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Abstract.  Dermatan sulfate proteoglycans (DS-PGs) 
isolated from bovine articular cartilage have been ex- 
amined for their effects on the adhesive responses of 
BALB/c 3T3 cells and bovine dermal fibroblasts on 
plasma fibronectin (pFN) and/or type I collagen ma- 
trices, and compared to the effects of the chondroitin 
sulfate/keratan sulfate proteoglycan monomers (CS/KS- 
PGs) from cartilage. DS-PGs inhibited the attachment 
and spreading of 3T3 cells on pFN-coated tissue cul- 
ture substrata much more effectively than the cartilage 
CS/KS-PGs reported previously; in contrast, dermal 
fibroblasts were much less sensitive to either pro- 
teoglycan class unless they were pretreated with cyclo- 
heximide. Both cell types failed to adhere to substrata 
coated only with the proteoglycans; binding of the 
proteoglycans to various substrata has also been quan- 
titated. While a strong inhibitory effect was obtained 
with the native intact DS-PGs, little inhibitory effect 
was obtained with isolated DS chains (liberated by 
alkaline-borohydride cleavage) or with core protein 
preparations (liberated by chondroitinase ABC diges- 
tion). In marked contrast, DS-PGs did not inhibit at- 
tachment or spreading responses of either 3T3 or der- 
mal fibroblasts on type I collagen-coated substrata 
when the collagen was adsorbed with pFN alone, 
DS-PGs alone, or the two in combination. These 
results support evidence for (a) collagen-dependent, 
fibronectin-independent mechanisms of adhesion of 
fibroblasts, and (b) different sites on the collagen 
fibrils where DS-PGs bind and where cell surface 
"receptors" for collagen bind. 

Experiments were developed to determine the mech- 
anism(s) of inhibition. All evidence indicated that the 

mechanism using the intact pFN molecule involved the 
binding of the DS-PGs to the glycosaminoglycan 
(GAG)-binding sites of substratum-bound pFN, thereby 
inhibiting the interaction of the fibronectin with recep- 
tors on the cell surface. This was supported by affinity 
chromatography studies demonstrating that DS-PGs 
bind completely and effectively to pFN-Sepharose 
columns whereas only a subset of the cartilage CS/KS- 
PG binds weakly to these columns. In contrast, when 
a 120-kD chymotrypsin-generated cell-binding frag- 
ment of pFN (CBF which has no detectable GAG-bind- 
ing activity as a soluble ligand) was tested in adhesion 
assays, DS-PGs inhibited 313 adherence on CBF more 
effectively than on intact pFN. A variety of experi- 
ments indicated that the mechanism of this inhibition 
also involved the binding of DS-PGs to only sub- 
stratum-bound CBF due to the presence of a cryptic 
GAG-binding domain not observed in the soluble CBF. 
When a series of complementary cell-binding frag- 
ments generated from pFN by thermolysin digestion 
and subsequent affinity chromatography (Castellani, P., 
A. Siri, C. Rosellini, E. Infusini, L. Borsi, and 
L. Zardi, 1986, J. Cell Biol., 103:1671-1677) were 
tested, a graded response to inhibition by DS-PGs was 
observed revealing the proximity of the cryptic GAG- 
binding domain to the cell-binding domain of the 
fibronectin molecule. 

All of these results taken together demonstrate that 
DS-PGs can have a marked influence on the adhesive 
responses of fibroblasts to select extracellular matrices, 
particularly with regard to the conformation of the 
fibronectin molecule, and suggest experiments for in- 
vestigating DS-PG functions in vivo. 

S 
MALL interstitial dermatan sulfate proteoglycans (DS- 
PGs) 1 are widely distributed in the extracellular ma- 
trices of skin (22, 23, 25, 43, 44), sclera (11, 12), tendon 

(63), fetal epiphyseal cartilage (51), mature articular carti- 
lage (50), and bone with chondroitin sulfate (CS) chains sub- 
stituting for dermatan sulfate chains in this last case (17-19). 

