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ABSTRACT

In prokaryotes, a major contributor to genomic evolution is the exchange of genes via horizontal gene transfer (HGT). Areas
with a high density of HGT networks are defined as genetic exchange communities (GECs). Although some phenotypes
associated with specific ecological niches are linked to GECs, little is known about the phenotypic influences on HGT in
bacterial groups within a taxonomic family. Thanks to the published genome sequences and phenotype data of lactic acid
bacteria (LAB), it is now possible to obtain more detailed information about the phenotypes that affect GECs. Here, we have
investigated the relationship between HGT and internal and external environmental factors for 178 strains from 24 genera
in the Lactobacillaceae family. We found a significant correlation between strains with high utilization of sugars and HGT
bias. The result suggests that the phenotype of the utilization of a variety of sugars is key to the construction of GECs in this
family. This feature is consistent with the fact that the Lactobacillaceae family contributes to the production of a wide variety
of fermented foods by sharing niches such as those in vegetables, dairy products and brewing-related environments. This
result provides the first evidence that phenotypes associated with ecological niches contribute to form GECs in the LAB
family.
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INTRODUCTION

Horizontal gene transfer (HGT) is an evolutionary process
that allows for the spread of genetic innovations between dis-
tantly related organisms (Andam and Gogarten 2011). Among
microorganisms, HGT plays a major role in the rapid sharing

of biological features (Andam and Gogarten 2011) and can
result in large changes to the genome size (Zimmer and Emlen
2016). Variability in the genome size is also frequently observed
among closely related strains (Canard and Cole 1989; Daniels
1990; Tanskanen et al. 1990; Prevost et al. 1992; Harsono et al.
1993), and this can also be caused by HGT (Bergthorsson and
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Ochman 1995; Bobay and Ochman 2017). When such transfer
is described as networks (Puigbò et al. 2010), the HGT bias by
preferences for transfer partners results in high-density regions
in the networks, defined as genetic exchange communities
(GECs; Skippington and Ragan 2011). GECs often occur in shared
ecological niches, characterized by symbiotic interactions and
phylogenetic closeness (Andam and Gogarten 2011).

GECs in shared ecological niches influence microbial evolu-
tion, as they provide a selective advantage to microbes, which
then allows for their expansion into new ecological niches
(Swithers et al. 2012; Soucy et al. 2015). However, this compli-
cates the evolution or adaptation within the same GECs (Polz
et al. 2013). Ragan and Beiko (2009) suggested that the habitats
of donors and recipients are key limitations for HGT, we need
to further investigate the impacts of how environmental range
constrains HGT, as it may have thus far been underestimated.

To better understand the influence of ecological niches on
HGT, the relationship of the microorganism’s phenotypes to
environmental adaptation should be investigated. Phenotypes
such as those for resource utilization enable microbes to survive
in a variety of environments and thus help define the range of
the microbes’ habitat (Chen et al. 2021). Jain et al. (2003) investi-
gated the internal and external environmental factors that regu-
late HGT in eight bacterial and archaeal genomes. They reported
that HGT occurs among organisms that share similar factors
including host phenotype, such as carbon utilization and oxy-
gen tolerance. Their analyses provided evidence for the effects
of GECs in ecological niches on prokaryote evolution. However, it
is unclear if this tendency is applicable to GECs formed by bacte-
rial groups of same family in particular ecosystem niches. This
is because the HGT among related bacterial groups is affected
not only by the bias of the ecological niche they share but also
the bias of their closely related partners with whom they prefer-
entially exchange genes (Andam and Gogarten 2011; Soucy et al.
2015). To clarify this point in more detail, a comparative anal-
ysis using a large amount of phenotypic and genomic data for
related species is required.

