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Cell lines and immune classification of glioblastoma define
patient’s prognosis
Quentin Klopfenstein1,2, Caroline Truntzer1,2, Julie Vincent3 and Francois Ghiringhelli1,2,3,4

BACKGROUND: Prognostic markers for glioblastoma are lacking. Both intrinsic tumour characteristics and microenvironment could
influence cancer prognostic. The aim of our study was to generate a pure glioblastoma cell lines and immune classification in order
to decipher the respective role of glioblastoma cell and microenvironment on prognosis.
METHODS: We worked on two large cohorts of patients suffering from glioblastoma (TCGA, n= 481 and Rembrandt, n= 180) for
which clinical data, transcriptomic profiles and outcome were recorded. Transcriptomic profiles of 129 pure glioblastoma cell lines
were clustered to generate a glioblastoma cell lines classification. Presence of subtypes of glioblastoma cell lines and immune cells
was determined using deconvolution.
RESULTS: Glioblastoma cell lines classification defined three new molecular groups called oncogenic, metabolic and neuronal
communication enriched. Neuronal communication-enriched tumours were associated with poor prognosis in both cohorts.
Immune cell infiltrate was more frequent in mesenchymal classical classification subgroup and metabolic-enriched tumours. A
combination of age, glioblastoma cell lines classification and immune classification could be used to determine patient’s outcome
in both cohorts.
CONCLUSIONS: Our study shows that glioblastoma-bearing patients can be classified based on their age, glioblastoma cell lines
classification and immune classification. The combination of these information improves the capacity to address prognosis.
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BACKGROUND
Glioblastoma (GBM) is the most frequent malignant tumour,
primary brain tumour and the tumour with the poorest prognosis.
The current treatment relies on surgical resection of gross tumour
followed by radio-chemotherapy and adjuvant therapy with
temozolomide. After such therapy, most patients experiment
recurrence and only a few therapeutic options are available.
Despite such therapies, median survival only reaches around
15 months.1

To better understand this pathology and define subgroups of
patients with particular molecular biology and particular prognosis
or response to therapy, the Cancer Genome Atlas Consortium
(TCGA) performed high-dimensional profiling and molecular
classification of large series of GBM tumours. Unsupervised
transcriptome analysis revealed four clusters, referred to as
classical, mesenchymal, neural and proneural, which were tightly
associated with specific genomic abnormalities.2 Proneuronal
tumours seem to be associated with a better outcome, whereas
mesenchymal tumours are related to a poorer survival.3–5

However, because GBM are composed of a complex microenvir-
onment, it is difficult to determine if such classification
corresponds to a classification of the tumour cell or of the
microenvironment.
The GBM microenvironment is a complex milieu that ultimately

promotes tumour cell transcriptomic adaptability and disease

progression.6 GBM cells secrete numerous chemokines, cytokines
and growth factors that promote infiltration of various cells:
astrocytes, pericytes, endothelial cells, circulating progenitor cells
and a range of immune cells such as microglia, peripheral
macrophages, myeloid-derived suppressor cells (MDSC), leuko-
cytes, CD4+ T cells and Treg into the tumour.7–10 Some previous
work underlined that immune infiltrate could be associated with
GBM prognosis. Although CD8 T cells seem to be linked with a
better prognosis, some other immune components such as Th17
or myeloid cells are associated with a poorer prognosis.11,12

Recent computational methods as deconvolution were reported
for predicting fractions of multiple cell types in gene expression
profiles of admixtures.13–19 These methods could be used to
estimate immune infiltrate in a tumour sample.
While previous classification used classical hierarchical clustering