The DS-PGs are polydisperse species with molecular masses 
ranging from 80 to 140 kD and with core proteins generated 

1. Abbreviations used in this paper: 120K CBE 120-kD fragment containing 
RGDS-sensitivecell-binding activity; CS, chondroitin sulfate; DS, derma- 
tan sulfate; pFN, plasma fibronectin; GAG, glycosaminoglycan; HS, hepa- 
ran sulfate; KS, keratan sulfate; PF-4, platelet factor-4; PG, proteoglycan. 
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by deglycosylation with chondroitinase ABC of ,'o45 kD; 
they contain a limited number of dermatan sulfate chains 
covatenfly bound to serine residues in the protein core (27, 
70). Immunohistochemicat studies have localized them in the 
extraceUular matrices of connective tissues (40, 41, 46), 
hence their description as small interstitial proteoglycans by 
Heinegard (28). Mature bovine articular cartilage (50), fetal 
epiphyseal cartilage (51), and tendon (62) contain two differ- 
ent species of DS-PGs (referred to as DS-PGI and DS-PGII) 
with different primary sequences in their core proteins. Also, 
DS-PGI readily self-associates whereas DS-PGII from fetal 
epiphyseal and mature articular cartilages does not (50). 

Relatively little is known about the biological functions of 
the DS-PGs. They, are distributed at the "d" band on the sur- 
faces of collagen fibrils in vivo (8, 46, 54-56, 66) and inhibit 
fibriltogenesis in vitro (64). Iduronate-enriched species of 
DS-PG have also been demonstrated in the cotlagenous ma- 
trices deposited on the substratum by human dermal fibro- 
blasts (20). 

The common occurrence of DS-PGs and/or CS-PC6 with 
many cell types in tissues would suggest their importance in 
basic cell biological functions and some evidence has been 
garnered with specific proteoglycans for inhibition of adhe- 
sion of cells to certain extracellular matrices. Thus, Knox 
and Wells (32) first demonstrated that the major cartilage 
CS/keratan sulfate CKS)-PG at high concentrations could in- 
hibit adherence of chick embryonic fibrobtasts to serum- or 
collagen-coated tissue culture substrata. This activity for 
cartilage CS/KS-PG was also confirmed by Rich et al, (48) 
using plasma fibronectin-coated surfaces and a variety of 
cell types. Brennan etal. (5) then showed that a rat yolk sac 
tumor cell CS-PG could inhibit adherence of these tumor 
ceils to substrata coated with fibronectin (but not its cell- 
binding fragment) or type I collagen by interacting with the 
substratum protein itself, rather than with the cell surface. 
Exogenous addition of multivalent heparin proteoglycans 
was shown by Klebe and Mock (30) to inhibit attachment of 
ceils to fibronectin substrata much more effectively than sin- 
gle chains of glycosaminogtycan (GAG). Such studies agreed 
with biochemical analyses of substratum adhesion sites from 
fibroblasts adhering to serum-coated surfaces-namely, that 
CS-PGs appear to function in the detachment processes of 
ceils and not directly in their attachment 05, 16). Until now, 
the effects of DS-PGs on cell adhesion have not been ex- 
amined. 

The studies described above form the impetus for examin- 
ing the significance of DS-PGs in the adhesion responses of 
fibroblasts on biochemically defined substrata. Tbe availabil- 
ity of large amounts of DS-PGs from bovine articular carti- 
lage as recently described by Rosenberg et al. (50) have made 
such studies feasible. Two different tissue culture model sys- 
tems have been used. BALB/c 31"3 adherence and spreading 
have been analyzed since these cells do not deposit a layer 
of collagen at their undersurfaces (13) and interact with 
plasma fibronectin (pFN) on the substratum through both 
heparan sulfate (HS)- and cell-binding domains of the mole- 
cule (14, 29, 34); preliminary experiments have been de- 
scribed in this regard (49). In addition, bovine dermal fibro- 
blasts have also been used because the), reside in tissue that 
contains this DS-PG and because they deposit a complex col- 
lagen extracellular matrix at their undersurfaces when grown 
on fibronectin-coated substrata. 

Materials and Methods 

Cell Cultures 
Stock cultures of mouse BALB/c 31"3 (clone A3t) cells were grown 
Mycoplasma-free in DME supplemented with 10% neonatal calf serum, 250 
U/ml penicillin, and 250 ~gtrnl streptomycin sulfate at 37~ in a I0% 
COz-humidified air mixture. Bovine dermal fibroblasts were isolated from 
the dermis of an adult cow at a local slaughterhouse under sterile conditions 
and grown in DME with 10% FCS. For experiments, subcontinent cells in 
stock cultures were rinsed twice with PBS, incubated with gentle shaking 
in 0.5 mM EGTA in PBS at 37~C for 30 rnin, and gently pipetted in order 
to detach them. Suspended cells were collected by centrifugation, rinsed 
twice with serum-free medium containing 0.25 mg/ml heat-treated BSA 
(adhesion medium), and then resuspended in fresh adhesion medium. 