Here, we have investigated the genomic and phenotypic fea-
tures for 178 strains of 24 genera from the Lactobacillaceae fam-
ily to clarify factors contributing to the formation of GECs. Lac-
tic acid bacteria (LAB) produce lactic acid by fermenting car-
bohydrates and inhabit specific ecological niches, such as fer-
mented milk products, meats, cereals and vegetables (Caplice
and Fitzgerald 1999). The genus Lactobacillus has recently been
reclassified into 25 genera by Zheng et al. (2020), and provides an
adequate sandbox to study the influence of ecological niches on
HGT in relation with phenotypes, ecologies and genotypes. Their
phenotypes such as sugar utilization, growth temperature and
oxygen tolerance have been well investigated and documented
(Holzapfel and Wood 2014).

MATERIALS AND METHODS

Genome sequences of Lactobacillaceae family and their
features

The genome sequences and genomic features of 178 strains,
previously identified as the genus Lactobacillus, were retrieved
from the DFAST Archive of Genome Annotation (https://dfast.ni
g.ac.jp/genomes/; Tanizawa et al. 2016) database. A total of six
genomic features (genome size, number of coding sequences
(CDS), GC content, number of genes encoding rRNAs, number
of genes encoding tRNAs and number of CRISPRs) were used in
this study.

The sequences for the 16S rRNA genes were obtained
from EZBioCloud (https://www.ezbiocloud.net/resources/16s d
ownload). A total of six phenotypic data of these strains (the
number of sugars they can metabolize (sugar utilization value),
growth at 15◦C, growth at 45◦C, microaerobic growth, faculta-
tively anaerobic growth and obligate anaerobic growth) were
obtained from the book ‘Lactic Acid Bacteria: Biodiversity and
Taxonomy (Holzapfel and Wood 2014).’ Isolation sources for the
Lactobacillaceae family were obtained from the paper of Zheng
et al. (2020). Table S1 (Supporting Information) shows the corre-
spondence between old and new species names, genomic fea-
tures, phenotypic features and isolation sources.

HGT analysis

Genes acquired via HGT were predicted by the DarkHorse v2.0
(Podell and Gaasterland 2007) and COLOMBO v4.0 analysis with
SIGI-HMM (Waack et al. 2006). DarkHorse and COLOMBO were
run with default parameters. The CDSs were judged as HGT
when their lineage probability index was ≥ 0.5 (DarkHorse) or
annotation was PUTAL (COLOMBO).

Construction of the Lactobacillaceae family phylogenetic
tree

Phylogenetic trees for the 178 strains was constructed based on
the 16S rRNA gene and the genes clustered by ortholog analysis.
To generate the phylogenetic tree, MUSCLE, Multiple Sequence
Alignment (Edgar 2004) and the neighbor joining method (Saitou
and Nei 1987) were implemented and performed using the pro-
gram MEGA (Kumar et al. 2018). The 16S rRNA tree was annotated
using iTOL (Letunic and Bork 2007).

Multiple regression analysis between size of genome or
number of HGT genes and Lactobacillaceae family
features

Multiple regression analysis was performed using the python
package Statsmodels (https://www.statsmodels.org/stable/).
Dummy variables (1 for yes and 0 for no) were used for the
following five features: growth at 15◦C, growth at 45◦C and
growth in microaerobic, facultatively anaerobic and obligate
anaerobic conditions. For the strains with missing phenotypic
data, average values from all the other strains were assigned.
All explanatory variables were normalized using a Z score
transformation.

Ortholog analysis

Orthologs for 178 strains of Lactobacillaceae family were obtained
using SonicParanoid software (Cosentino and Iwasaki 2019) with
the default parameters. Strain-specific genes were discarded.

Core- and accessory-genome computation and COG
assignment

For core- and accessory-genome analysis, we used clusters of
orthologous group (COG) functional categories to classify the
functions of the gene clusters for the 178 genomes of Lac-
tobacillaceae family (http://www.ncbi.nlm.nih.gov/COG/). Using
ortholog analysis data with COG annotation, we determined the
core- and accessory-genomes based on the method described
by Satti et al. (2018). The method selects an appropriate n-core

https://dfast.nig.ac.jp/genomes/
https://www.ezbiocloud.net/resources/16s_download
https://www.statsmodels.org/stable/
http://www.ncbi.nlm.nih.gov/COG/


Takenaka et al. 3

which is the set of genes conserved in n% of the genomes based
on the COG information for the orthologs. We created 10 n-cores
from 100- to 91-core, and finally the 97-core was selected as the
core-genome for this analysis.

