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Abstract

Background: Sphingomyelinase D is the main toxin present in the venom of Loxosceles spiders. Several isoforms
present in these venoms can be structurally classified in two groups. Class | Sphingomyelinase D contains a single
disulphide bridge and variable loop. Class Il Sphingomyelinase D presents an additional intrachain disulphide bridge
that links a flexible loop with a catalytic loop. These classes exhibit differences in their toxic potential. In this paper
we address the distribution of the structural classes of SMase D within and among species of spiders and also their

evolutionary origin by means of phylogenetic analyses. We also conducted tests to assess the action of natural
selection in their evolution combined to structural modelling of the affected sites.

Results: The majority of the Class | enzymes belong to the same clade, which indicates a recent evolution from a
single common ancestor. Positively selected sites are located on the catalytic interface, which contributes to a
distinct surface charge distribution between the classes. Sites that may prevent the formation of an additional

bridge were found in Class | enzymes.

Conclusions: The evolution of Sphingomyelinase D has been driven by natural selection toward an increase in
noxiousness, and this might help explain the toxic variation between classes.
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Background

Sphingomyelinase D (SMase D; sphingomyelin phospho-
diesterase D; E.C. 3.1.4.41) is the main toxin present in
the venom of Loxosceles spp. spiders and is responsible
for the dermonecrosis and systemic effects observed in
loxoscelism [1-3]. SMase D is a phospholipase that ca-
talyses the hydrolysis of sphingomyelin (SM), the major
constituent in the outer surface of the lipid bilayer of
most eukaryotic plasma membranes. The effects of this
enzyme result in the formation of ceramide 1-phosphate
(N-acylsphingosine 1-phosphate) and choline, whereas
mammalian sphingomyelinases convert SM in phospho-
choline and ceramide [1-5].

Loxosceles spiders express several highly homologous
isoforms of SMase D with an identity varying from 40 to
90 % [6]; thus, they likely possess the same (a/f)g or
TIM barrel fold [7, 8]. A scheme for the classification of
SMases D [8] in the spider venom was proposed based
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on the sequence identity, biochemical activity and mo-
lecular modelling. The Class I enzymes possess a single
disulphide bridge and contain a variable loop [8],
whereas members of the Class II enzymes contain an
additional intra-chain disulphide bridge that links a flex-
ible loop with a catalytic loop [8]. Both SMases D classes
exhibit differences in their toxic potential: Class II en-
zymes are less toxic than Class I enzymes [9].

In addition to the Loxosceles spiders, other members
of the family Sicariidae, such as the genus Sicarius, also
contain SMases D [3, 10]. Similarly, SMase D toxins
were also detected in the genera Ixodes and Rhipicepha-
lus, in the family Ixodidae [11], and as exotoxins pro-
duced by certain pathogenic bacteria. For instance, these
toxins were produced by Corynebacterium ulcerans and
Arcanobacterium haemolyticum, which are pathogens
that cause pharyngitis and other human infections, and
by Corynebacterium pseudotuberculosis, which causes
lymphadenitis in animals but is also pathogenic for
humans [8, 12]. The bacterial and spider venom SMases
D possess similar molecular masses (31-35 kDa).

© 2015 Pedroso et al. Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to

the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver
(http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.


http://crossmark.crossref.org/dialog/?doi=10.1186/s12862-015-0561-4&domain=pdf
mailto:denise.tambourgi@butantan.gov.br
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/

Pedroso et al. BMIC Evolutionary Biology (2015) 15:290

However, they show low sequence identity and are con-
sidered to have originated from a common ancestor, the
glycerophosphodiester phosphodiesterases (GDPD; E.C.
3.1.4.46) [8].

This study addresses both the phylogenetic relations
between the structural classes of SMases D and the pos-
sibility that the evolution of this harmful protein has
been driven by natural selection towards its toxicity. Be-
cause the structural classes of Loxosceles SMases D were
proposed based on the presence on differences of cyst-
eine residues that form disulphide bridges, we hypothe-
sized that this feature may cause some constraints in the
evolution of these molecule, as disulphide bridges are
expected to interfere in the flexibility/rigidity and, there-
fore also in the catalytic properties of proteins. To test
this hypothesis, we performed a comprehensive phylo-
genetic analysis of the available SMase D nucleotide se-
quences in public databanks to test the monophily of
structural classes of this enzyme. We also tested amino
acids sites and phylogenetic branches to highlight the
past natural selection and the evolution within this pro-
tein family. In silico molecular modelling was applied on
the available SMase D crystallographic structure, and the
sites associated with natural selection were mapped, to
reveal some clues on the structural/functional aspects of
these evolutionary changes.

