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Introduction

Immunotherapy holds much promise for the treatment of 
cancer. A wide variety of approaches have been implemented 
in order to stimulate a range of immune activities including 
innate and adaptive components. Strategies include the use of 
immunomodulatory antibodies, vaccines and adoptive cell 
transfer. Notable clinical successes include the use of the immune 
check-point inhibitor, ipilimumab1 for melanoma, and rituximab 
targeting CD20 for lymphoma.2 Adoptive immunotherapy, 
involving transfer of ex vivo activated autologous T cells, is also 
showing promise for the treatment of melanoma.3

However, most immunotherapeutic approaches on their 
own are of limited value against the majority of malignancies. 

Reasons for this limited success include immune regulation 
mediated by cancer cells and leukocyte populations through a 
variety of cell-expressed and secreted molecules. In many cases, 
immune regulation occurs locally within the tumor, leading to 
an ineffectual or suppressed antitumor response.

Tumors are not just a mass of proliferating genetically abnormal 
cells, but they are now well defined as a heterogeneous and 
structurally complex tissue. Malignant tumor cells can recruit a 
variety of cell types, including fibroblasts, immune inflammatory 
cells, and endothelial cells, through production and secretion of 
stimulatory growth factors and cytokines.4 This assortment of cells 
and molecules together comprises the tumor microenvironment.

Antitumor immunity within the tumor microenvironment 
can be suppressed by a variety of tumor infiltrating leukocytes, 
including regulatory T cells (Treg), myeloid-derived suppressor 
cells (MDSC) and alternatively activated (type 2) macrophages 
(M2).5–7 Mechanisms employed by these cell types to suppress 
effective immunity include secretion of cytokines such as IL-10 
and TGFβ, and expression of inhibitory receptors such as CTLA-4 
and PD-L1. Secretion of amino acid-depleting enzymes including 
arginase and IDO by these cell types in the microenvironment 
can also negatively impact on tumor immunity.

In addition to these effects mediated by infiltrating cells, 
tumor cells themselves can actively inhibit immunity through 
a number of mechanisms. Malignant cells can block T cell 
function through secretion of soluble forms of ligands for effector 
molecules, as reported for shed ligands of NKG2D; MICA and 
MICB.8 Additionally, cytokines released by tumor cells, such as 
VEGF and TGFβ can inhibit T cell recognition and destruction 
of malignant cells.9 IL-10 as well, can skew T cell responses 
toward a type 2 immune response that is less effective against 
tumor cells.10 Other secreted factors such as galectins can also 
impede T cell activity and survival.11

Many of these regulatory mechanisms can occur concurrently 
within the tumor microenvironment resulting in multiple 
redundant levels of immune suppression, which reduces the 
effectiveness of immunotherapy. Not surprisingly then, the tumor 
microenvironment can impede immunotherapy, and approaches 
to specifically reduce immune suppression within the tumor 
microenvironment are gaining momentum as a companion to 
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additional immunotherapy. This review focuses on immune-
based strategies to change the microenvironment to enable the 
effectiveness of immunotherapy, with discussion largely restricted 
to studies that demonstrate changes to the tumor microenvironment 
and synergy between that and additional immunotherapy.

Check Point Inhibitors

Immune inhibitory receptors can be expressed on, or secreted, 
by tumor cells and stromal components and constitute an 
important part of the tumor microenvironment. A variety of 
molecules, often referred to as immune checkpoints, including 
PD-1 and TIM3 can mediate immune inhibition through their 
respective inhibitory ligands, PD-L1 and galectin 9, expressed 
by tumor cells.12 CTLA-4, which can be expressed by antigen 
presenting cells, is an inhibitory competitor for CD80 and CD86 
costimulation of T cells through CD28, which can effectively 
inhibit T cell activation and expansion. Blockade of CTLA-4 
interactions can itself enable endogenous immunity against 
tumors, and promising results have been observed in clinical and 
preclinical settings.1,13,14 However, targeting immune checkpoints 
to reduce an immunosuppressive microenvironment within 
tumors in combination with other immunotherapies can result 
in dramatically improved antitumor responses.