Calculation of average of sugar utilization for the
orthologs

To estimate the characteristics for each ortholog, we calculated
the average number of metabolizable sugars of strains for each
ortholog cluster as the Average number of Sugar Utilization for
the ortholog (ASU). Statistically meaningful orthologs were cho-
sen based on their ASU as their standard deviation is more/less
than 1 from the average of sugar utilization value in the 178
strains. The COG number for the chosen orthologs were counted
and the ratio of each group was statistically analyzed using a
t-test and Benjamini–Hochberg correction for multiple compar-
isons, using the Python package Statsmodels (https://www.stat
smodels.org/stable/).

Construct networks of sharing ortholog

A network graph was constructed for the selected orthologs
using ASU value. Each of the 178 nodes represents a genome
of Lactobacillaceae family and an edge was created between two
genomes when the number of shared orthologs was more than
five. Community extraction and visualization were performed
with the Python package NetworkX (https://networkx.org/) and
with CytoScape (version 3.8.2; Smoot et al. 2011), respectively.

RESULTS

Relationship among the phylogenetic, genomic and
phenotypic features in 178 strains from the
Lactobacillaceae family

We first examined the phenotypic and genomic features of each
of the 178 strains and mapped them onto a phylogenetic tree
(Fig. 1). A total of six phenotypes were assessed: two condi-
tions for temperature required for bacterial growth (ability to
grow at 15 and 45◦C), three conditions for oxygen tolerance
(microaerobic, facultatively anaerobic and obligate anaerobic)
and the sugar utilization value (the number of sugars each strain
can metabolize). Of the 178 strains, 56.8% grew at 15◦C and
33.3% grew at 45◦C. Among these strains, 8.3%, 81.9% and 9.8%
were microaerobic, facultatively anaerobic and obligate anaer-
obic, respectively. Sugar utilization values ranged from 0 to 17
(excluding glucose), and the average for all strains was 6.83. For
the genomic feature, we investigated the number of total CDS for
each strain and estimated the number of CDS gained via HGT.
The total number of CDS for each of the 178 strains ranged from
1191 to 3600. Since the total number of CDS and the genome
size were strongly correlated (R = 0.976), they were treated as
interchangeable information in this analysis. The number of
CDS gained via HGT ranged from 17 to 342 (Table S1, Support-
ing Information), and indicated a weak correlation with genome
size (R = 0.394) and the total number of CDS (R = 0.424).

Variation was observed in the phenotypic features of the
groups clustered by the phylogenetic tree (Fig. 1). In particular,
the sugar utilization values varied even within the same genus.
For example, in the group for the genus Lactobacillus, although
Lactobacillus iners had the lowest sugar-type utilization profile of
0, Lactobacillus hamster could utilize 14 kinds of sugar. In addition,
the sugar utilization values of the Ligilactobacillus genus ranged

from 1 to 15 and that of the Limosilactobacillus genus ranged from
1 to 16.

The correspondence between the numbers of CDS in a
genome and the sugar utilization values were observed (Fig. 1).
The tendency was remarkable in the clusters for the genera Lig-
ilactobacillus, Lacticaseibacillus, Limosilactobacillus, Apilactobacillus,
Fructilactobacillus and Secundilactobacillus. For example, Lacticas-
eibacillus manihotivorans, Lacticaseibacillus saniviri, Lacticaseibacil-
lus casei and Lacticaseibacillus paracasei ssp. paracasei had high
numbers of CDS and high sugar utilization values, while Lacti-
caseibacillus nasuensis, Lacticaseibacillus thailandensis and Lacticas-
eibacillus brantae had low numbers of CDS and low sugar utiliza-
tion values.