Proteins and Proteoglycans 
Human pFN was purified by getatin-Sepharose affinity chromatography as 
described previously (33). Platelet factor-4 (PF-4), free of an)' contaminat- 
ing pFN, was purified from outdated platelet packs provided by the Cleve- 
land Red Cross as also described O3). Bovine articular cartilage DS-PGs 
(a mixture of DS-PGI and DS-PGII) were purified as described by Rosen- 
berg et aL (50) and stored at -85~ in 4 M GdnHCt in buffer. A variety 
of assays was used to demonstrate that these DS-PGs are not contaminated 
with other protcoglycan classes. Cartilage chondroitin sulfatedkeratan sul- 
fate protcoglycan monorr~ (CS/KS-PG) was purified by conventional 
means (50), stored at -85~ in 4 M GdnHCI in buffer, and shown to be 
free of any contaminating DS-PG moieties. For adhesion studies, all pro- 
teoglycan solutions were dialyzed at 4~ for 48 h against multiple changes 
of PBS to rid the solutions of GdruHCt; in all cases, these moieties remained 
in solution at concentrations ranging from 0.3 to 6 mg/mt. 

Cell-binding Fragments of ~bronectin 
Two different protocols were used to generate cell-binding fragments of hu- 
man fibronectins which contain the Arg-Gly-Asp-Ser (RGDS) sequence rec- 
ognized by the fibronectin r~eptor (6, 9, 21, 47). As developed by Piersch- 
bacher et al. (45), chymotrypsin treaUnent of pFN liberates a relatively 
protease-resistant fragment of 120 kD which lacks heparin- and collagen- 
binding activity as a soluble ligand but which contains RGDS-sensitive cell- 
binding activity (3, 29, 34). Tbis will be referred to as the 120K CBE 

The second protocol was developed by Borsi etal. (4) and further by 
Castellani et aL (7) using thermolysin digestion of human plasma or cellular 
fibronectins and subsequent aftinity chromatography of soluble-phase frag- 
ments. The following purified fragments are used from this scheme: ll0-kD 
fragment (ill0) from pFN which contains the RGDS sequence but no 
COOH-terminal heparin-binding domain; 145-kD fragment (ft45) which 
contains all of the sequence of ill0 as well as the COOH-terminal heparin- 
binding domain from the a subunit of pFN and possibly some of the IIICS 
region at its COOH-terminal end; 155-kD fragment (t155) from the 13 
subunit of pFN which contains all of the sequence of ill0 as well as an addi- 
tional type IIl homology until at its COOH-terminal end and the COOH- 
terminal heparin-binding domain; and a mixture of 44- and 47-kD frag- 
ments from ceUular fibroncctin (t"44+47) which contains the so-called 
"extra domain" (ED,) characteristic of cellular fibronectins and the COOH- 
terminal heparin-binding domain (f44+47 do not contain the RGDS- 
dependent celt-binding domain). All fragments were shown to be highly 
purified try PAGE in the presence of SDS and reducing agent. 

Adhesion Assays 
In experiments where unlabeled cells were to be photographed by phase- 
contrast microscopy, cells were inoculated into pre-coated 24- or 48-well 
cluster dishes (Costar, Cambridgc~ MA). The substratum had been treated 
by one of two possible protocols (36, 37). In the first protocol, wells were 
rinsed twice with PBS, then an appropriate volume (500 ttl for 24-welt 
dishes; 200 ~1 for 48-welt dishes) of protein solution (20 gg/ml pFN alone 
or a mixture of pFN plus the indicated concentration of a specific PG; or 
250 Ixg/ml hot-treated BSA as a control substratum [in all cases, this 
yielded no attachmenq) in serum-free DME was added and the wells were 
incubated for I hat 37~C. BSA was then added to ~etls to fired concentration 
of 250 ~tg/ml (adhesion medium), followed by inoculation of IO ~ cells. In 
the second protocol, wells were first adsorbed with 20 gig/rot pFN for l h 
at 37~ in scrumqYee DME, rinsed free of pFN, and then post-incubated 
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with varying amounts of bovine articular cartilage DS-PGs or cartilage I00 
CS/KS-PG in serum-flee DME for 1 h at 37~ This was followed by addi- 
tion of BSA and finally inoculation of 105 cells. A 

