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Zeolitic Imidazolate Framework‑8 
(ZIF‑8) modified titanium alloy 
for controlled release of drugs 
for osteoporosis
Mariusz Sandomierski1*, Marcel Jakubowski1, Maria Ratajczak2 & Adam Voelkel1

The aim of this work was to prepare a biocompatible implant material that enables the release of drug 
for osteoporosis—risedronate. To achieve this goal, a titanium implant coated with a biocompatible 
Zeolitic Imidazolate Framework 8 (ZIF‑8) layer was prepared that promotes osseointegration at the 
bone‑implant interface. The modifications of the titanium alloy as well as sorption and desorption 
processes were confirmed using a variety of methods: SEM, EDS XPS, and FT‑IR imaging (to determine 
surface modification, drug distribution, and risedronate sorption), and UV–Vis spectroscopy (to 
determine drug sorption and release profile). Both the ZIF‑8 layer and the drug are evenly distributed 
on the surface of the titanium alloy. The obtained ZIF‑8 layer did not contain impurities and zinc ions 
were strongly bounded by ZIF‑8 layer. The ZIF‑8 layer was stable during drug sorption. The drug was 
released in small doses for 16 h, which may help patients recover immediately after surgery. This is the 
first case of using ZIF‑8 on the surface of the titanium alloy as carrier that releases the drug under the 
influence of body fluids directly at the site of the disease. It is an ideal material for implants designed 
for people suffering from osteoporosis.

Osteoporosis is the most common bone disease, affecting more than 200 millions of people  worldwide1,2. The 
prevalence of osteoporosis increases with age and, as a result, more and more people suffer from it due to aging 
of the  population3. Currently used drugs for osteoporosis can be divided into two main groups. The first includes 
antiresorptive drugs (inhibiting osteoclasts) while the second bone-forming drugs (stimulating osteoblasts)4. The 
most popular antiresorptive drugs used for osteoporosis are bisphosphonates (BPs)5,6. Such a wide application of 
BPs is related to their high selectivity to the  bone7. Bisphosphonates are ideally suited for the treatment of bone 
disease because they have a high affinity for hydroxyapatite  crystals8,9.

Most often, bisphosphonates are taken orally during treatment (in tablet form). Less popular methods of 
their administration are injections, infusions, and intranasal or transdermal applications. Each of the BP deliv-
ery methods used so far has disadvantages. When the drug is administered orally, only a small part of the drug 
(1–5%) goes to the circulatory  system10. Oral administration is also associated with many side effects. Some of 
the many are: heartburn, nausea, irritation of the esophagus, and gastric ulcer. Flu-like symptoms are the main 
side effects of intravenous administration. Transdermal drug delivery results in local toxicity caused by the 
release of too much drug over a short period of  time11. Overall, these drugs are very effective, but better deliv-
ery methods are required. One of the directions of new drug release materials for this drug should be implants 
because osteoporosis is a disease that is often diagnosed too late, so parts of the bone must be  replaced12. These 
should be implants that will release the drug in a controlled manner without ’burst release’ to cause local toxicity.

Titanium alloys are commonly used materials in  implantology13. One of the most widely used is Ti6Al4V, 
which has very good biocompatibility and low elastic modulus comparable to human  bone14. Despite the fact 
that titanium alloys are ideal materials for implant production, it is not possible to use them alone in controlled 
release of drugs. To produce a material with such properties, the surface of the implant must be previously modi-
fied. One type of promising modification is the formation of a biocompatible Zeolitic Imidazolate Framework-8 
(ZIF-8) on their  surface15.