Programmed Cell Death-1 (PD-1) is expressed on activated 
T cells, B cells and myeloid cells, and can induce inhibition and 
apoptosis of T cells following ligation by programmed death 
ligands-1 or -2, the former of which can be expressed on tumor 
cells. The PD-1 pathway performs a crucial role in the normal 
regulation of immunity, but the utilization of this pathway by 
tumors can inhibit immune control of malignancy. Agents in use 
for blocking the PD-1 pathway include neutralizing antibodies 
and soluble PD-1 ligands (Fig. 1).

Immune therapies used in combination with PD-1 include 
adoptive transfer of tumor-reactive T cells, where enhanced 
tumor localization of T cells was observed together with 
increased inhibition of tumor growth.15 While PD-1 blockade 
can augment passive transfer of immunity, it can also be used 
to enhance endogenous antitumor immune responses as seen in 
studies that combine it with anti-CD137 or tumor cell vaccines 
expressing Flt3L or GM-CSF, which could prolong survival of 
mice16 or even eradicate tumors in some cases.17,18

Therapies targeting PD-1 or CTLA-4 are relatively well 
advanced, but manipulating the tumor microenvironment 
through inhibiting other checkpoints is also demonstrating 
potential for enhancing other immunotherapeutics. Preliminary 
studies suggest blocking TIM3 can enhance cancer vaccine 
efficacy, at least in a prophylactic setting.19

Additional improvements can be achieved by blocking 
multiple checkpoints, as was observed in the study by Curran et 
al.,18 when anti-CTLA-4 was added to the anti-PD-1, anti-PD-L1 
plus Flt3L vaccine treatment regimen. Similarly, when both 
PD-1 and CTLA-4 inhibitory pathways were blocked, a better 
outcome was observed using IL-15 to treat intravenously injected 
CT26 metastatic colon cancer in mice.20 Combining blockade of 
TIM3 and other checkpoints can also have enhanced anti-tumor 

effects.21 Indeed, there is evidence to suggest that further benefit 
can be achieved using more complex combinations. For example, 
optimal effects against melanoma in mice were demonstrated 
when anti-PD-L1 was combined with adoptive transfer of tumor-
specific CD8+ T cells, DC-peptide vaccine, IL-2 and irradiation.22

Some recent clinical trials suggest that not all components 
of combination therapies are necessary. A Phase III clinical 
trial using check-point blockade (Ipilimumab) and/or a gp100 
vaccine resulted in increased median overall survival in patients 
receiving the combined therapy, but this was not greater than 
those receiving Ipilimumab alone.1

Immune inhibition can also be mediated by adenosine generated 
within the tumor microenvironment by the action of CD73. 
Blockade of this immunoregulatory pathway can lead to increased 
activity of adoptively transferred T cells against CD73-expressing 
tumors.23,24 In addition to tumor cells, CD73 can be expressed on 
endothelium, and inhibition of CD73 can increase T cell adhesion 
to endothelial cells and localization to tumors.25

Targeting Regulatory Cells

Many different cells with immunosuppressive potential can 
infiltrate the tumor environment, including M2 macrophages, 
Treg cells, and MDSCs. Suppressive mechanisms employed by 
these cells involve secretion of cytokines (e.g., IL-10 and TGFβ), 
secretion of enzymes (e.g., arginase, NOS and IDO), and 
expression of inhibitory receptors (e.g., CTLA-4 and PD-L1). 
Depleting or modifying these regulatory cells and targeting each 
of the mechanisms they use within the tumor microenvironment 
can reverse immunosuppression (Fig. 1). In combination with 
other immunotherapies, it can lead to enhanced tumor regression.