of transcriptome of bulk tumour sample, GBM contains both stromal
and tumour cells. Our aim is to use pure transcriptomic data of GBM
cells to isolate a tumour cells signature without the interference of
transcriptomic information from the stroma microenvironment. In
this article, we proposed a new classification of GBM tumours based
on the estimation of GBM tumour cell heterogeneity. A new
deconvolution process was proposed to estimate the quantity of
immune cells present in GBM tumours. Combining this information,
we were able to compute a score per patient that was associated
with outcome in two independent cohorts.
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The first step of our analysis was to cluster transcriptome of
GBM cell lines. This clustering step revealed three clusters. A
signature of this three clusters was built to allow quantification of
these clusters in patients’ tumours. Once the quantification was
done, patients were clustered according to the quantity of cell
lines clusters in their tumours. This process showed three clusters
of patients. Each group were enriched in one of the three cell lines
cluster built before. The results of this step were a new
classification of patients’ tumour based on GBM cell lines. Once
this classification is done, immune cells inside patients’ tumours
were quantified using deconvolution. Finally, a multivariate Cox
model was built combining the new classification and immune
quantification (a summary of the statistical analysis is presented
Fig. 1).

MATERIALS AND METHODS
Datasets
Gene expression profiles of GBM cell lines. We downloaded GBM
cell lines transcriptomes from different studies on GEO public
repository20 (list available in Table S1) using the GEOquery R
package.21 We used transcriptomic data from all of the different
cell lines of GBM that we found on the GEO web data base. All
these cells lines come from five GEO datasets (GSE15824,
GSE23806, GSE9171, GSE104291 and GSE8537). GSE12824 involves
five GBM cell lines in duplicate from five different patients,
GSE23806 involves cell lines or neurospheres or stem-like cells in

duplicate in different stimulating conditions, GSE9171 involve cell
lines from different patients (16 cell lines), GSE104291 involves six
cell lines in triplicate from different patients and GSE8537 involves
one cell line from a patient in four different conditions. All cell
lines samples were obtained through Affymetrix H133plus2
platform. This dataset was used to create three groups of cell
lines. We then estimated for each patient the quantity of each cell
line group in their tumour.

Gene expression profiles of GBM tumours. We used two different
cohorts for this study. The first one is the Affymetrix H133A TCGA
GBM cohort.22 Both clinical and gene expression profiles were
downloaded with the TCGA2STAT R package.23 The data were
already normalised using the RMA algorithm. We removed
patients with a ‘G-CIMP' molecular subtype because they have a
particular survival behaviour. We decided in both cohorts to
exclude G-CIMP tumours because G-CIMP patients have better
prognosis than other patients (median overall survival (OS) of
22.7 months vs 10.5 months for other patients). This population is
rare in the TCGA cohorts (39 patients among 520) and may
introduce a bias in the analysis. In addition, it is known that such
population is enriched in Isocitrate deshydrogenase (IDH) mutated
glioma.22 All these arguments support that G-CIMP is probably a
secondary GBM, which is raised from IDH mutated low-grade
glioma and thus needed to be excluded because of its different
biology. The number of patients after removal of these patients is
481 in this cohort. The second cohort (Rembrandt) was
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Fig. 1 Graphical abstract summarising the statistical analysis. Overview of the statistical analysis performed in this study
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downloaded from GEO under the accession number ‘GSE68848'.
Clinical data were downloaded from the GDOC website (https://
gdoc.georgetown.edu/gdoc/). The Rembrandt study gathers
patients with different types of brain tumour. We only kept the
GBM type of tumours resulting in 180 patients for this cohort.24

Gene expression profiles were obtained through the H133Plus2
Affymetrix platform.

Gene expression profiles normalisation. Raw data were normalised
using the RMA method from the affy package.25 A batch effect
was observed between the two GBM tumours datasets due to the
different Affymetrix platforms. This unwanted effect was corrected
using the SVA package.26 We worked on the set of genes common
to the two platforms representing 51% of genes for the H133plus
platform and 86% for the H133A.

Differential gene analysis. A differential gene analysis was
performed to find genes differentially expressed between the
three groups of GBM cell lines. The differential expression analysis
was performed with the limma R package.27 A t-test was
performed for each gene testing if the average expression of
the gene in one group is different compared with the other
groups. Genes with a false discovery rate corrected p < 0.05 were
considered as differentially expressed.