Zeolitic imidazolate frameworks (ZIFs) are a subclass of metal organic frameworks (MOFs)16. ZIFs consist of 
tetrahedral metal ions (specifically Zn and Co) bridged by imidazolate ligands, and have the advantages of both 
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MOFs and zeolites, such as controllable synthesis and good chemical and thermal  stability17–20. These proper-
ties indicate a potential application for ZIFs in catalysis, adsorption, and  separation21–23. Moreover, its potential 
for use in biomedical applications is also attracting increasing  attention24–26. For example, Liu et al. prepared 
catechol–chitosan-ZIF-8 hydrogels that promote implantation stability, angiogenesis, and osteogenesis for bone 
regeneration  applications27. ZIF nanoparticles were also used as anti-inflammatory and antibacterial platforms 
to treat  periodontitis28. In another publication, Sun et al. have reported a pH-sensitive drug delivery system 
based on  ZIFs29. ZIFs can also be used in the modification of titanium alloys. Porous titanium modified with 
nanoscale ZIF-8 coating has been shown to enhance osteogenic and antibacterial activity, increase extracellular 
matrix mineralization and promotes alkaline phosphatase  activity30. Subsequent research shows that the ZIF-8 
layer enhanced cell bioactivity and also promoted osseointegration at the bone–implant  interface15. All this 
information indicates a very high potential for titanium modification with ZIF-8 and the use of this modifica-
tion in endoprostheses.

The materials considered during the selection of a carrier in the controlled release of bisphosphonates should 
have divalent cations in their structure, as we have proven in previous  work31. This is caused by strong interac-
tions between divalent cations and the phosphonium groups of  bisphosphonates32. Due to this, a thin layer of 
ZIF-8 on the surface of the titanium alloys appears to be ideal for the targeted release of bisphosphonates in a 
place where a bone fragment was needed to be removed. The research scheme of this work is shown in Fig. 1.

In this work, the biocompatible Zeolitic Imidazolate Framework-8 (ZIF-8) was obtained on the Ti6Al4V alloy 
surface and used as a risedronate carrier. Two types of alloy modification were used, one previously described 
and one proposed for the first time in this work. This is the first case of using the Zeolitic Imidazolate Framework 

Figure 1.  The scheme of the research carried out in this work.
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8 (ZIF-8) on the surface of the titanium alloy as carrier that releases the drug under the influence of body fluids 
directly at the site of the disease. As a result of the deposition of the drug on a biocompatible implant, BPs will 
be gradually released in the area of greatest demand. Zeolitic Imidazolate Framework-8 (ZIF-8) on the surface 
of both Ti6Al4V alloys was characterized to confirm the effectiveness of drug sorption. The sorption capacity 
and the release rate of risedronate were also examined for the tested materials.

Materials
Reagents. Titanium alloy discs—Ti6Al4V (Φ 8 mm, 4 mm thick). Zinc nitrate hexahydrate, 2-methylimi-
dazole (MeIm), sodium hydroxide, tris(hydroxymethyl)aminomethane (TRIS) (99.8%), sodium bicarbonate 
(99%), potassium chloride (99%), potassium phosphate dibasic trihydrate (99%), sodium sulfate (99%) and 
sodium risedronate (RSD) were obtained from Sigma-Aldrich. Hydrochloric acid (36–38%) and sodium chlo-
ride (99%) were obtained from Avantor. All reagents were used as received without further purification.

Preparation of ZIF‑8 on the surface of the alloy modified with alkali heat treatment 
(Ti‑AHT‑ZIF‑8). The methodology of this modification was carried out in accordance with that carried out 
by Zhang et al.15. The titanium discs were sanded, washed with water, ethanol, and acetone. Alkali heat treat-
ment (AHT) of Ti6Al4V was performed according to the procedure described by Chosa et al.33. The polished 
titanium discs were soaked in a 5 M sodium hydroxide aqueous solution at 60 °C for 24 h, followed by washing 
in distilled water and drying in an oven at 100 °C for 24 h. Subsequently, the discs were heated to 600 °C at a rate 
of 5 °C/min in an electrical furnace and kept at 600 °C for 1 h. Coating with a ZIF-8 layer on the AHT titanium 
surface was carried out using a simple and environmentally friendly hydrothermal method. In the first stage of 
creating the ZIF-8 layer zinc nitrate hexahydrate (0.11 g) and MeIm (2.27 g) were dissolved in 40 ml of deionized 
water, and stirred for 20 min. The resulting solution was diluted eight times. The solution was then transferred to 
an autoclave in which the AHT titanium discs were placed and heated at 37 °C for 6 h. Finally, ZIF-8 modified 
titanium discs were obtained by rinsing with deionized water and drying at 37 °C for 24 h.