Influence of phenotypic features on genome size and
number of HGT genes

To confirm the relationship between genomic features and sugar
utilization suggested in Fig. 1, the following multiple regression
analyses were performed. The six phenotypic (sugar utilization
value, growth at 15◦C, growth at 45◦C and growth in microaer-
obic, facultatively anaerobic and obligate anaerobic conditions)
and four genomic features (G/C content, number of rRNA genes,
number of tRNA genes and number of CRISPRs) were subjected
to multiple regression analysis as explanatory variables (Table
S1, Supporting Information).

The genome sizes of 178 strains in Lactobacillaceae family
were set as the objective variable. The six phenotypic features
and the four genomic features were set as the explanatory vari-
ables. The coefficient of determination (R2) obtained was 0.484,
and the correlation coefficient (R) was 0.696. For sugar utilization
values, growth at 15◦C, growth at 45◦C, G/C content and number
of CRISPRs, P-value was < 0.05. The coefficient of growth at 45◦C
was negative and that of G/C content, growth at 15◦C and num-
ber of CRISPRs were positive. The sugar utilization value had the
largest coefficient among these factors (Fig. 2A).

CDS that were transferred from other taxa (HGT gene) were
also set as an objective variable and the ten factors used to ana-
lyze the genome size were set as explanatory variables. As a
result, the coefficient of determination (R2) obtained was 0.298,
and the correlation coefficient (R) was 0.546. For both the sugar
utilization value and the G/C composition, P value was < 0.05
and they had a positive correlation (Fig. 2B).

COG ratios of orthologs in the core- and
accessory-genome

Hereafter, we detected HGT among strains in Lactobacillaceae
family by the combination of ortholog and network analy-
ses (see Methods), because the above methods (DarkHorse
and COLOMBO software) are suitable only for detecting HGTs
between distantly related organisms.

To understand the characteristics of HGT genes in Lactobacil-
laceae family, we focused on ”accessory genomes’. The variable
portion of the genome that is present between individual strains
is often called the ‘accessory genome’ and differs from the core
genome (Sim et al. 2008). Here, we compared the functions in
accessory genomes except strain-specific singletons to the func-
tions in core genomes.

To classify all genes into core and accessory genomes, we
first conducted an ortholog analysis for the CDS present in
the 178 strains and found that the 384 737 putative protein
sequences were grouped into 12 884 ortholog clusters. The core-
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Figure 1. Phylogenetic tree based on the 16S rRNA genes of the LAB strains with the phenotypic and genomic features identified. The inner band shows species colored

by genus. The next five symbols show phenotypic characteristics for each LAB strain; first inward-facing triangle indicates the growth at 15◦C, second outward-facing
triangle indicates the growth at 45◦C, third star indicates the micro aerophilic, fourth red inward-facing indicates facultatively anaerobic and fifth circle indicates
obligate anaerobic. A filled symbol means the strain has the phenotype, and an open symbol means that it does not. A blank means that there is no relevant information
available. The next red band shows the number of sugar types that can be utilized. The outer bands show the number of coding sequences (CDS) for each strain: navy

blue indicates the estimated number of CDS acquired by the horizontal gene transfer (HGT) and light blue indicates the number of native CDS.

and accessory-genomes were determined using the COG assign-
ment of each ortholog. The number of core-genes and accessory
genes corresponded to 532 and 12 352 ortholog clusters, respec-
tively. The COG ratios of the core- and accessory-genomes were
quite different (Fig. 4). Metabolism related genes were enriched
in the accessory genomes.

Ortholog features shared by generalists or specialists
for sugar utilization

To confirm that sugar utilization values influence HGT bias, the
functions of two groups of orthologs were compared, i.e. the
orthologs shared dominantly by strains which were able to use
a variety of sugars (generalist) and those that use only few sug-
ars (specialist). Here, we introduce the concept of the ASU value
to extract generalist and specialist group orthologs (see mate-
rial and method). The overall average and standard deviation of
the sugar utilization values in all 178 strains were calculated.
The ortholog clusters were selected when they had ASU values
that were more or/less than the mean ± one standard devia-
tions and they were designated as generalist/specialist group
orthologs (Fig. 3). The generalist group orthologs tended to be
shared by more strains.