Blocking differentiation or recruitment. MDSC 
differentiation can be blocked using cyclooxygenase (COX) 
inhibitors, which prevent the production of prostaglandin.26 In 
combination with tumor lysate-pulsed DCs, a COX inhibitor 
could decrease the immunosuppressive function of myeloid cells 
and improve the survival of tumor bearing mice.27 All-trans retinoic 
acids (ATRA) have also been shown to reduce the presence of 
immature MDSC by converting them to non-immunosuppressive 
mature myeloid cells, thereby prolonging the anti-tumor effect of 
cancer vaccines.28 Complete rejection of tumors was also achieved 
when CpG therapy was combined with an antibody blocking 
CCL1, neutralizing de novo conversion of Treg.29

In addition to abrogating the function of regulatory cells by 
blocking their differentiation, accumulation of regulatory cells 
in the tumor microenvironment can be reduced by targeting 
chemokine pathways. CCL2 for instance, is an important chemo-
attractant for myeloid suppressor cells and its neutralization could 
augment the antitumor activity of vaccine30 or adoptive CTL 
transfer.31 Treg recruitment, through CCL17 and CCL22, could 
also be inhibited using a small molecule antagonist of CCR4, 
which led to improved responses to vaccine.32

Blocking immunosuppressive enzymes. The suppressive 
activity of myeloid cells has been associated with the catabolism 
of the amino acids arginine and tryptophan. Arginase (ARG) can 
deplete arginine, and indoleamine 2,3-dioxygenase (IDO) can 
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degrade tryptophan present in the tumor micro-environment.33,34 
Recently, ARG-expressing M2 have been targeted using 
N-hydroxy-L-Arg (NOHA) and survival of sarcoma tumor 
bearing mice have been increased when combined with αOX40 
therapy.35 Both ARG and NOS are blocked simultaneously by 
nitroaspirin or sildenafil (Viagra®). Combined with a tumor 
vaccine or adoptive T cell therapy, these molecules could reduce 
function of MDSC, increase number of tumor infiltrating 
specific CTL36 and improve the survival of tumor-bearing mice.37

Several immunotherapies including the use of vaccines,38–40 
and cytokines41,42 have been improved when used in combination 
with the IDO inhibitor, 1-methyl-tryptophan. Knockdown of 
IDO by small-interfering RNA has also demonstrated the benefit 
of IDO inhibition combined with immunotherapy. Efficacy has 
been demonstrated when it was directly loaded in DCs used as a 
vaccine43 or used in combination with a DNA vaccine encoding 
the tumor-associated antigen HER-2.44

Regulatory cell depletion. Multiple regulatory mechanisms 
within the tumor microenvironment can be targeted 
simultaneously by depletion of subsets of regulatory leukocytes, 
which has been demonstrated to enhance immunotherapy in 
mouse models. Clodronate encapsulated in liposomes is a reagent 

for the depletion of macrophages in vivo. This reagent can deplete 
M2 macrophages and increase the efficacy of therapies including 
anti-angiogenic therapy using anti-VEGF or α-CD137 and CpG 
combination immunotherapy.45,46

Monoclonal antibodies specific for Gr-1 could deplete MDSC, 
and combined with adoptive cell therapy,47 or OVA protein 
based vaccine48 or anti-VEGF antibody therapy49 resulted in an 
enhancement of immunotherapy and regression of established 
tumors. Welford et al. showed that depleting Tie2-expressing 
proangiogenic macrophages from mammary tumors, through 
a suicide gene based strategy, improve the effect of a vascular 
disrupting agent.50

While M2 macrophages and MDSC can be found in large 
numbers in tumors and their immunomodulatory activity is often 
exerted locally within the tumor microenvironment, it is less 
clear where the immunoregulatory activity of Treg is performed 
since it can occur in lymphoid tissue and/or the tumor itself. 
Nevertheless, there are several approaches where depletion of Treg 
in tumors has enhanced immunotherapies. Several investigators 
have shown that depletion of Treg using anti-CD25 antibody 
can enhance the efficacy of a variety of immunotherapies.51–53 
However, the potential benefit of Treg depletion through 