The resulting material was named Ti-AHT-ZIF-8.

Preparation of ZiF‑8 on the surface of the alloy modified with zinc titanate (Ti‑ZnTit‑ZIF‑8). The 
formation of the ZIF-8 layer on the surface of the titanium alloy presented in this section has not been previously 
described in the literature. The titanium discs were sanded, washed with water, ethanol, and acetone. Ti6Al4V 
plates were placed in 5 M sodium hydroxide aqueous solution at 60 °C for a 24  h34. The alloy was then washed 
with distilled water and dried in an oven for 24 h at 100 °C (Ti-NaTit). After drying, the material was placed in 
a 0.5 M aqueous solution of zinc nitrate for 24 h at room temperature. This process was repeated 3 times. After 
that, the material was washed with distilled water 3 times and dried in an oven for 24 h at 100 °C (Ti-ZnTit). In 
the next step, the material was immersed in the MeIm solution for one hour and rinsed again with water. The 
next steps are analogous to the procedure for Ti6Al4V-AHT-ZIF-8. In the first stage of creating ZIF-8 zinc nitrate 
hexahydrate (0.11 g) and MeIm (2.27 g) were dissolved in 40 ml of deionized water, and stirred for 20 min. The 
resulting solution was diluted eight times. The solution was then transferred to an autoclave in which the zinc 
titanate modified titanium discs were placed, and heated at 37 °C for 6 h. Finally, ZIF-8 modified titanium discs 
were obtained by rinsing with deionized water and drying at 37 °C for 24 h.

The resulting material was named Ti-ZnTit-ZIF-8.

Drug sorption. The drug sorption study was initiated by placing modified alloys in Eppendorf tubes filled 
with 1.5 ml risedronate solution (0.15 mg of risedronate dissolved in 1.5 ml of 0.1 M Tris-HCI). Each sample was 
placed on an orbital shaker (speed 200 rpm) for one week. The risedronate concentration in solution was tested 
after 7 days using UV–Vis spectroscopy.

After sorption, Ti-AHT-ZIF-8 was named Ti-AHT-ZIF-8-RSD, while Ti-ZnTit-ZIF-8 was named 
Ti-ZnTit-ZIF-8-RSD.

Drug release. The modified plates after risedronate sorption were flooded with 1 ml of simulated body fluid 
(SBF). The composition of SBF is presented in Table 1. The amount of drug released was measured after each 1 h 
for up to 16 h using UV–Vis spectroscopy. Each time the SBF was replaced with a new portion. Three repetitions 
were made for both materials.

Table 1.  Composition of the simulated body fluid used in this work (1000 ml of the SBF).

Order Reagent Amount

1 NaCl 8.035 g

2 NaHCO3 0.355 g

3 KCl 0.225 g

4 K2HPO4·3H2O 2.31 g

5 Na2SO4 0.072 g

6 TRIS 0.6112 g

7 HCl 0–5 ml
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Methods
Scanning electron microscopy (SEM)/energy dispersive spectroscopy (EDS). SEM images were 
recorded with the use of scanning electron microscope VEGA 3 (TESCAN, Czech Republik). The SEM toll was 
equipped with an EDS analyzer (Bruker, UK). EDS was used to conduct the elemental analysis of the samples. 
The final concentration of each element is an average value of measurements at 10 point.

