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Abstract. Feed-forward loops (FFLs) are three-gene modules 
that exert significant effects on a series of biological processes 
and carcinogenesis development. MicroRNA‑associated 
FFLs (miR‑FFLs) represent a new era in disease research. 
However, analysis of the miR‑FFL network motifs has yet to 
be systematically performed, and their potential role in cardiac 
hypertrophy and acute myocardial infarction (AMI) requires 
investigation. The present study used a computational method 
to establish a comprehensive miR‑FFL network for cardiac 
hypertrophy and AMI, by integrating high‑throughput data 
from different sources and performing multi‑aspect analysis 
of the network features. Several heart disease‑associated 
miR‑FFL motifs were identified that were specific or common 
to the two diseases investigated. Functional analysis further 
revealed that miR‑FFL motifs provided specific drug targets 
for the clinical treatment of cardiac hypertrophy and AMI. 
Associations between specific drugs associated with heart 
disease and dysregulated FFLs were also identified. The 
present study highlighted the components of FFL motifs in 
cardiac hypertrophy and AMI, and revealed their possibility as 
heart disease biomarkers and novel treatment targets.

Introduction

Heart disease threatens the health of humans worldwide; 
however, it is often difficult to detect at the level of tran-
scriptional regulation. Abnormal transcriptomic regulation is 

complicated and affected by a number of complex mechanisms 
at both a transcriptional and post‑transcriptional level (1,2). 
Transcription factors (TFs) determine the level of gene expres-
sion by recognizing specific DNA sequences in diverse cell 
types (3). MicroRNAs (miRNAs) are important gene expres-
sion regulators, which bind with their target mRNAs, and 
repress or degrade them (4). An increasing number of studies 
have emphasized that miRNAs are essential in numerous 
types of heart diseases. Therefore, constructing a clear map of 
the network between miRNAs, their target genes and TFs may 
be beneficial for identifying dysregulated genes and signaling 
pathways. This would then increase the understanding on the 
roles of specific genes in heart disease pathogenesis.

TFs, miRNAs and their shared target genes form 
miRNA‑associated feed‑forward loops (miR‑FFLs), in which 
miRNAs and TFs co‑ordinate to regulate gene expression (5). 
The regulatory units within the miR‑FFL network consist of an 
miRNA, a TF and their shared target genes (6,7). FFLs govern a 
number of biological processes, such as cell differentiation, and 
cause the development of certain diseases, including cancer (8,9). 
However, the varied roles of FFLs in certain common heart 
diseases have not been globally studied in a systematic manner.

Cardiovascular disease is an important cause of mortality 
worldwide and affects a great number of individuals annu-
ally (10). Cardiac hypertrophy is typically an inherited 
cardiovascular disease caused by abnormal gene mutations (11). 
Transcriptome reprogramming in the diseased heart can result 
in the development of abnormal pathological features (12). 
Several previous studies have demonstrated the association 
between miRNAs and cardiac hypertrophy (13‑15).

Acute myocardial infarction (AMI) is a pathological and 
life‑threatening condition, in which blood is unable to flow 
into the heart due to the blockage of a coronary artery, leading 
to the death of a part of the myocardial muscle (16). AMI and 
its associated risk factors require urgent assessment (17). A 
number of previous studies have also demonstrated the essen-
tial roles of miRNAs in AMI (18‑20). Furthermore, recent 
studies have reported an association between cardiac hyper-
trophy and AMI. AMI treatment may be influenced by cardiac 
hypertrophy, as it appears to decrease the efficiency of isch-
emic preconditioning (21). Left ventricular (LV) hypertrophy 
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and remodeling subsequent to MI are vital predictors of a 
patient's prognosis (22). However, the association between 
the two diseases on the miR‑FFL level has yet to be globally 
investigated.

In the present study, a global miR‑FFL network was 
constructed and its topological features were analyzed. In 
addition, a comprehensive method was designed that collects 
regulatory interaction and high‑throughput expression profiles 
for miRNAs, TFs and target genes in order to characterize 
common or specifically dysregulated miR‑FFL motifs in 
cardiac hypertrophy and AMI. The dysregulated miR‑FFLs 
were revealed to be associated with cardiac‑associated func-
tions and signaling pathways. The genes and miRNAs in these 
miR‑FFLs were also demonstrated to be vital drug targets. In 
conclusion, the present study highlighted the effect of dysregu-
lated miR‑FFL motifs in cardiac hypertrophy and AMI, which 
revealed their possibility as novel biomarkers and treatment 
targets in heart disease.