Pathway analysis with KEGG. Using clustering method, three
types of GBM cell lines could be identified. A pathway analysis was
performed on the genes differentially expressed between each of
the three groups of cell lines generated. The list of differentially
expressed genes for each group was uploaded on the EnrichR
website.28 The most significant KEGG pathway found for each
group was used to name it.

Molecular classification of GBM. Information about the molecular
subtypes was available for the TCGA cohort but not for the
Rembrandt’s one. To predict them for this latter cohort, we built a
GBM molecular subtype classifier using the TCGA cohort as the
training data. A Prediction Analysis for Microarrays classification
model was estimated using the already published list of 840 genes
that discriminate the four subtypes.2 Cross-validation was
performed on the TCGA cohort to assess the validity of the
model; resulting in a well-classified rate of 90%. This model was
then used to predict the molecular subtype of the Rembrandt’s
tumour samples.

Deconvolution method for estimating the quantity of immune cells
inside the tumour. The deconvolution method used for estimat-
ing the proportions of cells present inside the tumour is inspired
from Cibersort. The advantage of our method is that we estimate
the proportions of tumour cells and stromal cells in the tumour.
This quantification allows us to have a complete estimation of
what is inside the tumour. This also enables us to have absolute
quantity estimation of immune cells. We considered that tumour
cells, stromal cells, lymphoids cells and myeloids cells represented
100% of cells inside the tumour. The mathematical model behind
the deconvolution is a constrained version of the nu-SVR
algorithm used by Cibersort29 (see supplementary method).

Clustering models. The purpose of the clustering process was to
find groups of GBM cell lines that look alike. Cell lines were
clustered using the FactoMine R package.30 It uses a hierarchical
clustering based on the principal components and on the
Euclidean distance. It is well suited for data with a large number
of variables. The number of clusters was automatically selected by
the algorithm. The partition chosen is the one with highest relative
loss of inertia.
In order to cluster patients based on their cell line proportions

estimated by the deconvolution strategy, we used a hierarchical

clustering model, with the hclust function in R, using the Ward’s
agglomeration method based on Euclidean distance. The optimal
number of clusters was chosen between two and six using the gap
statistics method implemented in the FactoExtra package.31 This
package provides automatic selection of the number of clusters
based on different parameters.

Validation of the created groups. The cluster of patients was
made on the TCGA cohort as described above. A random forest
model was then used to classify patients of the Rembrandt cohort
among the clusters obtained on the TCGA cohort.

Survival analysis
The prognostic value of the deconvolution estimations were
tested through univariate Cox proportional hazards models for
disease-free survival (DFS) or OS. Survival probabilities were
estimated using the Kaplan–Meier method and survival curves
were evaluated using the log-rank test. We censored the DFS
times at 12 months and the OS times at 24 months for both
cohorts.
The multivariate Cox model combining GBM cell lines

classification and immune cells quantities, estimated by deconvo-
lution, was built as follows:

1. A multivariate Cox model was built with the cell line
classification and the proportions of immune cells esti-
mated. Interactions between the classification and the
proportions of cells were considered in the model.

2. A LASSO survival model was performed using the glmnet R
package,32 we forced the cell line classification to be kept in
the model.

3. The resulting model was then used to estimate a linear
predictor value for each patient.

Two risk groups of patients were built based on this linear
predictor value, using the median value as the threshold. This
model was built on the TCGA cohort and validated on the
Rembrandt cohort. The validation was performed using the same
coefficients on both cohorts and the same cut-offs.
The last model built is composed of the linear predictor of the

LASSO model and the clinical variable age. From this model, we
built three groups of patients (low, medium, and high risk). The
groups were determined using first and third quartile of the
computer score with the linear predictor and the age of the
patients.

Software used for the study and available data
Version 3.3.3 of R was used for the statistical analysis. Figures were
performed using GraphPad version 7.03. All data and R code can
be downloaded on Github (https://github.com/Klopfe/
Glioblastoma).