Collagen coating was performed as follows: the wells of a 48-well dish .~ 80: 
were rinsed twice with PBS and 200 ttl/well of vitrogen-lO0 solution in PBS _~ 
(50 gg/ml type I collagen) was added to each well; the dish was incubated ~ 60 
for 15 min at 37~ to promote gelation and then allowed to dry overnight at ~o 
room temperature. Use of higher concentrations of collagen for coating or ~ 40  
longer periods of adsorption yielded the stone results as reported here. The ~. 
wells were rinsed twice with PBS and post-adsorbed with pFN (at 50 < 20 
I~g/ml), DS-PGs (at 100 Ixg/ml), or CS/KS-PG (at 300 Ixg/ml) as described 
below. 

Quantitation of Attachment 

For radiolabeling of cells to be used in the attachment assays (37), cells were 
freshly passaged by trypsinization. 24 h later, the medium was replaced 
with one containing 0.1 txCi/ml [methyl-H3]thymidine (sp act = 50-90 
Ci/mmol). After 24 h or 48 h, depending on whether the attached or the 
unattached cells were being assayed as below, the medium was replaced with 
unlabeled medium for an additional 24 h. Either glass coverslips were 
placed in 100-ram diameter tissue culture dishes, which were subsequently 
coated with the specific protein to assay attached cells, or alternatively 24- 
well cluster dishes were used to assay unattached cells. Triplicate glass cov- 
erslips were removed at indicated times, rinsed three times with PBS, and 
placed in scintillation vials to assay radiolabeled attached cells. To quanti- 
tate unattached ceils in wells of cluster dishes, all medium in each well was 
transferred to a BSA-coated plastic vial and then triplicate aliquots were 
taken to assay unattached cells (N) for comparison with a same-size aliquot 
of the original cell inoculum (No). Percent of cells attached in a well was 
calculated as C = (1-N/No) x 100%, where N represents radiolabeled and 
unattached cells in the wells. Both attachment assays yielded the same 
results. 

Preparation of Samples for Microscopy 

For phase-contrast microscopy, tissue culture wells with attached cells at 
the indicated times were rinsed twice with PBS, incubated for 30 rain at 
room temperature with 3 % glutaraldehyde in PBS, rinsed twice with PBS, 
and stored in PBS-containing 0.02% sodium azide at 4"C. Phase-contrast 
micrographs were taken on a Nikon Diaphot inverted phase-contrast micro- 
scope. In some cases, glutaraldehyde fixation was performed directly in the 
adhesion medium of the well before rinsing and storage. 

AJfinity Chromatography 

pFN or PF4 affinity columns were prepared by cross-linking the ligands to 
CNBr-activated Sepharose 4B beads as described previously (33), taking 
precautions to avoid inactivation of the critical lysine residues in the binding 
site of PF4. Excess residues were blocked with 1 M monoethanolamine for 
2 h at room temperature and the beads were then washed and suspended 
in TMC (0.05 M Tris, pH 7.4, 1 mM MgC12, 1 mM CaCI2) buffer. The 
saturation limits of 20 ml pFN-Sepharose or PF4-Sepharose columns were 
determined by chromatography of [3H]heparin (sp act = 0.2-1 mCi/mg) 
with varying amounts of nonradioactive heparin. After washing the pFN 
column with 50 rnl TMC buffer, a gradient of 0-0.6 M NaC1 in TMC was 
applied (40 ml total), followed by 10 ml 0.6 M NaCI in TMC and finally 
10 ml 2 M NaC! in TMC. With PF,4 columns, the gradient applied was 
0-0.8 M NaC1 in TMC. Fractions were collected, radioactivity was mea- 
sured by scintillation counting, and salt concentration was determined by 
refractometry. The elution of proteoglycans was monitored by uronate deter- 
minations using the carbazole method (50). 