Materials and methods

Collecting high‑throughput data for miRNAs, TFs and genes. 
The gene expression profiles of cardiac hypertrophy and AMI 
were downloaded from the Gene Expression Omnibus data-
base (www.ncbi.nlm.nih.gov/geo). Two studies in which the 
samples provided both miRNA and gene expression profiles 
were extracted. The cardiac hypertrophy expression data 
included three diseases samples and three control samples 
(accession no. GSE60291) (23). The AMI expression data 
included four disease samples and one control sample (acces-
sion no. GSE24591; unpublished data).

Establishing a genome‑wide miR‑FFL network. miR-FFL 
motifs are three‑gene modules consisting of an miRNA, a 
TF and their shared target gene. The miRNA is regulated by 
the TF, while the target gene is regulated by both the miRNA 
and TF. Three types of regulatory associations were used to 
construct a comprehensive miR‑FFL network. Firstly, the 
TF‑miRNA association was obtained from a public database 
known as TransmiR, which contains experimentally validated 
information regarding TFs and miRNAs (24). Secondly, 
TF‑gene regulatory pairs were obtained from the TRANSFAC 
Professional database (release date, February 2014) (24). 
Finally, experiments supporting the miRNA‑gene regulatory 
association were obtained from TarBase v6.0, which is a high 
quality and widely used database (25). The data were merged, 
and the TFs and gene names were mapped to gene symbols, 
while the miRNA names were mapped to miRBase accession 
numbers for mature miRNAs (http://www.mirbase.org/).

Dissecting topological features for the miR‑FFL network. Four 
measurements were used to assess the entire miR‑FFL network, 
including degrees, topological coefficients, neighborhood connec-
tivity and the clustering coefficients of nodes. All analyses were 
performed using Cytoscape 3.0 (http://www.cytoscape.org/).

Identifying dysregulated miR‑FFLs in cardiac hypertrophy 
and AMI. An integrative method was designed to identify 
dysregulated miR‑FFL motifs in cardiac hypertrophy and 
AMI, which used the miR‑FFL regulatory networks and 

the expression data. Initially, Student's t‑test was performed 
to compare the differences in expression between the TFs, 
miRNAs and genes in the patients with disease and the corre-
sponding controls, for each miR‑FFL motif. Next, for each 
interacting pair in the miR‑FFL motif (TF‑miRNA, TF‑gene 
and miRNA‑gene), the Pearson correlation coefficients (PCCs) 
and the statistical difference between them in the disease and 
control samples were calculated. The association between 
regulatory interactions was represented using the absolute 
difference of PCCs between the disease and control samples. 
In addition, the integrated comprehensive scores (Sdif and Spcc) 
for the FFLs were determined using the following equations 
for the differential expression of the P‑value and PCCs:

Sdif = Pm x PT x Pg

Spcc = |(DTm - CTm) x (DTg - CTg) x (Dmg - Cmg)|

In these equations, Pm, PT and Pg refer to the P‑values of 
the miRNAs, TFs and genes, respectively, in each miR‑FFL 
motif that were derived from the t‑test. Sdif is the difference 
between the expression level of the miR‑FFL motif between 
the patients with disease and the corresponding controls. DTm, 
dTg and dmg correspond to the PCCs of the three regulatory 
pairs, including the TF‑miRNA, TF‑gene and miRNA‑gene 
interactions for the disease samples, respectively. CTm, cTg and 
cmg represent the PCCs of the same three regulatory inter-
action pairs for the control samples, respectively. Spcc is the 
absolute distinction of the PCC score between the disease and 
control samples in the entire miR‑FFL motif. An integrative 
and equally‑weighted method was also used to rank all the 
FFL motifs according to the Sdif and Spcc scores (26). Once 
two ranked lists were obtained, the ranking positions of the 
two lists were integrated to calculate the final ranking score 
list for each miR‑FFL motif. A higher‑ranking score repre-
sented an increased level of the dysregulated motif in the 
disease compared with the control. To obtain the significant 
P‑value for each miR‑FFL motif, each final motif ranking 
score was compared with the permutation‑based final ranking 
score list, which was generated after randomly disturbing 
all sample labels in expression profiles 1,000 times. Finally, 
the significantly dysregulated motifs (P<0.05) for cardiac 
hypertrophy and AMI were obtained (27). All aforementioned 
analyses were performed using R software (version 3.2.3; 
https://www.r‑project.org/).