Methods

Sequence Analysis

The nucleotide sequences of SMase D enzymes from a
total of 29 species (Additional file 1: Table S1) were ana-
lysed: a) Loxosceles (20 species: L. hirsuta, L. intermedia,
L. deserta, L. arizonica, L. laeta, L. spadicea, L. sabina,
L. spinulosa, L. apachea, L. variegata, L. rufescens, L.
amazonica, L. reclusa, L. boneti, L. sp. 4 GJB-2008, L. aff-
Spinulosa GJB-2008, L. gaucho, L. adelaida, L. similis,
and, L. ¢f spinulosa GJB-2008); b) Sicarius (five species:
S. damarensis GJB-2008, S. peruensis, S. patagonicus, S.
terrosus and S. albospinosus); c) Bacteria (two species:
Corynebacterium pseudotuberculosis and Arcanobacter-
ium haemolyticum); d) Ticks (two species: Ixodes scapu-
laris and Rhipicephalus pulchellus). All of the sequences
are represented by their GI numbers in Additional file 1:
Table S1. The SMase D sequences from spiders (Loxos-
celes and Sicarius genera), bacteria (Corynebacterium
pseudotuberculosis and Arcanobacterium haemolyticum)
and ticks (Ixodes scapularis and Rhipicephalus pulchel-
lus) were downloaded from GenBank at the NCBI’s data-
bases (http://www.ncbi.nlm.nih.gov). “Sphingomyelinase
D” and “Phospholipase D” were input independently
with each species by keyword at the Nucleotide Advanced
Search Builder (NCBI). Exclusive Sphingomyelinase D se-
quences and exclusive Phospholipase D sequences were
obtained. Duplicated sequences simultaneously annotated
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as Sphingomyelinase D and Phospholipase D were com-
puted only once. Moreover, 184 nucleotide sequences of
Loxosceles SMase D were downloaded from GenBank. In
these sequences, approximately 1.5 % (3/184) was anno-
tated only as Sphingomyelinase D and 11 % (20/184) was
annotated only as Phospholipase D. For 87.5 % (161/184),
both annotations were attributed. Expressed sequence tags
(ESTs) with high similarities (e-value cut-off = 1e-105) to
SMase D were chosen from a previous study from our la-
boratory about a transcriptome analysis of L. laeta spider
venom gland [13]. Nucleotides sequences were submitted
to the Open Reading Frame (ORF) Finder (http://www.
ncbinlm.nih.gov/projects/gorf/) to only select flanked se-
quences by start and stop codons. After excluding the in-
complete sequences, 179 (179/184; 97.3 %) nucleotide
sequences remained together with fifteen ESTs of high
similarity to SMase D. Hence, a total of 194 SMase D
unique nucleotide sequences from Loxosceles genus were
found. For the Sicarius genus, all of the 47 downloaded
nucleotides sequences were annotated as Sphingomyeli-
nase D and Phospholipase D. After excluding an identical
sequence obtained from the ORF finder analysis, 46 (46/
47; 97.9 %) sequences were considered. In bacteria, we
found three sequences from C. pseudotuberculosis and
two sequences from A. haemolyticum; all of them were
annotated as Phospholipase D. In ticks, we found three se-
quences from I scapularis annotated as Sphingomyelinase
D and Phospholipase D and one from R. pulchellus anno-
tated as Sphingomyelinase D.

The SMase D’s nucleotide sequences were aligned by
MUSCLE with default parameters implemented within
MEGA version 6 [14]. The structural classification of
SMase D [8] was adopted to classify the SMase D se-
quences. The enzymes were classified according to the
number and position of the cysteine residues that form
the disulphide bridges into Class I (cysteine residues in
positions analogous to C*' and C*” of PDB entry 1XX1)
[7, 8] or Class II (cysteine residues in positions analo-
gous to C°', C*, C*” and C**! of PDB entry 1XX1) [7,
8]. The nucleotide sequences were aligned by codons
(MUSCLE) and translated into proteins (MEGA) to clas-
sify the isoforms. Incomplete sequences were excluded
from further analyses.

Phylogenetic analyses

The evolutionary relationships among SMase D isoforms
from six genera (29 species), Loxosceles (twenty species),
Sicarius (five species), Arcanobacterium haemolyticum,
Corynebacterium pseudotuberculosis, Ixodes scapularis
and Rhipicephalus pulchellus were inferred by nucleotide
sequences (Additional file 1: Table S1). Maximum likeli-
hood (ML) and Bayesian inference were used to infer
the phylogenetic relationships of aligned non-redundant
sequences as implemented at Garli version 2.0 [15] and
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MrBayes version 3.2.5. [16] The rate variation among
sites was modelled with a gamma distribution (shape
parameter =5). The Bayesian inference was performed
using nucleotide and codon models. For both ML and
Bayesian analyses, the Bayesian Information Criterion
(BIC) was applied to evaluate the best model of substitu-
tion of nucleotides for tree reconstructions (Find Best
DNA Model - MEGA®6) [14].

Estimation of positively selected branches and sites

A subset of aligned SMase D sequences containing all
nucleotide sequences from the genus Loxosceles was
tested for positive Darwinian selection. A tree was ob-
tained with the ML method (GTR + G + I model) from
190 SMase D nucleotides from the genus Loxosceles and
was manually rooted to be inputted into this analysis
using the codeml program from the PAML package ver-
sion 4.6 [17]. To investigate whether there were different
evolutionary rates in these sequences, we performed
three approaches using the ML method based on a ver-
sion of the codon-substitution model [18] implemented
in the codeml program (PAML 4.6) [17]: i) branch
models; ii) site models and iii) branch-site models. The
clean data parameter was adjusted to 1, and the rooted
tree was estimated by ML with the best model (Find
Best DNA Model) [14]. The selective pressure can be
measured by the nonsynonymous (dy)/synonymous (ds)
rate ratio (o =dyn/dg). Purifying (or negative) selection,
neutral evolution and diversifying selection (or positive)
are indicated by w<1, =1 and w > 1, respectively. In
the branch model analysis, the  ratio varies among
branches in the phylogeny and is designated to detect
positive selection acting on particular lineages. The fol-
lowing indicated models [19] were used in our analysis:
i) one-ratio model (assumes the same ® ratio for all
branches); ii) free-ratio model (assumes an independent
w ratio for each branch); iii) two-ratio model (assumes
that the indicated branches have a o ratio that is differ-
ent from the background ratio, w); iv) three-ratio model
(assumes that the ratios for different branches, e.g., w;;
wy, are different between them and different from the
background ratio, wp). In addition, we directly examined
the possibility of the occurrence of positive selection
with the two- or three-ratio models by assuming values
of =1 in the branches of interest.