Materials 

Cluster dishes and 100-ram petri dishes were obtained from Costar; DME 
was from Gibco, Grand Island, NY; neonatal calf serum and FCS were from 
Biologos, Inc., Naperville, IL; No. 1 (U x 22-mm) micro cover glasses 
were from Arthur H. Thomas Co., Philadelphia, PA; Thermanox plastic 
coverslips (13-mm diana) from Miles Scientific, Elkhart, IN; [methyl- 
H3]thymidine and [3H]heparin from New England Nuclear, Boston, MA; 
Sepharose 4B was from Pharmacia Fine Chemicals, Uppsala, Sweden; 
vitrogen-100 was from Collagen Corp., Palo Alto, CA; BSA and EGTA were 
from Sigma Chemical Co., St. Louis, MO; glutaraldehyde and technical 
pan films from Eastman Kodak Co., Rochester, NY; paraformaldehyde was 
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Figure 1. Kinetics of 313 at- 
tachment: effects of proteogly- 
can. BALB/c 313 ceils were 
radiolabeled by [3H]thymidine 
incorporation as described in 
the Materials and Methods. 
They were then detached from 
stock cultures by EGTA treat- 
ment, rinsed twice with adhe- 
sion medium, and then inocu- 
lated into dishes containing 
glass coverslips. These dishes 
had been previously adsorbed 
with 20 [tg/ml pFN alone in 

serum-free DME for 1 h at 37~ (no PG; o); or with a mixture of 
20 gg/rnl pFN plus 300 Ixg/ml cartilage CS/KS-PG (CS-PG; A); 
or a mixture of 20 Ixg/ml pFN plus 100 ~tg/ml articular cartilage 
DS-PGs (DS-PG; o). BSA was added to a final concentration of 
250 ~tg/ml and cells were inoculated. At the indicated times, tripli- 
cate coverslips were removed from dishes, rinsed twice with PBS, 
and placed in scintillation vials for determination of the amounts 
of  radiolabeled cells adherent. This number is corrected for the to- 
tal number of cells inoculated (as the 100% value) as shown on the 
Y axis. Standard deviations are shown. 

from Fisher Scientific Co., Fairlawn, NL Rabbit polyclonal antibody to 
BSA was kindly provided by Dr. Abram Stavitsky of this department and 
rabbit polyclonal antiserum to bovine articular cartilage DS-PG by Dr. 
A. R. Poole of the Shriners Hospital for Crippled Children (Montreal, 
Canada). 

Results 

Inhibition of pFN-mediated Attachment to DS-PGs 

Art icu la r  car t i lage D S - P G s  were  tested for possible  effects 
on a t tachment  o f  BALB/c  313 cel ls  on human pFN-coa t ed  
substrata, For  compar i son ,  the inhibi tory capaci ty  o f  cart i-  
lage C S / K S - P G  m o n o m e r  f rom the same  mature  bovine  ar- 
t icular  cart i lages was also examined.  As shown in Fig. 1 
using the at tached cel l  assay descr ibed  in Mater ia ls  and 
Methods ,  a concentra t ion  o f  300 l tg /ml  o f  car t i lage C S / K S -  
P G  has li t t le inhibi tory effect on the a t tachment  kinet ics  o f  
313 cel ls  on substrata coated  with  a mix ture  o f  p F N  and the 
P G  and when  the C S / K S - P G  is left  in the adhesion m e d i u m  
(however, in agreement  with previous  studies [32, 48],  
h igher  concentrat ions  of  this proteoglycan do b e c o m e  inhibi-  
tory).  In contrast ,  a concentra t ion  o f  100 gg /ml  o f  ar t icular  
car t i lage D S - P G s  comple te ly  abol ished at tachment  (Fig. 1) 
in the same  adhesion assay. Ident ical  results were  also ob-  
tained when  substrata were  first coated with 20 gg/rnl  p F N  
and then the proteoglycan was added  to the adhes ion  m e d i u m  
at the t ime  o f  inoculat ion o f  cel ls;  a lso when  the unattached 
cel l  assay was used.  