Gene Ontology (GO) enrichment analysis. Enriched GO 
terms (P<0.01) were obtained from Database for Annotation, 
Visualization and Integrated Discovery web server using the 
default parameters (28).

Drug target analysis for miRNAs and genes. SM2miR (29) 
and DrugBank (30) databases were used to investigate the 
association between drugs and genes, and drugs and miRNAs, 
respectively.

Results

Characterizing topological properties of the miR‑FFL 
network. A total of 429 miR‑FFL network motifs were 
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obtained using multiple data resources. Each network motif 
consisted of a TF, an miRNA and their shared target gene. 
A genome‑wide miR‑FFL network was established by 
integrating the network motifs (Fig. 1A), which included 235 
nodes (122 genes, 35 TFs and 78 miRNAs) and 578 edges. 
Similar to the majority of biological networks, the transcription 

regulatory network obtained in the present study had a 
scale‑free distribution (Fig. 1B). In addition, other topological 
features of all nodes were identified, including connectivity, 
topological coefficient and clustering coefficient (Fig. 1C‑E), 
all of which displayed scale‑free properties. The scale‑free 
network demonstrated that the miR‑FFL network was similar 

Figure 1. Global topological features of the miR‑FFL network. (A) Comprehensive miR‑FFL network, where different colors represent different transcripts, 
including miRNAs (yellow), genes (blue) and transcription factors (red). Detailed topological features of nodes in the miR‑FFL network, including the 
(B) degree, (C) connectivity, (D) topological coefficients and (E) clustering coefficients. miR‑FFL, microRNA‑associated feed‑forward loops; Avg, average.
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to a small‑world network (31). Neighborhood connectivity 
was measured based on the average connectivity of certain 
neighbors (neighbors = 0, 1, 2…n). In the current study, a 
decreased degree distribution of the network was found to 
be accompanied by a decrease in the topological coefficient, 
which suggests that there was a hierarchical modularity 
phenomenon within the network. In addition, the nodes with 
a high and low degree were linked by the majority of the 
edges in the network, and these edges followed the decreased 
distribution, suggesting sub‑networks were present within 
the network (32). The results also revealed that other types of 
disease networks, which shared similar topological properties, 
generally exhibited the same features as the miR‑FFL network 
reported in the present study (33).

Specific miR‑FFL motifs are significantly dysregulated in 
cardiac hypertrophy and AMI. The significantly dysregulated 
miR‑FFL network motifs were characterized globally to deter-
mine the effect of miR‑FFL motifs in cardiac hypertrophy and 
AMI. Next, specific dysregulated miR‑FFL sub‑networks were 
established for cardiac hypertrophy and AMI (Fig. 2). Among all 
background miR‑FFLs, there were 22 miR‑FFL motifs (9.4%) 
dysregulated in cardiac hypertrophy that included 13 genes, 
6 TFs and 17 miRNAs (Fig. 2A and B). These dysregulated 
cardiac hypertrophy‑associated miR‑FFLs were ranked in the 
top 22 of all the background miR‑FFLs following permuta-
tion testing (Fig. 2C). For AMI, there were 25 dysregulated 
miR‑FFLs with 20 genes, 6 TFs and 10 miRNAs, which repre-
sented 10.59% of all background miR‑FFLs (Fig. 2D and E). 