In the site model analysis, the w ratio varies among
sites (among codons) and is designated to test for the
presence of positively selected sites and to identify such
sites along the gene [20]. We tested the following rec-
ommended site models [21, 22]: i) MO (one-ratio model,
assumes one o ratio for all coding sites); ii) M1a (nearly
neutral model; assumes two w ratio values 0 < wg< 1 es-
timated from the data and w; = 1, neutral sites, is fixed);
iili) M2a (positive selection; allow an additional class to
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Mla, w, > 1); iv) M3 (discrete model; assumes a general
discrete model, with frequencies and o ratios for K site
classes estimated as free parameters); v) M7 (beta model;
consists of a null model that does not allow for posi-
tively selected sites; the w ratio varies within the interval
(0,1) and according to the beta distribution with parame-
ters p and g); vi) M8 (beta & w; adds an additional class
of sites under positive selection to M7 and with @ > 1).
The branch-site models allow ® to vary both among
sites at the enzyme sequence and across branches on the
tree, which aims to detect positive selection affecting a
few sites along a branch under test for positive selection
(foreground branch). Test 2, the branch-site test of posi-
tive selection, compares model A [23, 24] with model A
with w, =1 fixed (null model).

Different models (branch models, site models or
branch-site models) can be compared with the likelihood
ratio tests (LRTs) to investigate interesting hypotheses.
For branch models, we compared the one-ratio and free-
ratio models to test whether the w ratios are different
among lineages. We also compared the one- and two-
ratio models to investigate whether the lineages of inter-
est have a different o ratio from other lineages. To
directly test the possibility of positive selection on spe-
cific lineages, we compared the two-ratio model with
and without the constraint of w <1 to verify whether the
branches of interest have a @ > 1. For the site models, we
compared three model pairs by LRT — i) M1la and M2a;
ii) MO and M3, and iii) M7 and M8 — considering that
only M2a, M3 and M8 allow for the presence of positive
selected sites (w > 1). For the branch-site models, we use
Test 2, the branch-site test of positive selection, to com-
pare Model A [23, 24] with model A with w, =1 fixed
(null model). LRTs compare two nested models: a null
model that assumes no selection (w < 1) versus an alter-
native model that allows for positive selection (w > 1).
Twice the log likelihood difference between the two
nested models (2Al) is compared with a X2 distribution
with a number of degrees of freedom equal to the differ-
ence in the number of free parameters to obtain a p-
value for this LRT. The p-values were calculated using
the “Chi-square distribution calculator” tool from http://
keisan.casio.com/exec/system/1180573196. The BEB ap-
proach (CODEM/PAMLA4.6) [17] was used to identify
sites under positive selection.

In addition to the analyses done with the help of the
PAML program to identify sites under positive selection,
this was also done under the Bayesian approach by using
the MrBayes software. All 249 nucleotide sequences
were analysed. This was accomplished with the use of a
codon based model, NJ98 [25] as implemented in the
MrBayes software, to verify the proportions of sites
under negative selection (o < 1), under neutral evolution
(w=1), and positive selection (» >1). This was done by
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interactively increasing the number of MCMC (Markov
chain Monte Carlo) generations until the split standard
deviations between simultaneous runs dropped to values
below 0.05.

Statistical analysis

Sites under positive selection found in Classes I and II
were subjected to further statistical analysis to investi-
gate whether there were differences between the struc-
tural classes of SMase D based on the quantity of
disulphide bridges. Each of the possible twenty amino
acids found in each SMase D class was assessed with
two approaches: i) separately for each of the seven posi-
tively selected sites and ii) by the sum of the seven posi-
tively selected sites. The data were subjected to the
D’Agostino’s test to investigate whether the pairs of
values followed a Gaussian distribution. According to
this analysis, the two paired groups for each site were
compared with both t and Wilcoxon tests. All of the
amino acids found in each positively selected site were
placed into four categories of both SMase D classes:
nonpolar, neutral, acidic, and basic. To investigate
whether the difference between (nonpolar plus basic) and
(neutral plus acidic) in the two SMase D classes was statis-
tically significant, the data were analysed with a Fisher’s
exact test. All of the statistical tests were performed with
GraphPad Prism version 5.01 for Windows (GraphPad
Software, San Diego California USA, www.graphpad.com).

In silico molecular modelling

The three-dimensional structure of Class II SMases D
was modelled using the HHPred server [26], which em-
ploys a restraint-based modelling routine from the Mod-
eller program [27]. The atomic coordinates of SMase I, a
Class I SMase D from L. laeta [7], were used as a tem-
plate for the in silico modelling. The stereochemistry
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was improved using spatial restraints and CHARMM
energy terms, followed by a conjugate gradient simula-
tion, as implemented in the Modeller software [28]. The
overall and local quality analyses of the final model were
assessed with VERIFY3D [29], PROSA [30] and VADAR
[31]. The atomic models were analysed and compared
using the PyMol program (http://www.pymol.org).