The ratio of the COG functions between the generalist and
specialist group orthologs showed no significant differences
(Fig. 4 and Table 1). The result suggests that the genes are
acquired neutrally in HGT, regardless of the phenotypic differ-
ence between generalist and specialist.

Among the orthologs shared by the generalists for sugar uti-
lization, some genes were found to be involved in adaptations to
various niches (Table S3, Supporting Information). Some exam-
ples are as follows. Cell division protein FtsK (Diez et al. 2000),
xenobiotic response element (XRE) family transcriptional reg-
ulator (Hu et al. 2018), and phenolic acid-responsive transcrip-
tional regulator (PadR) family (Gury et al. 2004) are related to
stress responses. Bacteriocin precursor peptides PlnE and PlnF
(Anderssen et al. 1998) are related to bacteriocin production.
The multiple antibiotic resistance protein (MarR) family tran-
scriptional regulator (Silva et al. 2018) is related to antibiotic
resistance. Peptide methionine sulfoxide reductase (Walter et al.
2005) is related to survival in the intestinal environment. Mer-
curic resistance operon regulatory protein (MerR) family tran-
scriptional regulator (Brown et al. 2003) and arsenical resistance
operon repressor (ArsR) family transcriptional regulators (Wu
and Rosen 1991) are related to heavy metal resistance. L-fucose
isomerase is involved in the carbohydrate metabolism of bacte-
ria (Seemann and Schulz 1997).
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Figure 2. Values of the coefficients of the multiple aggression analysis for (A) genome size and (B) the number of CDS judged to be HGTs. The genome size or number

of CDS judged to be HGTs was set as the objective variable, and the six phenotypic features (sugar utilization value, growth at 15◦C, growth at 45◦C, microaerobic,
facultatively anaerobic and obligate anaerobic) and four genomic features (G/C content, number of rRNAs, number of tRNAs and number of CRISPRs) were subjected
to multiple regression analysis as explanatory variables. ∗ indicates a P-value ≤ 0.05.

In the phylogenetic trees, some of these genes conflicted
with their original lineages that were found in the general-
ist group orthologs. Conflicting trees suggests HGT events. For
instance, there were conflicts for the XRE family transcriptional
regulator, integral membrane protein PlnU, MerR family tran-
scriptional regulator, L-fucose isomerase and the MarR family
transcriptional regulator (Figure S1, Supporting Information).

The network of orthologs shared by strains with high
sugar utilization

We constructed networks for the shared orthologs among the
178 strains in the 24 genera to identify the influence of sugar
utilization on the GECs for different ecological niches (Fig. 5).
There were 178 nodes to represent each genome, which were
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Figure 3. ASU value and number of strains for each ortholog. The vertical axis indicates the number of strains in each ortholog, and the horizontal axis indicates

the ASU value for each ortholog. We introduced the concept of ASU (Average of Sugar Utilization for the Ortholog) value. For example, two sequences derived from
strains A and B that were clustered as an ortholog, then their ASU value was calculated as the average sugar utilization value for A and B. We also calculated the
overall average and standard deviation of the sugar utilization value in 178 strains, then ortholog clusters were chosen when their ASU values were more/less than
the means ± one standard deviation. The orthologs with high ASU values are designated as generalist group orthologs (red dots) and the low group are designated as

specialist group orthologs (blue dots). Core genes from the 178 LAB strains are indicated as green dots. The top and side histograms show the number of orthologs on
each axis.