RESULTS
Using transcriptomic profiles of GBM cell lines to define a new
GBM cell-intrinsic classification
We had the objective to generate a pure tumour cell-intrinsic
transcriptomic signature of GBM. To do this, we made the
hypothesis that a GBM is composed of different subgroups of GBM
cell types. We downloaded 129 samples of GBM cell lines from
public repository (Table S1). Using hierarchical clustering, we
could separate these cell lines into three different groups (Fig. 2a).
Using KEGG pathway analysis, genes associated with each of these
three groups could be related to oncogenic pathways, metabolic
pathways, and neuronal communication pathways (Figure S1).
Accordingly, these three groups were named oncogenic, meta-
bolic and neuronal communication. We observed that oncogenic
group is constituted of cell lines only, metabolic group involves a
mixed of cell lines and neurospheres, whereas neuronal
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communication groups involve a mixed of cell line and neuro-
sphere (Table S2). These observations are confirmed by the
chi-square independent test, rejecting the hypothesis of no
enrichment in the different groups (chi-square independent
test, p-value < 0.0001).
In order to quantify if GBM samples contained different

proportions of these three tumour cell types, we used a
deconvolution algorithm adapted from Cibersort29 (see Materials
and methods). The patients’ samples were taken from the TCGA
GBM cohort (n= 481),22 used as discovery cohort, and the
validation of our observations was made on the Rembrandt’s
cohort (n= 180).24

Using these cell line estimations obtained from deconvolution
algorithm, we clustered patients in three different groups. We
observed a metabolic-enriched group, which is mainly enriched
in mesenchymal tumours (n= 81), an oncogenic-enriched group
(n= 202) and a neuronal communication-enriched group (n= 198),
which are constituted of a mixture of neuronal, proneuronal and
classical tumours with an enriched presence of neuronal tumours in

oncogenic-enriched group (Fig. 2b). Similar results were observed
in the Rembrandt cohort (Fig. 2c). We observed a metabolic-
enriched group of nine patients, an oncogenic-enriched group of
76 patients and a neuronal communication-enriched group of 95
patients. Metabolic-enriched group involved mainly mesenchymal
tumours and oncogenic-enriched group presents enrichment in
neuronal tumours.
We then compared this GBM cell lines classification with the

classical molecular classification. The new GBM cell lines
classification and the classical classification were found indepen-
dent (chi-square test, p < 2.10−16 for TCGA cohort and chi-square
test, p= 9.10−13 for Rembrandt cohort) implying that this new
classification is not related to the classical molecular classification.
Then, we tested the association of both classifications with OS

and DFS in the TCGA cohort and with OS in the Rembrandt cohort
where only OS data are available. In the TCGA cohort, classical
molecular classification was not significantly associated with OS
(Fig. 2d) but was found associated with DFS (log-rank p= 0.006)
(Figure S2A). Proneural tumours were not associated with a
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significant poorer OS (hazard ratio (HR)= 1.16, 95% confidence
interval (CI) (0.86–1.574), p= 0.33, in comparison with mesench-
ymal tumours). In contrast, in Rembrandt cohort classical
molecular classification is significantly (log-rank p= 0.01) asso-
ciated with OS. However, in this cohort proneural tumours were
not significantly associated with better OS (HR= 0.58, 95% CI
(0.30–1.133), p= 0.11, in comparison with mesenchymal tumours)
(Fig. 2e), thus suggesting the difficulty to use the classical
molecular classification to address patients’ prognosis.
In the TCGA cohort, the GBM cell lines classification is not

significantly associated with prognosis in term of OS (log-rank p=
0.16) and DFS log-rank p= 0.29) (Fig. 2f) and (Figure S2B).
However, the neural communication-enriched group is associated
with a poorer OS with a p-value close to significance (HR= 1.23,
95% CI (0.98–1.54), p= 0.06, in comparison with oncogenic-
enriched group) (Figure S2C). In the validation cohort, the
classification is significantly associated with OS (log-rank p=
0.02). Similarly to the TCGA cohort, the neural communication-
enriched group is associated with poorer OS (HR= 1.57, 95% CI
(1.08–2.28), p= 0.02 in comparison with oncogenic-enriched
group) (Fig. 2g).