X‑ray photoelectron spectroscopy (XPS). XPS spectra were obtained on a SPECS spectrometer 
equipped with a monochromatic Al-Kα source emitting photons of energy of 1486.71 eV (XR-50 source with 
monochromator µ-FOCUS 600) and a hemispherical analyzer (PHOIBOS 150 MCD NAP). The XPS measure-
ment was carried out under an ultrahigh vacuum (UHV) with pressure < 1 ×  10−9 mbar. The sample was depos-
ited on a sample holder using double-sided adhesive carbon tape. Casa XPS software (version 2.3.24, http:// www. 
casax ps. com/) was used to analyze the recorded spectra.

Drug distribution evaluation using FT‑IR imaging. Drug distribution analysis was performed using a 
LUMOS II FT-IR microscope (Bruker). The imaging was performed in an area of 1000 × 1000 µm. The distribu-
tion of ZIF-8 was determined on the basis of the peaks area which occurs between 1486.3 and 1381.3  cm−1. The 
distribution of drug was determined on the basis of the P–O peak area which is characteristic of risedronate and 
occurs between 1177.7 and 982.1  cm−1. 60 scans were collected for each spectrum. The results were obtained in 
the reflectance mode. The results were processed using the OPUS 8 software (Bruker).

UV–Vis spectroscopy. UV–Vis spectrophotometer UV-2600 (Shimadzu, Japan) was applied to determine 
the concentration of risedronate during the sorption and release process. Measurements were made in the range 
of 240–305 nm (λmax = 262 nm).

Results
The first technique to confirm the effectiveness of surface modification with ZIF-8 was SEM. As can be seen in 
Fig. 2, ZIF-8 was produced on the titanium surface after the AHT process. Many particles can be seen on the 
surface, and these results are consistent with those obtained by Zhang et al.15. The surface of Ti-AHT-ZIF-8 was 
compared with the surface after drug adsorption (Ti-AHT-ZIF-8-RSD). There are no more ZIF-8 crystals on 
the Ti-AHT-ZIF-8-RSD surface, which proves that they were washed away during the sorption process. This is 
negative information because it indicates that the drug could not be retained on the surface for controlled release.

Using the SEM analysis, the samples produced by the method proposed by our team were also character-
ized (Fig. 3). The surface of the alloy after alkaline treatment (Ti-NaTit) is very porous, which is consistent with 
reports from the  literature35,36. No significant changes were noticed after ion exchange (Ti-ZnTit). Visible changes 
occur after the formation of the ZIF-8 layer (Ti-ZnTit-ZIF-8). The surface of the alloy is no longer porous, and a 
very irregular coating is visible on its entire surface. The layer obtained differs significantly from that produced 
by the first methodology (Ti-AHT-ZIF-8). The structure of this layer is similar to the ZIF-8 layer obtained on Al 
plates by the ligand-assisted solvothermal conversion of ZnAl-CO3 layered double hydroxide by Zhang et al.37. 
The occurrence of a "crack" in the sample is related to the fact that there was a larger scratch in this place, formed 
during grinding. This scratch was not completely covered by the ZIF-8 layer. As can be seen on the sample, after 
sorption of the drug, such a crack does not occur. Importantly, the layer produced by the method proposed by 
our team also occurs after drug adsorption (Ti-ZnTit-ZIF-8-RSD). The differences between Ti-ZnTit-ZIF-8 and 
Ti-ZnTit-ZIF-8-RSD are likely due to the drug on the surface Ti-ZnTit-ZIF-8-RSD.

The distribution of the layer on the surface of the alloy was also performed using EDS mapping (Fig. 4). As can 
be seen from the zinc distribution, this layer is visible on the entire surface of the alloy for both Ti-ZnTit-ZIF-8 

Figure 2.  SEM images of Ti-AHT-ZIF-8 and Ti-AHT-ZIF-8-RSD.

http://www.casaxps.com/
http://www.casaxps.com/
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and Ti-ZnTit-ZIF-8-RSD. The zinc content of both materials is similar. Drug adsorption is proved by the attend-
ance of phosphorous, which is present in the structure of risedronate. One may find it only on the surface of the 
Ti-Zn-Tit-ZIF-8-RSD sample and is evenly distributed over it.

