by the TCA cycle are utilized for the ATP gen-
eration (Eniafe and Jiang, 2021). In addition to their roles 
in biosynthesis and bioenergetics, the TCA cycle is also 
known to modulate different characteristics of cancer pro-
gression. They may go out of their way as metabolites to 
act as effector molecules, thereby modulating cellular or 
systemic responses that can impact cellular processes in-
cluding cancer epigenetics.
-Ketoglutarate (-KG) and succinate are vital TCA cy-

cle intermediates that are considered cofactors in DNA 
and histone demethylation reaction catalyzed by lysine 
demethylase, histone arginine residues demethylase, and 
ten-eleven translocation family enzymes (Fang et al., 
2010; Pastor et al., 2013; Walport et al., 2016; Blanc and 
Richard, 2017). In oxygen-dependent reactions, these 
enzymes are -KG-dependent enzymes that demethylate 
DNA and histone to produce succinate (Tsukada et al., 
2006). ACLY enzyme catalyzes the production of acetyl- 
CoA and oxaloacetate from citrate and CoA in the cytosol 
and nucleus. Furanodiene inhibits ACLY activity in aden-
osine monophosphate-activated protein kinase depend-
ent manner, which resulted in attenuated proliferation in 
doxorubicin-resistance tumor cells (Zhong et al., 2016).
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Fig. 2. Epigenetic and metabolomic effects of phytochemicals 
in cancer interception and treatment. TCA, tricarboxylic acid; 
DNMT, DNA methyltransferase; HAT, histone acetyltransferase; 
HDAC, histone deacetylase; SAM, S-adenosyl methionine; CoA, 
coenzyme A; ROS, reactive oxygen species; EGCG, epigallocate-
chin-3-gallate; PEITC, phenethyl isothiocyanate.

Glutathione metabolism
Dysregulation of cellular glutathione concentrations is 
associated with tumor development. Glutathione is the 
most important endogenous antioxidant system that 
plays important role in detoxification of carcinogens and 
scavenging of reactive oxygen species. -Glutamylcyste-
ine synthetase is the rate-limiting enzyme in the synthe-
sis of glutathione. One report showed that flavonoids in-
crease expression of -glutamylcysteine synthetase with 
a parallel increase in the intracellular glutathione levels 
(Moskaug et al., 2005). Another phytochemical, N-acetyl-
cysteine, is clinically investigated and suggested as a glu-
tathione support supplement (Parcell, 2002). 

Methionine and one-carbon metabolism
Many nutrients, including glucose, serine, glycine, and 
threonine, fuel one-carbon metabolism, where they are 
converted to SAM via the folate and methionine cycles. 
High levels of the methyl donor SAM influence the DNA 
(discussed earlier) and histone methylation (Newman 
and Maddocks, 2017). Histone methylation occurs on ly-
sine and arginine residues (Du et al., 2015). Lysine meth-
yltransferase (KMT) and arginine methyltransferase 
(PRMT), with the aid of SAM as the methyl donor, meth-
ylate histones. This methylation can repress or activate 
different genes’ transcription (Cheng, 2014). In colon can-
cer cell line HCT 116, butyric acid inhibits methionine 
metabolism showing a decreased SAM/SAH ratio which 
indicates attenuated cellular methylation potential. This 
finding was validated with NGS data (i.e., RNA-seq and 
methyl-seq) showing a correlation between tumor sup-
pressor gene ATP binding cassette transporter 1 and its 
promoters’ CpG methylation (Wang et al., 2022a). In the 
prostate cancer xenograft animal model, ursolic acid reg-
ulated SAM and methionine pathway, decreased global 
CpG methylation, and attenuated the growth of the xen-
ograft tumor (Li et al., 2022b). Finally, Folate deficiency, 
may be associated with the development of genomic DNA 
hypomethylation, an early epigenetic event found in many 
cancers, through inhibition of one-carbon metabolism 
(Liu and Ward, 2010).

INTEGRATION OF METABOLISM AND 
EPIGENETICS IN CANCER

There are many challenges to understand the complex 
connectivity of metabolism-epigenetics and the regulation 
of the metabolic pathways and chromatin modifications. 
However, several universal principles underlie this rela-
tionship and illustrate the evolution of particular molec-
ular mechanisms that promote epigenomic dynamics in 
the presence of metabolic changes. The innate thermody-
namics parameters of chromatin-modifying enzymes en-

able epigenetics to react to oscillations in metabolic mod-
ifying activities. The addition and deletion of most of 
these modifications are catalyzed by ‘writers’ and ‘eras-
ers’ enzymes that utilize metabolites as substrates or co-
factors. These metabolites are called chromatin-modify-
ing metabolites.