Association between cancer cell and molecular signatures with
immune microenvironment using the deconvolution strategy
To estimate the different types of immune cells in GBM samples,
we used a deconvolution algorithm adapted from CIBERSORT29 to
obtain absolute estimations of immune cells infiltrated in tumours.
Deconvolution process allowed quantification of immune cells
inside GBM tumours. The estimations showed a very low
infiltration in most of the tumours analysed since most of the
tumours have <10% of immune cells.
Using transcriptomes of pure immune cells, we could estimate

quantities of lymphoids cells (B cells, NK, plasma cells, gamma
delta T cells, Tfh, regulatory T cells (Treg), Th1, Th2, Th17, naive
CD8, effector memory CD8, EMRA CD8 and central memory CD8)
and myeloid cells (plasmacytoids, dendritics cells, monocytic cells,
granulocytes, dendritics cells, macrophages type 1 and type 2) in
each tumour samples from both cohorts. We observed in both
cohorts that proneural and classical GBM have the weakest
infiltrate of immune cells (Figs. 3a, b). In the lymphoid compart-
ment, B cells and Treg are the most frequent populations. Treg
were more frequent in neural tumours, thus suggesting a higher
immune suppressive context in these tumours. Importantly, a
weak infiltrate in CD8 subsets is found in all GBM subtypes. In the
myeloid population, macrophages are the most represented
population. Surprisingly, type 1 macrophages seemed more
frequent than type 2 macrophages. In mesenchymal tumours,
we observed an accumulation of monocytic cells, which might be
closed to monocytic MDSCs. Using the new molecular classifica-
tion, metabolic-enriched tumours were highly infiltrated in
immune cells in comparison with other subtypes (Figs. 3c, d).
Oncogenic-enriched tumours were highly infiltrated with Treg
cells, whereas metabolic-enriched tumours were highly infiltrated
with macrophages.
Hierarchical clustering using the deconvolution estimations

revealed five clusters in the TCGA cohort (Fig. 3e). In the Rembrandt
cohort, the groups were predicted using the groups defined in the
discovery cohort (Fig. 3f). Clusters 1 and 2 were highly enriched in
immune infiltrating cells. Although cluster 1 had balanced immune
infiltrates in myeloid and lymphoid cells with high number of Treg
cells, cluster 2 was mainly invaded by myeloid cells. Cluster 2 was
characteristic of mesenchymal- and metabolic-enriched clusters.
Clusters 3 and 4 had intermediate immune infiltrates. These tumours
were highly infiltrated with Treg and Th2 cells. These two latter
clusters were associated with neural tumours and oncogenic-
enriched tumours. Cluster 5 was the cluster with the least immune
cells infiltration and was enriched in classical tumours and neuronal
communication-enriched tumours.

These estimations showed differences in terms of immune
infiltrations between the different molecular subgroups and
between cell lines classification subgroups.

Using immune parameters to estimate GBM prognosis
We tested each immune cell as a continuous variable using
univariate Cox proportional models, and only central memory CD8
T cells were associated with poorer OS in all patients belonging to
TCGA cohort (Fig. 4a). In the Rembrandt cohort, high infiltrates of
B cells were associated with a good outcome, whereas a high
presence of stromal structure was associated with poor prognosis
(Fig. 4b). Upon subgroup analysis, high infiltrates in myeloid cells,
macrophage and M1-type macrophage were reproducibly asso-
ciated with a poor outcome in the proneural group in either TCGA
(DFS and OS) or also Rembrandt cohorts. Using the GBM cell lines
classification, only a high presence of type 2 macrophages was
associated with a poor OS in oncogenic-enriched group, both for
the TCGA and Rembrandt cohorts (Figs. 4a, b).