W h e n  bovine  de rmal  fibroblasts were  tested in the same 
assays, their  a t tachment  and spreading processes  were  insen- 
si t ive to e i ther  proteoglycan on  p F N  substrata, consis tent  
wi th  a mult ipl ic i ty  o f  mechan i sms  by which  the co l lagenous  
matr ices  (produced const i tut ively and secreted by these der-  
mal  fibroblasts in cul ture [24a]) provide  for their  adhesion 
(see below).  W h e n  dermal  fibroblasts were  treated with  2 
~tg/ml o f  cyc loheximide  for 16 h to inhibit  synthesis and 
deposi t ion o f  their  endogenous  mat r ix  and then assayed for 
adhesive  responses  on p F N ,  both a t tachment  and spreading 
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Table L Quantitation of  DS-PG Bound to Various Substrata* 

Substratum DS-PG OD405 

lag /ml 
BSA 0 0.18 

DS-PG 5 0.38 
10 0.90 
20 1.3 

100 1 . 4  

DS-PG on pFN I0 0.32 
100 0.49 

DS-PG on CBF 10 0.92 
100 1 . 0 1  

* Wells of a 96-well tissue culture dish were coated at 37~ with BSA only 
(250 I~g/ml), DS-PG only at the indicated concentrations, pFN (20 ~glml) for 
1 h followed by 1 h of DS-PG at the indicated concentrations (along with 250 
I.tg/ml BSA), or CBF (20 Ixg/ml) for 1 h followed by 1 h of DS-PG at the indi- 
catad concentrations (along with 250 I~g/ml BSA). All wells were then rinsed, 
post-adsorbed with heat-treated BSA (250 I~g/ml), rinsed again, and bound 
DS-PG was assayed by ELISA in the linear region of the binding curve using 
polyclonal rabbit anti-bovine articular cartilage DS-PG and an alkaline phos- 
phatase conjugate. Optical density was measured at 405 nm after 70 min of 
reaction time and values routinely fell within a range of +5% of the value 
given. 

were partially inhibited by DS-PG but not by CS/KS-PG 
(data not shown), These results confirm the complexity and 
multiplicity of mechanisms that such matrix-producing cells 
can use in adhesion processes. 

Adsorption of  DS-PGs or CS/KS-PG to the substratum in 
the absence of  any pFN,  followed by inoculation of  either 3T3 
or  bovine dermal  fibroblasts, resulted in no detectable attach- 
ment. This suggests either that there are no "receptors" on 
the surfaces of  these cells for these PGs (in contrast to other 
cell populations wher~e proteoglycan receptors have been 
demonstrated [23a]) or  that the binding of PG to the substra- 
tum creates steric problems which circumvents the action of 
possible PG "receptors" To examine the binding of  PGs to 
the substratum, ELISAs were used both with polyclonal 
an t i -DS-PG for direct determination or, alternatively, by in- 
direct detection of  the blockage of  the substratum by PGs 
with polyclonal antibody to BSA. As shown in Table I, the 
ELISA in which we used an t i -DS-PG reveals maximal bind- 
ing of  the PG antigen to the substratum between 10 and 20 
~tg/ml. This level of  binding to the naked substratum by DS- 
PG was approximately threefold higher than the binding of  
DS-PG to a pFN-coated substratum (Table I). Maximal  bind- 

Figure 2. Dose dependence of 
proteoglycans and cell mor- 
phology. Cluster dishes (24 
well) were coated with 20 
~tg/ml pFN alone (A) or with 
a mixture of pFN and a spe- 
cific PG (cartilage CS/KS-PG 
in B-D or cartilage DS-PGs in 
E-G) as described in Materi- 
als and Methods and the leg- 
end to Fig. 1. EGTA-detached 
and rinsed 3T3 cells were then 
inoculated. After 4 h of cell 
attachment "and spreading, the 
wells were rinsed welt, fixed 
with glutaraldehyde, and pho- 
tographed for phase-contrast 
microscopy. The following con- 
centrations of PG were used: 
(B and E) 10 ~tg/ml; (Cand F)  
100 Ixg/ml; and (Dand G) 300 
Ixg/ml. Bar, 20 vtm. 
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Figure 3. Post-adsorption of the substratum with DS-PGs. Cluster 
dishes were coated with 20 ttg/ml pFN, rinsed well, and post- 
adsorbed with (A) nothing, (B) 10 ltg/ml cartilage DS-PGs in PBS, 
or (C) 100 txg/ml DS-PGs for an additional hour at 37~ The wells 
were then rinsed twice with adhesion medium and refed with fresh 
adhesion medium without any additions. Ceils were then inoculated 
for a 4-h incubation and fixed with glutaraldehyde for phase- 
contrast microscopy. Bar, 20 ~tm. 

ing of CS/KS-PG to the substratum was measured based on 
blockage of binding of BSA using anti-BSA and was ob- 
served at 30-50 ~tg/ml; furthermore, even at this maximal 
level of CS/KS-PG binding, ,~15 % of the substratum sites 
were still available to BSA binding whereas 20 gg/ml DS-PG 
completely blocked BSA binding (data not shown). 