Results

Classification of SMase D sequences

Nucleotide SMase D sequences from 29 species, includ-
ing Loxosceles spp. (twenty species), Sicarius spp. (five
species), ticks (two species) and bacteria (two species),
were obtained from databanks (Additional file 1: Table
S1). Subsequently, 249 nucleotide sequences were trans-
lated and classified into Class I or Class II based on the
structural classification (Additional file 1: Table S1). It
was the first structural classification of all available se-
quences from SMase D. Figure 1 shows the number and
position of cysteine residues that form the disulphide
bridges in certain representative sequences. In Class I
enzymes, there is only one disulphide bridge, between
Cys®® and Cys'%* (corresponding to Cys®" and Cys®’, ac-
cording to the PDB entry) [7]. In Class II enzymes, there
is an additional ligation between Cys”® and Cys*** (cor-
responding to Cys®® and Cys**!, according to the PDB
entry) [7]. A structural classification analysis indicated
that nineteen nucleotide sequences (19/249; 7.6 %) be-
long to the Class I enzymes, and 225 nucleotide se-
quences (225/249; 90.4 %) belong to the Class II
enzymes. Approximately 2 % of the sequences (5/249
nucleotides) correspond to bacterial Phospholipase D,
which does not present cysteine residues at homologous
sites compared with other sequences; thus, these se-
quences were not classified. Interestingly, Class I en-
zymes (approximately 8 %) are present only in L. laeta,

-
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L. gaucho and L. sp. 4 GJB-2008, whereas Class II iso-
forms (approximately 90 %) are more abundant and
only absent in Loxosceles sp. 4 G/B-2008. For this latter
species, only two Class I isoforms were found to date
(Additional file 1: Table S1).

Phylogeny of structural classes

The General Time Reversible (GTR) model with the
lowest Bayesian Information Criterion (BIC) score (BIC
=72,153; InL = -33,053.48462) was chosen to describe
the best substitution pattern by the ML method and
Bayesian inference. A discrete Gamma distribution was
used to model the evolutionary rate differences among
sites (5 categories; G parameter = 2.5232). The tree with
the highest log likelihood (-46,243.0294) for ML method
is indicated in Fig. 2. The Bayesian inference tree for nu-
cleotide model is indicated in Fig. 3 and for codon
model in Fig. 4. In all approaches, the Class I isoforms
were grouped in two clades, referred here as clades L
and G (Figs. 2, 3, and 4). Clade L includes eighteen iso-
forms from two species, L. laeta and L. sp. 4 GJB-2008.
Clade G includes only one L. gaucho sequence.

The phylogenies inferred by the ML and Bayesian
methods were almost identical. The few (less than 5 %)
differences were located in very short branches. The
codon based analysis that was performed with MrBayes
to assess sites under positive selection produced a con-
sensus tree that was also very similar to those obtained
so far, except to minor differences in the topologies also
involving very short branches (Fig. 4).

Detection of positive selection on SMase D

Because Class I SMase D enzymes were grouped into
two clades, we investigated the presence of positive Dar-
winian selection in the evolution of these enzymes.
Three approaches were employed: branch models, site
models and branch-site models with the use of the
PAML package. To detect positive selection acting on
Class I SMase D isoforms present in clades L and G
(Figs. 2, 3 and 4), eleven branch models (A-K; Table 1)
were tested. The models attribute different restriction on
three dy/ds ratio parameters: wp for clade L, wg for
clade G, and wq for background branches. The models
may assume one dy/ds ratio (A and F; Table 1), two ra-
tios (B-D and F-H), three ratios (E, I, and J), and an in-
dependent dy/ds ratio for each branch (free-ratio model;
K). The log-likelihood values of different models are
given in Table 1. The estimate of the dy/ds ratio under
the one-ratio model (wy = 0, = wg) was 0.254, which in-
dicates that synonymous substitution occurred more
often than nonsynonymous substitutions and that SMase
D has spent time under negative purifying selection dur-
ing the Loxosceles evolution. Estimates of w;, for clade L
and g for clade G were approximately 0.47 (B, E and J;
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Table 1) and 1.0, respectively, when they were free to
vary. When the same ratio is assumed for clades L and
G (0, = wg; model D), the estimate was 0.47, which is an
average of the two branches. When wp and wg are not
restricted to be equal to wy (models D, E, I and J), the
estimated background ratio (w) was 0.24.

Likelihood ratio tests (LRTs) were applied to compare
different models to test several hypotheses (Table 2). First,
we compared a one-ratio model and a free-ratio model to
test whether the dy/ds ratios are different among lineages
(Test F; Table 2). The likelihood scores (2Al = 675.84) and
the correspondent p-value (5.99x107°%) permitted the re-
jection of the null hypothesis (0o = wr = wg), which indi-
cates that the dy/ds ratios were different among lineages.
To examine whether the dy/dg ratio for clade L (w;) and
clade G (wg) was greater than the background ratio (w),
we tested hypotheses A-E. Similarly, we tested hypotheses
A-E’ to determine whether these ratios were greater than
one (Table 2). In hypotheses A and A clades L and G were
assumed to have the same dy/dg ratio (w;, = wg). This ra-
tio was significantly greater than the background ratio wg
(P=7.8x10""% Table 2; A) and significantly greater than
one (P=9.18x10"% Table 2, A)). Tests B-E and B-E’ re-
vealed which of the clades, L or G, were responsible of sig-
nificant results. w; and wg were allowed to differ, and in
each case, only one was compared with the background
ratio wg; the other could vary freely or could be restricted
to be equal to wg. The results indicate that o; was sig-
nificantly greater than the background ratio wg (P =
1.53x107% for test B and P=7.29x10"% for test C;
Table 2) and also significantly greater than one (P =
7.15x107*? for test B’ and P=2.96x10"'* for test C’;
Table 2), although w; ratio was 0.47. However, wg was
neither significantly greater than one nor greater than
the background ratio wg (P ranges from 18 % to 99 %;
Table 2, D, D; E, E’). The LRTs from the branch models
analysis indicate that clade L, but not clade G (Figs. 2, 3
and 4), is under weaker negative selection, as w; was
significantly different between clade L and the back-
ground level (Table 2).