The presence of zinc in both samples was also confirmed by XPS analysis (Fig. 5). The Zn binding energy 
range shows peaks at 1023.2 eV that correspond to Zn  2p3/2, and peaks at a higher binding energy of 1045.9 eV 
associated with Zn  2p1/238. The ~ 23.1 eV difference between Zn  2p3/2 and Zn  2p1/2 indicates the oxidation state + 2 
for Zn ions in both samples and this was not changed after drug  sorption39,40. The presence of nitrogen on the 
surface of the Ti-ZnTit-ZIF-8 sample indicates the effectiveness of the ZIF-8 layer formation. A narrow symmetric 
peak in the N 1 s XPS spectra of ZIF-8 indicates that there is only one form of nitrogen in the framework. The 
presence of only one peak indicates that there are no defects in the obtained layer and that all rings are coor-
dinated by  zinc41. Furthermore, the peak for nitrogen shifts to a higher binding energy than that for nitrogen 
in the free molecule, also indicating that it is bound to the  metal42,43. Two nitrogen peaks are visible after drug 
sorption. One can be assigned to the ZIF-8 layer and the other to the drug. These peaks indicate the presence of 
C = N/C–N  bonds44,45. The peak for P observed in the XPS spectra of Ti-ZnTit-ZIF-8-RSD clearly indicates the 
effectiveness of drug sorption (Fig. 6). The deconvolution of high-resolution P 2p spectra for Ti-ZnTit-ZIF-8-RSD 
shows a characteristic asymmetric P  2p1/2 and P  2p3/2, confirming the presence of risedronate on the  surface46,47. 
For Ti-ZnTit-ZIF-8, these peaks do not exist.

The distribution of the ZIF-8 layer, and drug was determined using FT-IR imaging. As can be seen in Fig. 6, 
both are present over the entire surface of the material. The bands for which the ZIF-8 and drug distribution 
were determined are not present in Ti-Zn-Tit material. The imaging of the ZIF-8 layer was performed for bands 
in the range 1486.3 and 1381.3  cm−1 that can be assigned to the imidazole ring  stretching48,49. The imaging of the 
drug distribution was performed for P–O band in the range 1177.7 and 982.1  cm−1, which clearly confirms the 
presence of the  drug50. These bands also occur after drug sorption, which indirectly means that the ZIF-8 layer 
has not been removed. The even distribution of the ZIF-8 and risedronate that has been achieved on the surface 
of this material is very important because the drug should be delivered from the surface of the endoprosthesis 
to the same extent at each point of contact with the tissues.

UV/Vis spectroscopy was used to determine the exact amount of drug retained by the modified alloys. The 
results are presented in Fig. 7. The titanium alloy modified with the method proposed in this study retained 
more than 10 times more drug.

Figure 3.  SEM images of Ti-NaTit, Ti-Zn-Tit, Ti-ZnTit-ZIF-8, and Ti-ZnTiT-ZIF-8-RSD.
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The potential reason for the high effectiveness of the second material is presented in Fig. 8. Probably, there 
are only single ZIF-8 crystals on the surface of the Ti-AHT-ZIF-8 material that was visible in the SEM analysis. 
Because of the low availability of zinc ions in such large crystals, the drug has limited ability to attach. On the 
other hand, an evenly distributed layer of ZIF-8 is formed on the surface of the entire Ti-ZnTit-ZIF-8 material. 
Because of this, it is possible to attach a lot more drug to its surface. In addition, the ZIF-8 layer is connected to 
the alloy surface by zinc ions from zinc titanate, which contributes to its stability on the surface.