Figure 1. Immune modulators of the tumor microenvironment that enhance cancer immunotherapy. Different therapies are depicted as described in 
the text. aTra, all-trans retinoic acid; IDO, Indoleamine 2, 3-dioxygenase; M1 or M2, M1 or M2 macrophage; MDSC, Myeloid-derived suppressor cell; 
PD-1, programmed cell death protein 1; TLr, Toll-like receptor
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anti-CD25 antibody can be lost by the concurrent elimination 
of activated effector lymphocytes. In the DEREG mouse model, 
Foxp3+ Tregs express a diphtheria toxin receptor and so can be 
selectively eliminated with diphtheria toxin. The use of this 
model has already shown that elimination of Treg in tumors leads 
to tumor infiltration with CD8+ T cells and enhances survival of 
mice when combined with various types of vaccination.54,55

Re-programming immunosuppressive cells. An alternate, 
and more translationally feasible, approach to use instead of 
depleting regulatory cells is to re-program them to circumvent 
immunosuppression. Macrophages possess a certain degree of 
plasticity with regard to phenotype, and it is possible to manipulate 
tumor-associated immunosuppressive M2 macrophages to 
become immunosupportive M1-like. A range of strategies 
including CpG oligodeoxynucleotides combined with anti-IL-10 
receptor and adenoviral delivery of CCL16 chemokine56 or with 
anti-CD40 antibody and chemotherapy57 or with anti-CD40 
and anti-disialoganglioside58 are able synergize in the induction 
of anti-tumor effects and to be associated with repolarization of 
tumor-associated macrophages. Immunotherapy using agonist 
anti-CD40 antibody combined with chemotherapy has shown 
remarkable effects in both mice and patients with pancreatic 
carcinoma by redirecting infiltrating macrophages to anti-tumor 
potential.59

Treg have been recently observed to possess an unexpected 
degree of phenotypic plasticity and could lose their suppressor 
phenotype and become reprogrammed into T helper-like 
cells. Combining IDO inhibitor and an anti-tumor vaccine 
caused upregulation of IL-6 in plasmacytoid DCs and in situ 
conversion of a majority of Tregs to a Th17 phenotype, with 
marked enhancement of CD8+ T cell activation and antitumor 
efficacy.60,61 Furthermore, gemcitabine, in combination with a 
recombinant adenovirus expressing the tumor-associated antigen 
Her-2 and an anti-GITR antibody, was demonstrated to revert 
in vivo Treg immunosuppressive activity, achieving therapeutic 
effectiveness against pre-existing tumors.62

Modifying the Chemokine Profile  
of the Tumor Microenvironment

The cellular composition of tumors is influenced by the 
chemokine profile of the microenvironment. Individual types 
of leukocytes are attracted in response to specific chemokines. 
Manipulation of the chemokine makeup can be used to swing 
the balance of cell types, and their associated molecules, from 
immunosuppressive to immunopotentiating with anti-tumor 
activity. This section of the review highlights the variety of 
chemokines which are being exploited to manipulate and alter 
the microenvironment, and which are then used in conjunction 
with one or more other immunotherapies to improve localization 
of effector lymphocytes to tumors (Fig. 1).

CXCL10 and XCL1, which attract CD8+ T cells, NK cells 
and monocytes, are chemokines used in a number of studies. The 
intratumoral injection of adenovirus- or plasmid-encoded XCL1 
has been combined with a variety of immunotherapies including 
adoptive transfer of effector T cells,63,64 delivery of cytokines such 

as IL-1265,66 or IL-18,67 and DC vaccine.68 Together they caused 
considerable tumor regression or eradicated all tumors, which 
could include non-injected distant tumors, with a role for CD4+ 
and CD8+ T cells together with NK cells identified.