A site model analysis allows the o ratio to vary among
sites (among codons or amino acids). The following rec-
ommended models [21, 22] were applied: MO (one ratio),
Mla (nearly neutral), M2a (positive selection), M3
(discrete), M7 (beta) and M8 (beta & w). The LRT of the
MO0-M3 pair was used as a test of variable @ among sites
rather than a test of positive selection. The LRT of positive
selection comprises two pairs of models: i) M1la and M2a
and ii) M7 and M8. Table 3 shows the results with the sta-
tistics of likelihood ratio (2Al) for the hypotheses tested.
The MO-M3 test indicates that there were variable
among sites (2Al = 1666.50; df = 4; P = 1.107x107%*). The
Mla-M2a (2Al = 14.56; df = 2; P=6.87x10"*) and M7-M$
(2Al = 35.54; df = 2; P = 1.92x10™®) pairs suggest that there
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were certain sites under selective pressure in the SMase D
isoforms from Loxosceles. Four positively selected sites
were detected by the M1a-M2a pair (754 % <P <91.1 %),
and seven positively selected sites were detected by the
M7-M8 pair (52.3 % < P <99.9 %).

Figure 5 shows the relationship between the amino
acid position and their respective dN/dS (w) ratio values
obtained after comparing the M7-M8 pair by the LRT.
Only sites 58I, 204L and 236S showed posterior

probabilities greater than 95 % (Table 3). To identify the
exclusive sites under positive selection in Class I SMase
D, we specified clade L as the foreground branch and all
other branches of the tree as the background branches.
Test 2 for branch-site models revealed that there were
sixteen positively selected sites on clade L (2Al =13.89;
df =1; P=1.94x10"% Table 3). Seven sites were detected
with P <1 %, of which three had P =0 and nine sites had
1 %<P<5 % (Table 3). The posterior probabilities
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values were obtained by the Bayes Empirical Bayes
(BEB) method. The Bayesian approach as implemented
in MrBayes to detect the proportion of sites under dif-
ferent types of selection, after 200,000 MCMC genera-
tions, resulted in the following proportions (values
between parentheses indicate the results of another, in-
dependent run): 76.0 % (76.9 %) negatively selected sites,
22.7 % (21.7 %) neutrally evolving sites, and 1.3 %
(1.3 %) positively selected sites. Among the top eight

sites that presented the highest w, seven sites were also
found to be under positive selection with the ML ap-

proach (Table 4).

Amino acids frequencies in sites under adaptive evolution
Seven sites under positive selection were detected
(Table 3). They belong to both SMases D classes. We in-
vestigated whether there was any difference in positive
selected sites between Classes I and II regarding the
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frequencies and types of amino acids. A statistical ana-  sites under positive selection of Class II members
lysis of each site was performed individually (Fig. 6) or  (Table 5).

summed (Fig. 7a), which indicate that the distribution of

amino acids under selection, except for site 208, is differ-  Sites on the SMase D three-dimensional structure

ent between classes (P <0.05). The categories of amino A comparative structural analysis of the electrostatic sur-
acids (nonpolar and polar as well as basic, neutral and face charge between Class I and II members supports
acidic) were analysed (Fig. 7b). The statistical analysis the predominance of basic residues in Class I, whereas
shows that nonpolar and basic residues are more abun- acidic residues are more abundant in Class II enzymes.
dant in sites under positive selection of Class I mem-  As shown in Fig. 8, the Class II members have a long
bers and neutral and acidic are more abundant in  negative patch in the catalytic interface. In addition, the



Pedroso et al. BMIC Evolutionary Biology (2015) 15:290

Table 1 Log Likelihood (I) values and parameter estimates under
different models (branch models) in PAML

Model I Wo W, Wg
A. One Ratio: wy=w, =wg —28843.35 0.254 Wo Wo
B. Two Ratios: wp = Wg; W, 2882510 0241 0466 W,
C. Two Ratios: wo = wy; Wg —28842.52 0.254 Wo 0.996
D. Two Ratios: wg; W = Wg —28824.44 0.241 0469 WL
E. Three Ratios: wo; w; Wg —28824.20 0.241 0.466 0.997
F. Two Ratios: wg=wg; w; =1 —28848.59 0.241 1.000 Wo
G. Two Ratios: wy=wy; wg =1 —28842.71 0.254 Wo 1.000
H. Two Ratios: wg; w =wg =1 —28847.69 0.241 1.000 1.000
|. Three Ratios: wg; Wg; W =1 —28848.56 0.241 1.000 1.000
J. Three Ratios: wg; Wg =1; W —28824.20 0.241 0466 1.000
K. Free Ratio —2850520  — — —

active-site pocket of Class II members is partially oc-
cluded by a disulphide bridge between the flexible and
catalytic loops (Fig. 9a), which restricts the accessibility
and size of the substrate [7, 8].

Interestingly, all seven positive sites detected by a site
model method were found on the surface of the proto-
mer and contribute to the delineation of the catalytic
interface (Fig. 9a). For instance, site 58 is located in the
catalytic loop, and site 38 is at the C-terminal end of the
B strand, which contains two acidic residues (Glu** and
Asp®% Fig. 9a). Site 236 is adjacent to the flexible loop,
and sites 204 and 208 are located in the a-helix that pre-
cedes this loop. Surprisingly, only site 38 was located on
the beta strand; other sites were mainly located in the
alpha-helix and the loop region (Fig. 9a). For the Class I
enzyme, we found 10/16 (62.5 %) sites localized on alpha
helixes and 6/16 (37.5 %) located on loop regions
(Fig. 9b). Sites under positive selection were not found
on beta strands. We found positively selected sites next
to the active site, metal-binding sites, in the neighbour-
hood of important residues of catalytic activity and in
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the sites 53 and 201of Class I SMase D, which, in Class
11, ascribe an additional disulphide bridge. In the GDPD
domain (PDB residues: 226-255), we found sites under
positive selection that belong exclusively to clade L (231,
239, 240, 243 and 253). Similarly, site 236, which belongs
to both classes, is under positive selection.