To explain in more detail why the modification presented in this article allows for the creation of a ZIF-8 
layer that is more stable and distributed over the entire surface, one should look at the process scheme shown in 
Fig. 9. In the first stage, a typical modification of a titanium alloy was used, in which sodium titanate is produced 
on its surface under the influence of sodium hydroxide. In the second stage, sodium ions are exchanged for zinc 
ions in the process of ion exchange. The exchange with zinc ions was carried out because they participate in 
the crystallization of ZIF-8 and it was assumed that they could contribute to greater adhesion of the produced 

Figure 4.  SEM images of alloys (first row). Elemental mapping of the same regions indicating the spatial 
distribution of zinc (second row) and phosphorus (third row). The values represent the content of elements on 
the alloy surface (by weight).
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ZIF-8 layer to titanium. In the next step, the plates were placed in the MeIm solution. This step was to create a 
thin MeIm layer, which was also to contribute to increasing the adhesion between the alloy and the ZIF-8 layer.

Figure 10 shows that the ZIF-8 structure (which is shown in Fig. 3) is not yet formed on the alloy surface 
after this step. There are some changes compared to zinc titanate layer, but they are minor. This layer initiates the 
build-up of ZIF-8 on the surface of the titanium alloy. The final step was to place the plate in a solution of MeIm 
and zinc ions. All of these steps contributed to the creation of a layer that is more stable and allows the retention 
of an incomparably greater amount of the drug.

Retaining the desired amount of drug on the surface is the first step in the preparation of the drug carrier and 
is not the most important step. More important is how much medicine is released and at what time. The release 
results are presented in Fig. 11. Drug release from the Ti-AHT-ZIF-8-RSD surface was very short and a small 

Figure 5.  High-resolution XPS spectra of zinc, nitrogen, and phosphorous for the Ti ZnTit-ZIF-8 and Ti-ZnTit-
ZIF-8-RSD samples.
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Figure 6.  ZIF-8 layer and risedronate distribution using FT-IR imaging, and band for which the images were 
prepared (top).
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Figure 7.  Risedronate sorption after 7 days on the surface of modified Ti6Al4V alloys (“Risedronate” means the 
starting concentration).

Figure 8.  Potential scheme of drug adsorption on the surface of alloys modified with two methods.
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Figure 9.  Detailed mechanism of the ZIF-8 layer formation on the surface of a titanium alloy modified with 
zinc titanate.
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amount of drug was released (5.2 µg). The situation is different in the case of Ti-ZnTit-ZIF-8-RSD. The release 
continued for as long as 16 h (after this time, the drug was undetectable) and 52.4 µg was released from 0.5  cm2. 
The surfaces of endoprostheses are several hundred times larger, which will allow the selection of the appropriate 
dose of the drug for a given application. Importantly, the drug was released in small doses, which proves that 
the alloy will not cause toxic reactions. On the basis of the results obtained, it can be assumed that the presented 
material is suitable for supporting the recovery of people suffering from osteoporosis immediately after surgery.

Conclusions
In the presented work, we created a stable and biocompatible layer of ZIF-8 on the surface of a titanium alloy 
by modifying the previously described  method15. We attached a drug for osteoporosis to the created layer. Both 
the ZIF-8 layer obtained with our method and the drug on its surface were evenly distributed across the entire 
surface of the alloy, which was confirmed by EDS mapping, and FTIR imaging. The results of the XPS analysis 
show that the layer obtained by our method has no defects or impurities in the form of unbound imidazole 
rings. Comparing our material to that described in the literature, it was found that it retains 10 times more of 
the drug. Additionally, our material releases a much larger dose of the drug within 16 h. Due to its biocompat-
ibility and enhanced osseointegration, the material described in this work is a potential material for use as an 
element of endoprostheses. Due to the fact that it will also release the drug after the operation, it will increase 

Figure 10.  SEM image of Ti-ZnTit-MeIm.

Figure 11.  Total release of risedronate from the surface of Ti6Al4V alloys coated with ZIF-8.
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the chances of a quick recovery of the patient. Furthermore, the proposed implant also has zinc ions that have 
antibacterial properties.

Data availability
The datasets generated during and/or analysed during the current study are available from the corresponding 
author on reasonable request.
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