Generation of a composite biomarker of survival using both
molecular classification and immune signatures
A multivariate LASSO Cox model including the new classification
and the immune cells proportions was estimated. As shown
earlier, the role of the classical classification on OS was not
reproducible between both cohorts; for this reason, this classifica-
tion was not kept in the multivariate prognostic model.
Interactions between the new classification and the immune cells
proportions were added to the model because we showed earlier
that the prognostic role of these cells differs in the different cell
lines groups. The model retained nine variables including
interactions between cell lines classification and proportions of
immune cells (Table S3). Using the linear predictor median of this
model as threshold, we split the patients in two groups. These
groups were significantly associated with OS (median OS 14.5 vs
11.3, HR= 0.732, p= 0.002, n= 479) (Fig. 5a). The same model and
threshold were applied on the Rembrandt cohort as validation.
Once again, the two risk groups were significantly associated with
OS (median OS 17 vs 21.9, HR= 0.56, p= 0.006, n= 156) (Fig. 5b).
Finally, we wanted to check the ability of our composite score to

bring new information when compared with classical clinical
variables used to determine the prognosis. Clinical variables such
as age, sex, 6-O-Méthylguanine-ADN méthyltransférase (MGMT)
methylation and type of treatment were only available for TCGA
cohort (no patients harbour IDH mutation). We built a multivariate
Cox model including all these clinical variables and another one
with the clinical variables and our composite score taken as
continuous variable. Our composite score remains strongly
significant in the model (HR= 6.049, 95% CI= (2.349; 15.582),
p= 0.0002, Table 1). We also performed deviance analysis
(ANOVA) between both models, showing that the model including
clinical variables and composite score is better than the model
with clinical variables alone (ANOVA p= 0.0003).
Together our data underlined that a combination of the molecular

signature and estimation of immune infiltrate quantities could be
used to address patients’ outcome in glioblastoma patients.

DISCUSSION
Although GBM tumours are morphologically identical, some
patients have different clinical outcomes and different response
to therapy. Gene expression profiling of GBM was used to identify
several transcriptomal subgroups.2 Most studies proposed that
proneural tumours are associated with better outcome and could
correspond to secondary GBM, which arise from low-grade
tumours and mesenchymal tumours, are more common in older
patients and are associated with a poor outcome. In our two
cohorts, we could not confirm these observations. In the
Rembrandt cohort, proneural tumours were associated with better
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outcome, whereas in the TCGA cohort it corresponded to the
group with the worst prognosis. Similar observations were
previously performed by other groups,33 thus suggesting that
molecular classification have a minor role for stratification of
patients in clinical practice.
A previous study from Wang et al.34 proposed a new

classification using RNA sequencing of single cells isolated from
GBMs to select only specific genes expressed in GBM cells. While
few information is available concerning the prognostic role of this
classification, the authors observed intratumoural heterogeneity
with the presence multiple subtype of GBM cells in most of
tumour sample. Based on this observation, we used alternative
strategies to perform both tumour-intrinsic molecular classifica-
tion and to evaluate intratumoural heterogeneity. Using GBM cell
lines, we defined particular clusters of GBM cells, which were
enriched in genes of oncogenic pathway, metabolic pathway or

neuronal communication pathway. Metabolic-enriched cluster
was associated with mesenchymal tumours and oncogenic-
enriched cluster was associated with neural tumours. This new
classification was associated with prognosis, and in both TCGA
and Rembrandt cohorts, neuronal communication-enriched
tumours were associated with a poorer prognosis. Interestingly,
this new classification did not perfectly mirror the classical
molecular classification.
Previous reports analysed the role of immune infiltrates in GBM