Discussion

How the different structural classes did originate in the
evolutionary history of the spider SMases D?

SMases D are the principal molecules responsible for
the toxicity presented by spider venoms from genus Lox-
osceles. This enzyme also is present in the spider genus
Sicarius, in ticks (Ixodes scapularis and Rhipicephalus
pulchellus) and in strains of Arcanobacterium and
Corynebacterium. Based on the sequence alignment, bio-
chemical and structural data, Murakami et al. [8] pro-
posed a structural classification of spider venom SMases
D. Class I SMase D is characterized by a single disulphide
bridge and an extended hydrophobic loop, while Class II
SMase D contains an additional intra-chain disulphide
bridge that links the shortened flexible loop with catalytic
loop. Class II enzymes can be further subdivided into
Class IIa and Class IIb, where only the first is capable of
hydrolyzing sphingomyelin. Faced with this, firstly we
asked what would be the present distribution of classes in
the databank and secondly, what is the evolutionary sig-
nificance of structural classification of SMase D.

The sample we analyzed was constituted by all avail-
able Sphingomyelinase D sequences available in public
databases at the moment of the retrieval. The huge ma-
jority was classified as Class II. The sequences of SMase
D isoforms from Loxosceles were obtained by two ap-
proaches. In L. laeta and L. intermedia they were found
in transcriptomes of the venom gland[13, 32]. In these
species, only L. laeta presented Class I and Class II iso-
forms. The other sequences were obtained by sequen-
cing cloned PCR products with heterologous primers

Table 2 Likelihood scores (2Al) for testing hypotheses for branch models in PAML

Null Hypothesis Assumption made Models compared 20l P

A (W= we) = W WL =We AXD 3781 781 x 1071
B. w,. = wp Wg =W AXB 36.50 153x 107
C.w.=wy wg free CXE 36.64 729 x 107
D. wg = Wy WL =W AXC 165 199 x 107
E. g =wp w, free BXE 178 181 x 107"
F. w constant No Free Ratio A XK 675.84 599 x 107°°
A (W =wg) £1 WL =W D XH 46.50 918 x 107"
B.w <1 WG =W BXF 46.99 715x 1072
C.w =1 wg free EXI 48.72 296 x 107"
D.ws<1 WL =W CXG 037 550x 107
B wg <1 w, free EXJ 2e-05 996 x 107




Table 3 Parameter estimates under different site models and statistics of the likelihood ratio (2Al) hypothesis tests in PAML

Model Estimates of parameters - LRT (pairs)  df 2Al P Positively selected sitesBEB (%)

MO: one ratio W = 0.25443 2884335 MO/M3 4 166650 1.11x10°°° NA.

M3: discrete Wo=0.03317,w7 = 0.22423;w, = 0.62748;p0 = 28010.09 None
0.26344;p, = 0.47946;0, = 0.2571

M1a: neutral  we=0.18188;w; = 1.00000;py = 0.73346,p; = 2833875 M1/M2 2 1456 687 x 107 NA
0.26654

M2a: selection  wg = 0.184690;w; = 1.000000;w, = 1.879270; 2833146 581 (99.1 %);204L (94.0 %);208A (754 %);
po = 0.72964;p, = 0.25444;p, = 0.01592 2365 (80.0 %)

M?7: beta p=0.70821;q= 165979 2797746 M7/M8 2 3554 192x107%® NA

M8: beta & w  po=0.96464;p = 085258, =2.56188,p; = 27959.69 18K (67.8 %);38K (53.0 %),581 (99.9 %);  204L (98.2 %);208A (92.3 %),2365 (95.5 %)
0.03536,w = 1.262270 151K (52.3 %)

Model A Po=0.52400;p; =0.18218;02, = 0.21802;p2, =  28279.91 Null/Alt. 1 1389 194 x 107 21P (95.7 %);22T (100.0 %);405 (99.0 %); 205G (99.8 %);214| (95.3 %);2315

(null) 0.07580;wp = 0.16817;w; = 1.00000;background: 53F (98.7 %);84G (97.2 %);144G (99.8 %); (100.0 %);239R (95.9 %);240K (97.2 %);243E
Wo, = 0.16817;w,p, = 1.00000;foreground: w,, = 179T (98.5 %);201F (98.2 %) (100.0 %);253Y (99.6 %),265G (99.8 %)
1.00000;w-p = 1.00000

Model Po =0.58498;p; = 0.20363;p,, = 0.15681;p2, =  28272.97 NA

Aalternative)  0.05458;wo = 0.17009;w; = 1.00000;background:
Wy =0.17009;w,, = 1.00000;foreground:w,, =

1.97553;w,, = 1.97553

I=InL = log likelihood; LRT: likelihood ratio test; df: degrees of freedom; 2Al: twice the log-likelihood difference of the models compared. P: p-value; BEB: Bayes Empirical Bayes (BEB) probabilities