Other chemokines used to attract T cells into tumors include 
CCL5. An oncolytic vaccinia virus encoding CCL5 was given in 
combination with tumor lysate-pulsed dendritic cells to achieve 
greater tumor inhibition.69 CCL2 has also been used to recruit 
T cells to tumor. Two herpes simplex virus vaccines were used 
in one study, one encoding the chemokine CCL2 and the other 
encoding IL-12. Intratumoral injection of these together resulted 
in significant tumor infiltration by CD8+ T cells and enhanced 
inhibition of neuroblastoma.70

Recruitment of DCs and monocytes to tumors can also enhance 
immunotherapy. CCL21 and CCL16 can attract DCs and 
macrophages in addition to T cells. CCL21 injected intratumorally 
in combination with injection of CpG-oligonucleotide71 led to 
tumor inhibition associated with infiltration of CD4+ T cells and 
DCs. CCL16 delivered by adenoviral vector to the tumor has 
been used in combination with CpG and αIL-10 monoclonal 
antibody resulting in 60% of tumors rejecting both primary 
4T1 tumors and distant metastases.56 Macrophages shifted from 
an M2 to M1 phenotype intratumorally and DCs upregulated 
costimulatory molecules, secreting cytokines to stimulate T cell 
proliferation and activation.

Thus, chemokines can be a potent way of changing the cellular 
composition of tumors, although efforts to date have largely 
focused on attracting T cells. Future approaches may employ 
chemokines better suited to recruiting other leukocytes with 
anti-tumor potential. Indeed, harnessing response capabilities 
normally reserved for pathogens through Toll-like receptors 
(TLRs) can be a potent way of attracting a variety of leukocytes 
and triggering changes to the microenvironment.

Danger Signals (TLR)

TLR agonists can trigger broad inflammatory responses that 
elicit rapid innate immunity and promote the activation of the 
adaptive immune reaction.72 Two of the most commonly used 
TLR agonists are Polyinosinic:Polycytidylic Acid [Poly(I:C)] and 
Cytosine-phosphorothioate-guanine (CpG) (agonists for TLR3 
and TLR9 respectively). Intratumoral injection of CpG alone73 or 
in combination with PolyI:C74 enhanced the anti-tumor efficacy 
of adoptive transfer of tumor specific T cells. Stimulation of 
endogenous tumor immunity can also benefit from TLR agonist 
delivery. This was demonstrated using anti-CD137 together with 
local tumor injection of CpG that led to increased expression 
of genes associated with antigen presentation together with an 
increased frequency of tumor-infiltrating T cells, resulting in 
total regression of the majority of established tumors.46 Enhanced 
antigen presentation was also thought to play a role in optimal 
antitumor effects observed when using intratumoral injection of 
CpG and poly(I:C) in combination with intratumoral delivery 
of CD40 ligand.75

Oncolytic viruses are highly immunogenic pathogens able to 
stimulate TLR, and because they infect or replicate predominantly 
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Table 1. examples of strategies for manipulating the tumor microenvironment to enable immunotherapy

Strategy
Microenvironment 

modifier
Additional immunotherapy

Effect within tumor 
microenvironment

Effect on tumor size 
and mouse survival

Ref.

Check point 
inhibitors

PD-1 and CTLa-4 
blockade

anti-PDL1 plus vaccination 
with irradiated B16 

tumor expressing Flt3L

Increased infiltration 
of T cells into tumor, 

IFNγproduction, 
and ratio of effector 

T cells to MDSCs

65% rejection of 
s.c. B16 tumors.

18

anti-CD73 aCT of tumor-specific CTL

enhanced accumulation 
of effector T cells in 

tumor, due to restored 
T cell adhesion 

and homing.

Delayed tumor growth 
and enhanced survival 

of mice bearing s.c. 
B16-SIy tumors.

25

Depletion of 
regulatory cells or 
inhibition of their 

suppressive effects

aT38 (blocks 
peroxynitrite 
produced by 

MDSCs)

aCT of tumor-specific CTL

reduction in intratumoral 
nitrotyrosines and 

N-CCL2 expression, 
enhanced expression 

of CCL2, induced 
T cell infiltration.

rejection of 60% of s.c. 
eG7-Ova and > 70% of 
s.c. MCa-203 tumors.

31

Treg blockade 
with anti-CCL1

CpG-ODN
Decreased Treg 

numbers, increased 
tumoricidal T cells.