Figure 4. The clusters of orthologous group (COG) ratios for each group of orthologs. The COG ratios of the core genome, accessory genome, generalist group orthologs
and specialist group orthologs are displayed. [J] Translation, ribosomal structure and biogenesis, [A] RNA processing and modification, [K] Transcription, [L] Replication,
recombination and repair, [B] Chromatin structure and dynamics, [D] Cell cycle control, cell division and chromosome partitioning, [Y] Nuclear structure, [V] Defense
mechanisms, [T] Signal transduction mechanisms, [M] Cell wall/membrane/envelope biogenesis, [N] Cell motility, [Z] Cytoskeleton, [W] Extracellular structures, [U]

Intracellular trafficking, secretion and vesicular transport, [O] Post-translational modification, protein turnover and chaperones, [X] Mobilome: prophages and trans-
posons, [C] Energy production and conversion, [G] Carbohydrate transport and metabolism, [E] Amino acid transport and metabolism, [F] Nucleotide transport and
metabolism, [H] Coenzyme transport and metabolism, [I] Lipid transport and metabolism, [P] Inorganic ion transport and metabolism, [Q] Secondary metabolites

biosynthesis, transport and catabolism, [R] General function prediction only and [S] Function unknown. Orthologs not assigned COG are indicated in gray color. In the
accessory genome, more metabolism-related genes such as ‘carbohydrate transport and metabolism’ (G), ‘amino acid transport and metabolism’ (E), ‘transcription’
(K) and ‘defense mechanisms’ (V) were enriched than in the core genome. On the other hand, ‘translation, ribosomal structure and biogenesis’ (J) and ‘replication,
recombination and repair’ (L) were lower than in the core genome.
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Table 1. T-test and Benjamini–Hochberg method to compare the functional ratio of COG for each group. The right side of the table indicates
the P-value for the t-test to compare each COG ratio between all combinations to choose two from three groups (accessory genome, generalist
group orthologs and specialist group orthologs). The left side of the table indicates the Boolean values of the Benjamini–Hochberg correction
at a 0.05 false discovery rate (FDR) level. Significant differences indicate TRUE.

P-value t-test and Benjamini–Hochberg method

COG
All accessory vs

generalist
All accessory vs

specialist
Generalist vs

specialist
All accessory vs

generalist
All accessory vs

specialist
Generalist vs

specialist

J 0.326 101 0.114 384 0.32 189 FALSE FALSE FALSE
A 0.770 197 0.86 256 ND FALSE FALSE FALSE
K 0.660 644 0.001 324 0.005 024 FALSE TRUE FALSE
L 0.016 087 0.454 098 0.458 151 FALSE FALSE FALSE
B ND ND ND FALSE FALSE FALSE
D 0.233 915 0.902 782 0.498 252 FALSE FALSE FALSE
Y ND ND ND FALSE FALSE FALSE
V 0.253 986 0.908 512 0.590 247 FALSE FALSE FALSE
T 0.546 536 0.086 224 0.073 969 FALSE FALSE FALSE
M 0.609 181 0.285 109 0.484 595 FALSE FALSE FALSE
N 0.330 625 0.666 394 0.873 454 FALSE FALSE FALSE
Z ND ND ND FALSE FALSE FALSE
W 0.795 567 0.973 348 0.906 121 FALSE FALSE FALSE
U 0.164 648 0.519 524 0.133 258 FALSE FALSE FALSE
O 0.74 121 0.073 661 0.129 009 FALSE FALSE FALSE
X 0.003 727 0.155 424 0.688 248 FALSE FALSE FALSE
C 0.115 125 0.690 668 0.197 208 FALSE FALSE FALSE
G 0.971 753 0.014 538 0.025 503 FALSE FALSE FALSE
E 0.000 799 0.679 508 0.012 048 TRUE FALSE FALSE
F 0.062 515 0.913 128 0.279 673 FALSE FALSE FALSE
H 0.002 552 0.136 954 0.679 383 TRUE FALSE FALSE
I 0.018 139 0.633 887 0.046 447 FALSE FALSE FALSE
P 0.275 201 0.034 176 0.140 896 FALSE FALSE FALSE
Q 0.159 491 0.383 424 0.094 268 FALSE FALSE FALSE
R 0.149 804 0.147 752 0.581 598 FALSE FALSE FALSE
S 0.145 587 0.624 075 0.713 207 FALSE FALSE FALSE
Not assigned 0 0 0.804 117 TRUE TRUE FALSE