Figure 2. Identified dysregulated miR‑FFL motifs in the sub‑network. (A) Different colors correspond to the different type of nodes in each dysregulated 
sub‑network, including miRNAs (yellow), genes (blue) and TFs (red). (B) The number of miR‑FFLs, TFs, genes and miRNAs among the cardiac hyper-
trophy‑associated miR‑FFLs are illustrated in the bar graph. (C) Pie chart showing the proportion of cardiac hypertrophy‑associated miR‑FFLs among all the 
background miR‑FFLs. (D) Significantly dysregulated sub‑networks associated with AMI. (E) Bar graph showing the number of miR‑FFLs, TFs, genes and 
miRNAs among the AMI‑associated miR‑FFLs. (F) Pie chart showing the proportion of AMI‑associated miR‑FFLs among all the background miR‑FFLs. 
miR‑FFL, microRNA‑associated feed‑forward loops; TFs, transcription factors; AMI, acute myocardial infarction.
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In total, 96% of these dysregulated AMI‑associated miR‑FFLs 
were ranked in the top 25 background miR‑FFLs following 
permutation testing. For both cardiac hypertrophy and AMI, 
almost all the dysregulated miR‑FFLs identified by the method 
reported in the current study were revealed to be statistically 
significant following permutation testing (P<0.05).

In the identified dysregulated miR‑FFLs, certain 
miRNAs have previously been reported to serve essential 
roles in heart disease. For instance, miR‑21 can affect the 
hypertrophic response process through exosome‑associated 
transmission (34). In addition, miR‑34a has a critical effect in 
heart development, and the inhibition of miR‑34a is beneficial 
for cardiac function (35). Certain genes have also been reported 
to be strongly associated with heart disease. For instance, TP53 
is a prominent tumor suppressor gene, and its downregulation 
in cardiac fibroblasts is regulated by miR‑155 (36).

Common miR‑FFLs motifs between cardiac hypertrophy 
and AMI revealing the disease mechanism. The results of 
the present study demonstrated that the majority of dysregu-
lated miR‑FFLs were specific in cardiac hypertrophy and 
AMI. A total of 20 miR‑FFLs were dysregulated in cardiac 

hypertrophy alone; 23 miR‑FFLs were dysregulated in AMI 
alone (Fig. 3A and D). For example, miR‑FFL, consisting 
of TP53, mir‑34b and CAV1, was only demonstrated to be 
dysregulated in cardiac hypertrophy (Fig. 3A). In addition, 
EGR1 was differentially expressed in both cardiac hyper-
trophy and AMI; however, it also forms miR‑FFL with diverse 
miRNAs and genes (Fig. 3D). The present study analysis 
revealed two common miR‑FFLs between cardiac hypertrophy 
and AMI (Fig. 3B). The first common miR‑FFL consisted of 
epidermal growth receptor (EGR1), miR‑335 and baculoviral 
IAP repeat‑containing protein 5 (BIRC5). This miR‑FFL 
ranked nos. 15 and 16 regarding the top dysregulated miR‑FFLs 
associated with hypertrophy and AMI, respectively. In the 
present study, miR‑335 was differentially expressed between 
normal and AMI samples. Furthermore, EGR1 and BIRC5 
were differentially expressed between normal and cardiac 
hypertrophy samples (Fig. 3C). In addition, patients suffering 
from myocardial infarction have lower miR‑335 expression, 
thus, miR‑335 may serve as a novel treatment strategy for 
AMI (37). Furthermore, BIRC5 was downregulated in AMI 
patients (38). These results suggested that EGR1, miR‑335 and 
BIRC5 were dysregulated and could form a miR‑FFL during 

Figure 3. Common and specific miR‑FFLs in cardiac hypertrophy and acute myocardial infarction. (A) miR‑FFLs that are only dysregulated in cardiac 
hypertrophy, with two miR‑FFLs presented as examples. (B) The Venn diagram reveals the intersection between the two diseases. (C) miR‑FFLs that are only 
dysregulated in AMI, (D) with two miR‑FFLs presented as examples. miR‑FFL, microRNA‑associated feed‑forward loops.
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cardiac hypertrophy and AMI. Another common miR‑FFL 
involved MYC, miR‑16 and ABCC1. This miR‑FFL ranked 
no. 20 and 19 regarding the top dysregulated miR‑FFLs 
associated with hypertrophy and AMI, respectively. MYC 
and miR‑16 were differentially expressed between normal 
and cardiac hypertrophy samples. These findings indicate that 
a number of the dysregulated FFLs identified in the present 
analysis were associated with heart disease, particularly the 
common FFLs, which were almost all associated with cardiac 
hypertrophy and AMI. Therefore, the authors suggest that 
numerous miRNAs, TFs and genes may have roles in cardiac 
hypertrophy and AMI via formation of FFLs.