Complete tumor 
rejection in mice bearing 

s.c. TUBO tumors.
29

IDO inhibitor of 
Treg suppressive 

function
IL-12 + GM-CSF microspheres

Transient reduction 
in Tregs, and increase 
in ratio of CD8+ to T 

suppressor cells.

Tumor rejection 
in 45% of mice 

bearing metastatic 
intramammary 

4T1 tumors.

41

Modifying 
chemokine profile

Oncolytic 
vaccinia virus 

expressing CCL5
Tumor lysate-pulsed DCs

enhanced homing 
of CD4+ and CD8+ 
T cells and NK cells, 

increased IL-12.

Delayed tumor 
growth of s.c MC38 

tumors and enhanced 
survival of mice.

69

adenovirus 
expressing CCL16

CpG plus anti-IL-
10r antibody

accumulation of 
macrophages and 
DC intratumorally, 

reversing their immuno-
suppression, enhanced 

TNF and IL-12 production.

eradication of most 
tumors in mice bearing 
s.c tumors of TSa (90%), 

4T1 (60%) or MC38 (74%).

56

Inflammatory 
mediators and Toll-

like receptor agonists

Oncolytic 
vaccinia virus

anti-CD137 agonist antibody
Increased infiltration 

of CD8+, NK cells 
and neutrophils.

Tumor eradication in 
> 35% of mice bearing 

s.c. aT3 tumors.
77

HSv-TK retrovirus 
adhering to T cells

aCT of tumor-specific 
CTL + gancyclovir + 
lympho-depletion

Tumor heparanase 
expression ensured 
specific delivery of 
retroviral particles. 
Maximum number 
of T cells in tumor 

occurred at 72–96h.

90% survival of s.c. 
B16-Ova bearing mice 
when low numbers of 

T cells transferred.

81

Manipulating 
cytokines

IL-12 transgene 
in T cells

aCT of tumor-specific 
CTL + lymphodepletion

reversed suppression 
of MDSCs and other 

immuno-suppressive 
myeloid cells in tumor.

20–40% survival of mice 
bearing s.c. B16 tumors.

96,97

TGFβ inhibitor in 
liposomal gel (nLG)

IL-2 in nLG
Increased infiltration of 
NK cells and activated 

CD8+ T cells

40% survival of 
mice bearing s.c. 
B16F10 tumors

90

a variety of agents can be used to modify the tumor microenvironment as listed. Together with additional immunotherapies, effective anti-tumor 
responses can be mediated.
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in tumor cells, much of their activity is localized to tumor. They 
can induce inflammatory mediators attracting myeloid cells and 
lymphocytes.76 In addition, they can lyse a proportion of tumor 
cells, thereby releasing immunogenic antigens. In one study, 
oncolytic vaccinia virus was injected into subcutaneous tumors 
and combined with intraperitoneal delivery of anti-CD137. This 
combination therapy resulted in increased tumor infiltration by 
NK cells, neutrophils, and CD8+ effector T cells and enhanced 
inhibition of tumor growth and survival of mice.77

There are many other strains of oncolytic virus under 
development that may induce novel and desirable changes to the 
microenvironments of tumors in various locations. For example, 
oncolytic myxoma virus when injected intratumorally and 
combined with adoptively transferred tumor-specific T cells was 
demonstrated to lead to enhanced survival of mice with syngeneic 
B16-SIY melanoma brain tumors.78

In addition, studies have shown that loading antigen-specific 
T cells with viruses such as the vaccinia virus or vesicular 
stomatitis virus, have led to more efficient delivery of virus to 
tumor, resulting in increased T cell localization and activation, 
associated with effective tumor regression, and significantly 
increased survival.79,80 The ability of retroviral particles to 
adhere to the surface of T cells was utilized enabling viruses 
encoding IL-12 or Herpes simplex thymidine kinase (HSVtk) to 
“hitchhike” on antigen-specific T cells, which were delivered by 
adoptive transfer. Between 5–14% of the injected dose localized 
to the tumor, curing 60–90% of mice carrying B16-OVA 
tumors.81 Further elegant strategies like these may lead to more 
specific and effective delivery of both TLR agonists and other 
immune modulators to tumors.