with conflicting results. The prognosis roles of CD4 and CD8
infiltrates in GBM were previously reported in few small retro-
spective studies. Upon immunohistology, it was reported35 that a
decrease in the level of CD8+ Tumor infiltrated lymphocytes (TILs)
and a decrease in the CD8+/CD4+ ratio was observed in high-
grade GBM patients in comparison with low grade. GBM have a
weak CD8 immune infiltrate, which can probably not control
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tumour growth due to their relative low level compared with
immunosuppressive cells. While a first report showed that a high
CD8 T cells infiltrate was more frequently observed in longer
survivors compared with shorter survivors,35 further studies
suggested that CD8 alone could not be associated with clinical
outcome.35 In addition, recent reports suggest that CD8 and CD4
T cells are exhausted in GBM thus suggesting their incapacity to
drive an effector immune response.36 In a previous work, we
observed in a series of GBM a good prognostic role of CD8
infiltrate and a deleterious role of Th17 cells; however, immune
variables were not studied as continuous variables, which could
induce some bias.11 Using CIBERSORT in the TCGA cohort, Wang
et al.34 recently observed high proportions of macrophage,
neutrophil and CD4 T cells in mesenchymal tumours. Our
deconvolution strategy gives an additional information to
CIBERSORT. CIBERSORT estimates the proportion of immune cells
in the total number of immune cells that infiltrate the tumour and
thus only gives an idea of the proportions of each cell subsets. Our
deconvolution strategy could estimate the presence of cancer
cells, stromal cells, as well as the presence of different immune
cells, so our technic could give estimations of absolute numbers of
immune cells. Our study confirmed that GBM are poorly infiltrated
with the different types of CD8 T cells but also underlined the high
presence of monocytic-like cells in mesenchymal tumours. These

cells may be reminiscent of the MDSCs, which are strong
immunosuppressive cells in various cancers.37 Treg and Th2, two
CD4 populations with mainly protumoural properties, are the most
frequent T cells in GBM. Together such data strongly support that
GBM is mostly associated with protumoural and immunosuppres-
sive cells and consequently may not be a good target for
checkpoint inhibitor alone.38 Many addition works are required to
determine if elimination of immunosuppressive cells improve
outcome or favour infiltration by CD8 T cells and checkpoint
efficacy. Surprisingly, when studied as continuous variables only a
few immune cells were associated with outcome in the two
cohorts, thus suggesting that immune reaction has a minor role in
patients’ survival.
Finally, few variables could be used to better classify patients in

function of their prognosis. The most powerful variables remained
clinical variables including sex, age, the type of tumour resection.39

Recently, IDH mutation, TERT mutation and MGMT methylation
allowed better stratification of patients.40–42 Currently, molecular
signatures are not used to address prognosis. We proposed that our
molecular and immune signature could be used to address patient
prognosis. Limitations of our study include that this analysis was
performed on Affymetrix Chips and further works are required to
determine if such signatures could be performed using other
technologies like NanoString or RNA sequencing, which would be
more convenient in routine practice. An additional limitation of this
strategy is that cell lines are not the original tumour cell and some
transcriptional modification could occur in vitro and may limit
interpretation of our results. Another issue in such work is that the
process of deconvoluting the stroma in terms of cell type is
dependent on the sample. Additional works are required to
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Fig. 4 Role of immune cells populations on overall survival (OS). a, b
Bubble heatmap for the prognostic values of immune cells
subpopulations in glioblastoma subtypes. Association between
estimated immune cells quantities and OS were analysed for the
Cancer Genome Atlas (TCGA) cohort (a) and Rembrandt cohort (b).
A blue bubble indicates that a high quantity of this cell population is
related to poor outcome, whereas a yellow bubble indicates that a
high quantity of this cell population is related to good outcome. The
size of the bubble is related to the significance of the log-rank test.
We only drew a bubble for the population that were significantly
associated with OS (p-value < 0.05). Bubbles outlined in red indicate
that the results were reproducible between the two cohorts
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Cell lines and immune classification of glioblastoma define patient’s. . .
Q Klopfenstein et al.

812



compare the results of deconvolution in multiple sample of a
same tumour. Addition works will be required to determine if
such signatures are only prognostic or predictive of efficacy of
defined therapies. However, this observation was performed on a
large cohort and externally validated in another cohort thus
improving the strength of our observations.
In conclusion, we demonstrated that GBM cell lines classification

and immune classification could be combined to address GBM
patient prognostic and could be used to stratify patients for further
clinical trials. Immune classification may have some interest in the
future. In addition to the determination of the prognosis such data
was give some clues to select patients with T cells infiltrates which
may gain benefit from checkpoint inhibitor. Such classification may
also help us to find tumour, which need to target immunosuppres-
sion like Treg or TAM or tumour with immune desert, which could
gain benefit from tumour vaccine.
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