Figure 5. The networks for the generalist and specialist group orthologs. Each of the 178 nodes represents an LAB genome, which are colored and numbered by genus.
Edges of dotted-red/solid-blue were created between two genomes when the number of sharing generalist/specialist group orthologs was more than five.
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color-coded according to the 24 genera. An edge was gener-
ated between two genomes when they shared more than five
orthologs of the generalist group or specialist group for sugar uti-
lization. A dense network indicates that the community forms
a GEC or has conserved genes inherited from their ancestors.
There were no edges identified in this investigation among the
following genera Bombilactobacillus, Amylolactobacillus, Paralacto-
bacillus, Holzapfelia, Dellaglioa, Furfurilactobacillus and Lentilacto-
bacillus.

While the networks of orthologs predominantly shared by
the specialist groups for sugar utilization were connected only
between the same genera, the networks of the generalist groups
were connected across genera. The networks of specialists
were made by strains from Lactobacillus, Loigolactobacillus, Api-
lactobacillus, Fructilactobacillus and Secundilactobacillus indepen-
dently. The generalist networks connected Lactobacillus, Loigolac-
tobacillus, Lapidilactobacillus, Schleiferilactobacillus, Agrilactobacil-
lus, Liquorilactobacillus, Lacticaseibacillus, Lactilactobacillus, Lacti-
plantibacillus, Companilactobacillus, Paucilactobacillus, Secundilacto-
bacillus and Levilactobacillus.

In the generalist networks, the edges were connected
between distant strains isolated from similar environments.
As a result of community extraction, the number of commu-
nities was 51, the maximum number of strains in the com-
munity was nine and the minimum value was two (Table
S2, Supporting Information). Communities were often formed
from groups of the following three genera, Schleiferilactobacil-
lus, Lacticaseibacillus and Lactiplantibacillus, or four when Agri-
lactobacillus was added. For example, a community was formed
by Schleiferilactobacillus harbinensis, Schleiferilactobacillus perolens,
Lactiplantibacillus paraplantarum, Lacticaseibacillus rhamnosus, L.
casei and Agrilactobacillus composti that were isolated from veg-
etables and brewing-related environments (Table S1, Support-
ing Information; Zheng et al. 2020). In addition, some com-
munities amongst the genus Lactiplantibacillus and Liquorilacto-
bacillus were identified. All members of a community between
Liquorilactobacillus nagelii, Lactiplantibacillus paraplantarum and
Lactiplantibacillus plantarum ssp. plantarum, were isolated from
dairy products (Table S1, Supporting Information; Zheng
et al. 2020).

The analysis method aimed to select high ASU value
orthologs, and as a result, strains with low sugar utilization val-
ues tended not to be included in the generalist networks. For
example, the genus Lacticaseibacillus, L. nasuensis, L. thailandensis
and L. pantheris were not included in the generalist network, and
neither were L. nasuensis and L. thailandensis which have small
sugar utilization values. Moreover, for the genus Latilactobacil-
lus, all strains except for L. skei ssp carnosus and L. fuchuensis had
relatively low sugar utilization values and were not included in
the network.

Despite this, the generalist network includes strains with low
sugar utilization values. In these cases, the strains were con-
nected to closely related strains with high values. For exam-
ple, while L. brantae had a low sugar utilization value, it shared
generalist group orthologs with Schleiferilactobacillus harbinen-
sis, Schleiferilactobacillus shenzhenensis and L. saniviri. L. brantae
is closely related to L. saniviri which had a high sugar utiliza-
tion value. In addition, Lactobacillus paracasei and L. paracasei ssp.
Tolerans were also included in the generalist network, although
they had low sugar utilization values, and were closely related
to L. paracasei ssp. paracasei which had a high sugar utilization
value.