Metabolic enzymes involved in producing chromatin- 
modifying metabolites are repeatedly reported to be mu-
tated in many cancers, implying that the metabolically 
regulated epigenomic landscape could play critical roles 
in cancer. One of the relevant examples is the mutation 
of isocitrate dehydrogenase (IDH)1 or IDH2, which can 
result in accumulation in (R)-2-hydroxyglutarate (Bailey 
et al., 2018). Consequently, this can lead to hypermeth-
ylation of DNA and histones, hence, downregulation of 
tumor suppressor genes (Lu et al., 2012; Losman et al., 
2013). According to The Cancer Genome Atlas project, 
mutant IDH1 functions as an oncogene in at least seven 
cancer types (Bailey et al., 2018). Another example of 
metabolic-derived DNA and histone hypermethylation is 
the mutation in FH and SDH, whose deficiency results in 
the accumulation of fumarate and succinate, respectively 
(King et al., 2006; Cervera et al., 2009; Kaelin, 2009).

On the other hand, cancer cells often display metabo-
lism changes in response to upstream drivers that can al-
so reprogram the epigenome. Research by Kottakis et al. 
(2016) on a mouse model of Kirsten rat sarcoma viral on-
cogene homolog-mutant pancreatic cancer showed that 
the inactivation of liver kinase B1, a tumor suppressor re-
sulted in the upregulation of methionine and one-carbon 
metabolism and DNA hypermethylation through the ac-
cumulation of SAM. Another study by Morris et al. (2019) 
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showed that the elevation levels of KG and 5hmC, due 
to the expression of the tumor suppressor p53 which re-
sulted in tumor suppression and premalignant differenti-
ation.

Phytochemicals can enhance this reciprocal relationship 
between metabolism and epigenetics in cancer intercep-
tion and treatment (Fig. 2). Recent research from our lab 
and others have shown that dietary phytochemicals can 
intervene multiple epigenetic and metabolic pathways to 
potentially prevent and treat various types of cancer. For 
instance, our recent publication reported that naturally 
occurring organosulphur compound, diallyl sulphide, can 
reverse the cigarette smoking carcinogen 4-[methyl(ni-
troso)amino]-1-(3-pyridinyl)-1-butanone-induced altera-
tions of metabolomics, epigenomics and transcriptomics 
in the protection of early-stages lung carcinogenesis 
(Hudlikar et al., 2022). On the other hand, triterpenoid 
ursolic acid regulates metabolic rewiring of metabolism 
including SAM to drive epigenetic CpG methylation re-
programming and transcriptomic signaling resulting in 
the overall anticancer chemopreventive effect in prostate 
cancer (Li et al., 2022b). Our recent research shows that 
sulforaphane attenuates the UVB-induced aberrations in 
metabolic rewiring, epigenetic reprograming, and pheno-
typic transcriptomic alterations to protect UVB-induced 
skin cancer (Li et al., 2022a).

CONCLUSION

In summary, this review briefly discusses how metabo-
lism could structure the epigenomic landscape in cancer. 
Phytochemicals have been found to elicit both epigenet-
ics and metabolic capability in cells. Further work is re-
quired to describe the kinetic and thermodynamic charac-
teristics of epigenetic-related enzymes and their context- 
specific dynamics in response to metabolic perturbation. 

Cancer metabolism is considerably differential between 
normal and tumor cells; hence, it holds great potential 
for anticancer strategies. The ability of phytochemicals to 
modulate metabolic preprogramming in cancer cells 
makes them a potential contributor in therapeutic strat-
egies. Undoubtedly, further research with systematic 
preclinical and clinical evaluation of phytochemicals is 
needed to unravel the capability of plant-based targeting 
metabolic and epigenetic reprogramming in cancer. Ex-
panding our knowledge of phytochemicals and their po-
tential to rewire metabolism and interact with epigen-
omes in cancer may pave the way for improved clinical 
outcomes. Although we discussed many potential phyto-
chemicals regulating epigenetics and metabolic pathways, 
still there are many other relevant compounds which 
could be addressed.
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