Functional analysis revealing the roles of miR‑FFL motifs 
in cardiac disease. GO analysis was performed based on 
all the TFs and genes in dysregulated miR‑FFLs for cardiac 
hypertrophy and AMI. It was observed that these dysregu-
lated genes and TFs were enriched in specific GO terms 
associated with cell proliferation, fibroblast proliferation and 
reactive oxygen species metabolism (Fig. 4A). A previous 
study reported that basic fibroblast growth factor promotes 
human cardiosphere‑derived cell engraftment in order to 

enhance cardiac repair, thus representing a potential treat-
ment target for myocardial infarction (39). In addition, the 
result of the present study revealed that numerous GO terms 
shared common genes (Fig. 4A). For example, the ‘replicative 
senescence’ and ‘negative regulation of cell growth’ GO terms 
shared numerous genes. The results demonstrated that a single 
gene may participate in diverse functions via formation of 
diverse miR‑FFLs involving different miRNAs and TFs. The 
current study results also revealed that STAT3 was a key gene 
for the pathological and physiological processes within the 
heart (Fig. 4B). Previously, it has been observed that STAT3 
may be a novel therapeutic biomarker for cardiac hypertrophy 
treatment, and downregulation of STAT3 expression resulted 
in increased collagen synthesis and the limitation of hyper-
trophy (40). In addition, ANG II type 1 receptor activation 
mediated STAT3 gene regulation, resulting in the nuclear 
accumulation of U‑STAT3, and this process was notably 
associated with the development of cardiac hypertrophy (41). 
In present study, the results revealed that STAT3, miR‑21 and 
MYC formed a miR‑FFL. It has also been reported that inter-
feron (IFN) is able to greatly induce miR‑21 expression based 
on the STAT3‑associated signaling pathway, and miR‑21 was 

Figure 4. Functional analysis of transcription factors and genes in dysregulated miR‑FFLs. (A) The results of gene enrichment analysis are illustrated as a 
network. Each red node corresponds to a single GO term result, and the nodes are clustered and annotated based on the similarity between them. Node size 
corresponds to the quantity of genes for each GO term. Nodes are connected by the common genes between GO terms. (B) Physiological and pathological 
hypertrophy of the heart signaling pathway. miR‑FFL, microRNA‑associated feed‑forward loops; GO, Gene Ontology.
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characterized as a new target that exerts negative feedback on 
the IFN‑induced apoptosis effect (42). Therefore, the results of 
the present study suggest the presence of an association among 
STAT3, miR‑21 and heart disease.

miR‑FFLs contain the drug target miRNAs and genes. 
Subsequently, the association of the TFs, genes and miRNAs 
in the dysregulated miR‑FFLs with a potential drug target was 
further explored. Initially, the study searched for miR‑FFLs 
that were common between cardiac hypertrophy and AMI, 
including EGR1, miR‑335 and BIRC5, using the DrugBank 
and SM2miR databases (Fig. 5A). SM2miR database is an 
integrated database of the experimentally validated effects of 
small molecules on miRNA expression (29).

MiR‑335 was found to be associated with doxorubicin, 
a chemotherapy drug used for the treatment of a number of 
cancer types (Fig. 5A). Furthermore, BIRC5 was observed to 
be a target of the drug reserpine (Fig. 5A), which is a type of 
antiadrenergic agent occasionally used to control high blood 
pressure and treat schizophrenia. However, this drug is rarely 
used in clinical practice due to its side effects.