DISCUSSION

In this study, we investigated the influence of genomic and phe-
notypic features on the construction of ecological GECs for Lac-
tobacillaceae family. A total of six phenotypes and seven genomic
features were investigated to identify which factors influenced
HGT bias. Mapping the obtained data to a phylogenetic tree sug-
gested that there were relationships between the phenotypes
and genomic features (Fig. 1). Multiple regression analyses were
performed to identify which genomic and phenotypic factors
had the most significant effects on HGT (Fig. 2). The networks
of orthologs were analyzed to identify how the phenotypes con-
tributed to the formation of GECs (Fig. 5). These results sug-
gested that the ability to utilize a variety of sugars contributed
to increased HGT and the formation of GECs in the ecological
niches among the genera. These results will help to improve our
understanding of the evolution of related bacteria in ecological
niches.

HGT tends to occur among prokaryotes that share similar
phenotypes, as they live in the same environment (Jain et al.
2003). For example, many bacteria in the order Thermotogales
of the Thermotogae which is composed mostly of thermophilic
bacteria and in the class Clostridia which is included in the
phylum Firmicutes, share ecological niches and genes, probably
because they share thermophilic features (Andam and Gogarten
2011). These reports suggest that some phenotypes contribute to
the sharing of ecological niches and the formation of GECs. Our
study showed that this tendency can apply to bacterial groups
within the Lactobacillaceae family and revealed that the utiliza-
tion of a variety of sugars highly influenced the construction of
GECs across genera to share niches such as vegetables, dairy and
brewing-related environments (Fig. 5; Tables S1 and S2, Support-
ing Information).

The phenotypes for carbon utilization and oxygen toler-
ance were previously shown to influence HGT (Jain et al. 2003).
The results of this investigation did not support this, however.
Rather, sugar utilization value which means the number of sugar
types that can be utilized was found to contribute to the forma-
tion of GECs. The sugar utilization values in this study differed
from the carbon utilization feature that was defined heterotroph
or autotroph in their previous study. The gaps of optimum con-
ditions for growth in the laboratory and environment may hide
possible effects on HGT (Jain et al. 2003). Moreover, as all lactic
acid bacteria are heterotrophic organisms, we did not analyze
this factor. In addition, there was no HGT that was related to
oxygen tolerance, but there was a bias as approximately 80% of
the strains in this study were facultatively anaerobic. That may
have prevented the detection of a correlation between oxygen
tolerance and HGT. The results of Jain et al. may thus be different
because they investigated HGT across domains (empires), while
we investigated HGT in the same family.

GECs among the strains of Lactobacillaceae family with high
sugar utilization values could help to expand their habitats
and promote the exchange of genetic material with various
functions. According to our results for the functional classifi-
cation by COG, there were a variety of gene functions in the
generalist group orthologs for sugar utilization but the func-
tion proportions were not significantly different from those of
the of the specialist group orthologs (Fig. 4). In the general-
ist group orthologs, there were not only genes related to sugar
metabolism, but also genes to enable the habitation of various
niches that were related to stress responses, bacteriocin produc-
tion, antibiotic resistance, survival in the intestinal environment
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and heavy metal resistance. These results are consistent with
the idea that most HGT genes are acquired with neutral or nearly
neutral effects (Soucy et al. 2015). Some HGT genes in the GECs
of different ecological niches may thus help recipients to adapt
to new habitats, and affects population diversification (Baquero
et al. 2021). These results allow us to speculate that the GECs
composed of strains in Lactobacillaceae family with high sugar
utilization accelerated their adaptations to new niches.

Overall, our results indicate that the phenotype to utilize a
variety of sugars was the key factor for the construction of GECs
in the family Lactobacillaceae. This feature is consistent with the
fact that the Lactobacillaceae family contributes to the production
of a wide variety of fermented foods by sharing niches such as
vegetables, dairy products and brewing-related environments.
The results of this study will help to improve our understanding
of these ecologies.

SUPPLEMENTARY DATA

Supplementary data are available at FEMSLE online.
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