Thus oncolytic viruses can trigger immunogenic cell death 
and inflammation that can lead to an enhanced immune 
response against cancer. Immunogenic cell death can also be 
mediated by triggering death receptors on tumor cells. Targeting 
one such receptor, using anti-DR5, on a variety of mouse tumors 
can synergize with immunotherapies that augment antigen 
presentation (CD40) and T cell costimulation (CD137/4–1BB) 
to eradicate established tumors.82 Recent investigations also 
demonstrate that targeting DR5 can have profound effects on 
the tumor microenvironment by disrupting tumor vasculature, 
although this specific feature has not been investigated in 
combination with additional immunotherapy.83

Manipulating Cytokines  
in the Tumor Microenvironment

The cytokine content of the microenvironment can influence 
the balance of immunosuppressive and immunosupportive 
factors within tumors. Many types of immunotherapy can 
benefit from co-administration of cytokines, but delivery 
is often systemic making it difficult to distinguish between 
contributions from microenvironment modification and systemic 
immune modification. However, some studies have directed 
cytokines specifically to tumors and demonstrated changes 

to the microenvironment and increased efficacy of additional 
immunotherapeutic agents. For example, T cell-mediated 
production of IL-12 within tumors has been demonstrated to 
reprogram immunosuppressive leukocytes to enable tumor 
destruction by adoptively transferred T cells.84,85 Localized 
delivery of IFNα to tumors has also been demonstrated to enhance 
immunotherapies using a DC vaccine or agonist anti-CD137 
antibody.86,87

TGFβ secretion within tumors can suppress the antitumor 
activity of leukocytes in the tumor microenvironment. Thus 
various inhibitors have been used in cancer therapy to block 
TGFβ and lift immunosuppression, while simultaneously 
delivering other immunotherapies to eradicate the tumor.88 For 
example, TGFβ was inhibited by intratumoral injection of two 
inhibitory peptides which were combined with simultaneous 
i.t. injections of poly(I:C) and α-CD40 antibody.89 The TGFβ 
inhibited was mainly that produced by Tregs rather than tumor 
cells, leading to 70% rejection of tumors in mice. Another 
innovative method of TGFβ inhibition involved nanoscale 
liposomal polymeric gels releasing a TGFβ inhibitor that, 
when combined with IL-2, significantly delayed B16 tumor 
growth in mice.90 There were significantly increased numbers of 
intratumoral NK cells (required for maximal tumor regression) 
and intratumoral infiltration of activated CD8+ T cells, in 
parallel with demonstration of localized therapy and drug to the 
tumor.

Concluding Remarks

Thus, there are a variety of strategies that can be used 
to modify the tumor microenvironment to render it less 
immunosuppressive and enable additional immunotherapies 
(Table 1). The majority of the above studies were preclinical in 
mice, which allowed interpretation of mechanistic contributions 
to therapy, but these types of combination therapies are gaining 
momentum in the clinic.91,92

Checkpoint blockade has been used in combination with other 
immunomodulators, and benefit to patients demonstrated.93 
However, most clinical studies using combinations of 
immunotherapeutic agents have been early stage trials and 
mechanistic insight into the relative roles of immunomodulation 
and microenvironment modulation has not been possible. 
Nevertheless, there is much excitement in the use of combination 
therapy with remarkable response rates reported in a recent 
clinical study by combining anti-CTLA-4 and anti-PD1.94 More 
complex combinations are possible,95 although careful evaluation 
of potential toxicities prior to commencing clinical trial is crucial 
to the safety of these studies.

In summary, immunotherapy of cancer can induce anti-tumor 
responses, although these responses are not often complete. The 
immunoregulatory nature of the tumor microenvironment can 
inhibit fully effective immune responses against cancer, and 
modulation of the microenvironment can enhance the efficacy of 
immunotherapy to achieve eradication of tumors.
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