All the miRNAs investigated in the current study were 
found to be associated with isoproterenol or propran-
olol (Fig. 5B and C). Isoproterenol is generally used to treat 
heart diseases, such as abnormal heartbeats, heart block and 
heart failure. It was observed that 7 miRNAs were associated 
with isoproterenol in cardiac hypertrophy, while 3 miRNAs in 
AMI were associated with isoproterenol. The miR‑FFL that 
included MYC, STAT3 and miR‑21, as well as the miR‑FFL 
network that included MYC, TCF7L2 and miR‑21, were 
observed to form a more complex and larger motif by sharing 
miR‑21 and MYC (Fig. 5B). Furthermore, the miR‑FFL 
network involving MYC, miR‑29b and VEGFA, along with 
the miR‑FFL that consisted of MYC, miR‑29c and VEGFA, 
also formed a more complex motif by sharing VEGFA and 
MYC. Therefore, it may be suggested that miR‑FFL motifs 
dysregulate significant biological pathways and networks, 
and trigger important biological responses, thereby severely 
affecting disease mechanisms and influencing the effect of 
drugs. Additionally, propranolol is a β‑blocker that has an 
effect on human heart function and is widely used to treat high 
blood pressure and abnormal heart conditions. In the current 

Figure 5. Drug targets of transcription factors, miRNAs and genes in dysregulated miR‑FFLs for cardiac hypertrophy and AMI. (A) Association of drugs 
with miRNAs and genes in an miR‑FFL network that is common between cardiac hypertrophy and AMI. (B) miRNAs as targets for the drugs isoproterenol 
and (C) propranolol in cardiac hypertrophy and AMI, respectively. miR‑FFL, microRNA‑associated feed‑forward loops; AMI, acute myocardial infarction.
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analysis, the miR‑FFL network consisting of TP53, miR‑125b 
and TP53INP1 was found to be associated with propranolol 
in cardiac hypertrophy. Taken together, the aforementioned 
findings indicate that dysregulated miR‑FFLs may be a novel 
target for drug treatment in future studies investigating hyper-
trophy and AMI.

Discussion

Various transcripts, including TFs, miRNAs and genes, 
can form complex regulatory associations, such as FFLs, 
which may influence pathogenic mechanisms in certain 
heart diseases. Therefore, the present study investigated 
TF‑miRNA‑gene FFLs motifs and used a comprehensive 
method to detect their features by integrating multiple regu-
latory associations and expression profiles from large 
repositories. Dysregulated miR‑FFL motifs were found to 
be present in cardiac hypertrophy and AMI, which are two 
diseases with a high prevalence worldwide. In addition, certain 
dysregulated miR‑FFLs that were shared or specific to the two 
diseases were identified, focusing on tissue‑specific analyses 
conducted in previous studies (43). Disease‑specific miR‑FFL 
motifs may be beneficial for drug discovery, and may increase 
the therapeutic effects of drugs. As in other similar studies, 
the disease and drug target‑associated research conducted in 
the present study revealed the potential functionality of certain 
miR‑FFL motifs, which may serve as novel biomarkers in 
the treatment of heart diseases (27). The current study also 
revealed that miR‑FFLs may provide another method for 
studying heart disease.

In addition, it was observed that certain miR‑FFLs share 
common miRNAs, genes or TFs, forming larger complexes 
that regulate the biological network. These results indicated 
that, although miR‑FFLs may serve as unitary motifs and 
participate in disease progression, complex associations 
within the disease network may also have a specific function. 
The present study also demonstrated that cardiac hyper-
trophy and AMI are two complex diseases with numerous 
miRNAs, genes, TFs and other factors that participate 
in the process of disease development. These factors may 
form various different motifs to serve their specific roles. 
There are also other types of miRNA‑mediated FFLs, which 
differ from the ones focused on in the present study, such as 
those involving miRNA‑regulated TFs (44). These alterna-
tive miR‑FFLs have also been reported to participate in the 
development of several types of cancer (8). Therefore, the 
authors recognize that the effects of certain miR‑FFLs may 
strongly depend on the cell type and context. Future studies 
should investigate an increased number of cell types in a 
variety of contexts to validate the accuracy and stability of 
the method used in the present study. Finally, our method 
identified novel candidates associated with disease develop-
ment, which require further investigation and experimental 
validation.

In conclusion, the present study examined and highlighted 
the potential functional mechanism of miRNAs, genes and TFs 
within cardiac hypertrophy and AMI. Dysregulated miR‑FFLs 
were identified, and miR‑FFLs common to the two diseases 
were further investigated. The functional and drug analyses 
revealed the essential role of miR‑FFLs in heart diseases. The 

present study also provided a systematic and novel approach 
that revealed the dysregulated cross‑talk in cardiac hyper-
trophy and AMI by identifying specific functional motifs.
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