06751 (SL0T) ABojoig Aibuonnjon3 DN ‘|p 12 0S0Ipad

91 jJo 0l abeq
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([10, 33] and Genbank). Except for L. laeta, L. gaucho
and an unidentified species (L. sp. G/B-2008), all the se-
quences obtained by this PCR based method were classi-
fied as Class II only. There is, in the total of all
sequences available for L. laeta and L. gaucho, an ap-
proximate ratio of 50 % for each class (Additional file 1:
Table S1), so we would expect to find this class in other
species if they are present in similar proportions, what
was not the case. Therefore we assumed that, if Class I
isoform were present, they would be found. Of course, if

Table 4 Top most positively selected sites according to the
Bayesian approach with MrBayes

Site Amino acid w (mean) Pw>10
18 * K 1.00094 0.0419
38 % K 1.00106 0.0426
58 % I 1.00190 0.0466
151 * K 1.00090 0.0416
204* L 1.00400 0.0528
208 * A 1.00320 0.0520
236 * S 1.00170 0.0450
268 D 1.00125 0.0438

* sites that were also found to be positively selected with the ML approach

further research on sequencing SMase D from other
Loxosceles species shows that there are other species
with Class I isoforms present, the conclusions here
drawn should be modified accordingly.

A previous phylogenetic study on the SMase D of spi-
ders, including the genera Loxosceles and Sicarius, iden-
tified two major clades [10]: clade a contains only
SMase D sequences of venoms from New World Loxos-
celes and Loxosceles rufescens, and clade B includes
toxins from New World Loxosceles, Sicarius and African
Loxosceles. To address the positioning of structural clas-
ses in the phylogeny of these enzymes, nucleotide se-
quences were subjected to a phylogenetic analysis. The
ML and Bayesian phylogenies revealed that Class I
SMases D from L. laeta and L. sp. GJB-2008 belong to
same clade (clade L), which indicates the recent evolu-
tion from a common ancestor.

Clades L and G indicate that Class I SMase D have
polyphyletic origins. The use of phylogenies based on
molecules that may be subject of selection are consid-
ered to be potentially misleading to the hypothesis of
species phylogeny, when compared to those based on
neutrally evolving molecules. However, if there is con-
vergent evolution, the distorted result on the phylogeny
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by the Wilcoxon test are shown

topology would be to infer monophyly instead of poly-
phyly, if the number of involved residues is relatively
high. The presence of Class I SMase D in different
clades, however, seems to be the result of convergent
evolution of the double disulphide bond in the molecule.
Bacteria and ticks were found as monophyletic groups;
however, Loxosceles and Sicarius genera were found to
be polyphyletic groups. Other studies on SMase D
Bayesian analyses also indicate that Loxosceles and Sicar-
ius genera are not monophyletic groups [10]. However,
duplications and losses of genes prevent SMase D from
being the best marker to investigate species relation-
ships. These results also indicate that the single disul-
phide bridge is a condition that appeared independently
in the two clades of the SMase D phylogeny. These re-
sults are the first to indicate that the increase in disul-
phide bond number is a convergent pattern.

Is there positive selection on SMase D?

The comparison of synonymous (ds) and nonsynon-
ymous (dy) substitution rates by the w ratio (o = dn/ds)
is an indicator of the selective pressure acting on a

protein-coding gene [19, 20, 22-24, 34]. Positive selec-
tion (diversifying selection) occurs when w>1 [19-24,
34]. However, in cases where adaptive evolution occurs
in a short period of time affecting a few amino acids, the
w ratio may not be significantly >1. According to differ-
ent studies [19-24, 34], our first approach to address
this problem consisted in the analysis of branch models,
site models, and branch-site models. Positive selection
was not found on SMase D only in branch models ana-
lysis, probably because its power of detection. Also the
signal may have been masked by purifying selection. The
positively selected sites found by site models and
branch-site models were located on the SMase D three-
dimensional structure (see below). The sites found in the
clade L may indicates a diversification of the protein
function in Class I SMase D that could be correlated
with the difference in toxic potential between Classes I
and II. Our second approach, by Bayesian analysis of all
available sequences, allowed proving the sites detected
by site models (codeml).

The two analyses performed to verify the sites under
positive selection considering the full phylogeny pointed
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Class-ll

to almost the same sites. This is not surprising because
they both are based on the rate synonymous/non syn-
onymous rate of substitutions that occurred during the
evolution of the considered enzymes. The Bayesian ap-
proach, despite pointing to the sites with rates higher
than 1.0, was much more conservative than the ML ap-
proach. Thus, based on these approaches, we can state
that SMase D is under positive selection.

What are the roles of the sites?
To investigate the roles of sites under adaptive evolution,
they were mapped into the SMase D three-dimensional

Table 5 Statistical analysis of amino acids classes found in
SMase D positively selected sites. Fisher's exact test

nonpolar + basic neutral + acidic Total
Class-I 108 25 133
Class-Il 558 639 1197
Total 666 664 1330

P value < 0.0001

structure. We also performed a statistical analysis on the
differences in frequencies and types of amino acids be-
tween Classes I and II found in the site model analysis.

Differences between classes

SMase D can have different structural regions that par-
ticipate in the recognition, binding and hydrolysis of the
substrate [5]. Considering that the outer monolayer of
most eukaryotic membranes is composed mainly of zwit-
terionic phospholipids [35], phosphatidylcholine (PC)
and SM, electrostatic interactions may occur between
acidic residues in sites under diversifying selection (an-
ionic) of Class II SMase D and residual charges of head-
groups choline (cationic) from the outer monolayer. A
study on *'P-NMR on three SMase D, two from L. arizo-
nica and one from S. terrosus, showed a strong preference
for positively charged headgroups (choline and/or etha-
nolamine) [36]. Importantly, the isoforms from S. terrosus
have a strong preference for ethanolamine over choline,
and this preference might be relevant for the predatory
behaviour because ceramide phosphoethanolamine (CPE)
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Fig. 8 Structural interpretation of the positively selected sites. a Cartoon representation of the structural comparison between Class | and Il
SMases D. The fully conserved catalytic histidines (H12 and H47) and the three acidic residues (E32, D34 and D91) involved in the metal ion
coordination are shown as sticks, with carbon atoms in green. The seven positively selected sites are shown as sticks and balls, with carbon
atoms in yellow. The residues depicted in the positive sites correspond to those of SMase | from L. laeta, and the sequence numbering is also
based on this molecule according to PDB entry 1XX1 (Murakami et al., 2005). The cartoon representation is coloured according to the secondary
structure elements and the flexible loop F related to the second S-S bond found uniquely in Class II members (in orange, Class [; in red, Class II).
The variable loop E is cyan and blue for Classes | and I, respectively. b Schematic representation of a Class | SMase D highlighting all of the

Class 11

is an important sphingolipid present in the main prey of
sicariid spiders, insects [36]. Our results correspond with
those results because the three enzymes analysed in that
study are Class II, according to the structural classifica-
tion, and in our analysis, these enzymes have acidic or
neutral residues in sites under diversifying selection.
Therefore, they may potentially set electrostatic interac-
tions to choline or CPE in the outer surface of plasma
membranes. It would be interesting to investigate which is
the preference of Class I members by *'P-NMR as well. In

our analysis, electrostatic interactions between basic resi-
dues in sites under positive selection and sialic acid resi-
dues at the glycocalyx could be favoured, which would
indicate a certain adaptive aspect to Class I enzymes. The
gangliosides are the most abundant glycolipids in nerve
cells and are also present in smaller quantities in other
cell types. Spider SMase D acts on the nervous system
of the prey and can kill an insect instantly. This char-
acteristic agrees with our hypothesis of the interaction
between gangliosides and SMase D. The hydrophobic
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interactions between nonpolar residues and the hydro-
phobic core of the bilayer can be facilitated in Class I
members. The constant binding of bee venom, melit-
tin, to the PC bilayers is relatively high, which shows
the importance of the hydrophobic interactions in
other venoms (reviewed by [37]).

Sites in the three-dimensional structure

The three-dimensional structure of SMases D from
spider venoms consists of a classical (B/a)g-barrel with a
Mg>* ion coordinated by the acidic residues (Glu®,
Asp®* and Asp®'), which are relevant for substrate bind-
ing, and two catalytic histidine residues, His'* and His*’
[7, 8] (Fig. 9a). The main differences between Classes I
and II reside in the catalytic interface (Figs. 8 and 9).

A structural analysis showed a distinct charge distribu-
tion across the catalytic interface with a predominance
of acidic residues in Class II members compared to
Class I enzymes (Fig. 8). Despite the negatively charged
active site pocket, which is related to metal ion coordin-
ation, Class II members have a long negative patch in
the catalytic interface that might interfere with the ab-
sorption in membranes and with the function of the
molecule. The positively selected sites are in accordance
with this observation because most of these sites (18, 38,
58, 151, 204, 208 and 236) are populating the catalytic
interface (Fig. 9a) and thus contributing to the surface
charge distribution.

In contrast to the disulphide bond that connects the
catalytic loop to the flexible loop only found in Class II
members, the insertion of the sequence PYLPSL in the
variable loop E is a unique feature of Class I SMases D.
This insertion results in a hydrophobic prominence on
the surface of the catalytic interface, which likely favours
the interaction with membranes. This observation to-
gether with the high frequency of basic and nonpolar
residues at the positive sites in Class I could be related
to the association between Class I SMases D and bio-
logical membranes. In contrast, the additional S-S bond
in Class II SMases D confers rigidity to the catalytic
interface and an altered topology of the active site, which
is likely related to a functional differentiation. The
GDPD domain includes important residues that partici-
pate on substrate recognition in plasma membranes
[33]. However, further studies are necessary to under-
stand the role of sites under positive selection in the
interaction of the enzyme with cell membranes. Thus,
the positively selected sites located on the catalytic inter-
face and neighbouring sites are important for the func-
tioning of the enzyme. Moreover, the enzyme has
positively selected sites that are conducive to the inter-
action with the membranes.

The finding of independent evolutionary origin of at
least two Class I SMases D leads to some interesting
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questions that can be further explored. As L. laeta and
L. gaucho are among the most toxic Loxosceles species
to humans, a throughout comparison of biochemical
properties of this Class I enzymes between these two
species would certainly bring interesting results.

Conclusions

This study demonstrated that Class I SMases D from L.
laeta and L. sp. GJ/B-2008 belong to the same clade,
which indicates a recent evolution from a common an-
cestor. Similarly, we found a single disulphide bridge, a
condition that evolved independently in two clades of
Loxosceles. The detection of positive selection in clade L,
the higher proportion of nonpolar and basic residues in
Class I enzymes and the higher proportion of neutral
and acidic residues in Class II enzymes under selection
indicates the nature of the adaptive evolution that has
occurred during the SMase D phylogenetic history.
Among the sites under diversifying selection in Class I
enzymes, sites 53 and 201 may prevent the formation of
an additional disulphide bridge, and this condition
brings certain evolutionary advantage to Class I en-
zymes. The difference between classes and the differ-
ences in selection regimens of sites in clade L indicates a
diversification of protein functions in Class I SMase D
that could be correlated with differences in the toxic po-
tential between Classes I and II. The identification of the
functional site(s) would aid in the design and testing of
suitable anti-sphingomyelinase compounds in the devel-
opment of novel therapies to treat loxoscelism.
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