Dose responses for inhibition of 3T3 attachment and 
spreading are shown in Fig. 2. At 4 h with adsorption to the 
substratum with pFN alone or pFN mixed with the particular 

proteoglycan, cartilage CS/KS-PG at 10 (Fig. 2 B) or 100 
I~g/ml (Fig. 2 C) displayed no inhibition of attachment or 
spreading when compared to the untreated control (Fig. 2 
A). Even at 300 ~tg/ml (Fig. 2 D), there was a limited effect 
on the spreading of the cells. In marked contrast, cartilage 
DS-PGs at 10 l~g/ml (Fig. 2 E) generated more bipolar cells 
and at 100 Ixg/ml (Fig. 2 F) prevented any extensive spread- 
ing and left cells attached in a fragile manner, requiring very 
careful rinsing of wells to detect any adherent cells. At 300 
lxg/ml (Fig. 2 G), attachment was completely inhibited. 
Identical effects were noted when the substratum was first ad- 
sorbed with pFN and then PG was added at the time of inocu- 
lation of ceils. 

Several experiments were undertaken to determine wheth- 
er the effects of the DS-PGs were on the cell surface re- 
ceptors recognizing pFN or on the substratum-bound pFN 
itself. When platelet factor-4, which binds effectively to sev- 
eral different proteoglycans including CS-PGs or DS-PGs 
(34, 67; see below), was tested as the adhesion-promoting 
ligand on the substratum (36, 37), cartilage CS/KS-PG was 
just as effective at inhibiting attachment as cartilage DS-PGs, 
demonstrating differences in specificity between pFN and 
PF4 substrata (see affinity fractionations below). An experi- 
ment was also performed in which pFN-coated wells were 
post-adsorbed with the DS-PGs for a time period, the excess 
pFN and PG were rinsed off the substratum, and then 3T3 
cells were added to evaluate attachment and spreading. As 
shown in Fig. 3 B, post-adsorption of pFN substrata with 10 
gg/ml DS-PGs inhibited the spreading of cells when com- 
pared to untreated controls (Fig. 3 A) in the absence of any 
proteoglycan in the adhesion medium. At 100 gg/ml DS-PG 
post-adsorption (Fig. 3 C), the substratum was saturated and 
inhibition was maximal. When EGTA-detached 3T3 cells 
were treated in suspension with high concentrations of DS- 
PGs for 1 h and then rinsed free of excess proteoglycan be- 
fore inoculation into pFN-coated wells, there was no inhibi- 
tion of attachment or spreading (data not shown). All of these 
data taken together indicate that the mechanism of inhibition 
involves the binding of the DS-PG to the GAG-binding do- 
mains of pFN on the substratum, thereby inhibiting the bind- 
ing of cell surface receptors to the complex on the sub- 
stratum. 

The core proteins of the DS-PGs were maximally stripped 
of most of their dermatan sulfate chains by chondroitinase 
ABC digestion under conditions where the integrity of the 
core protein is conserved, as described previously (50), in 
order to test for any inhibitory activity by this moiety. DS 
chains were also prepared by alkaline-borohydride elimina- 
tion to test their possible inhibitory activities separately. At 
concentrations as high as 250 gg/ml, neither the core protein 
nor the DS chains displayed any inhibition of attachment or 
spreading of 3T3 cells (data not shown). This is consistent 
with the weaker and less sterically restrictive binding of the 
"univalent" DS chains to the substratum-bound pFN and the 
much more effective inhibition by the multivalent proteogly- 
can as found in previous studies (30). Of equal importance, 
this demonstrates that the inhibition cannot be explained by 
interaction of the DS-PG core protein with the pFN on the 
substratum. 

Collagen-dependent Adhesion Processes 

A series of experiments were then designed to test whether 
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Figure 4. Collagen-coated sub- 
strata and effects of proteogly- 
can. Cluster dishes were coated 
with type I collagen as de- 
scribed in the Materials and 
Methods. In wells A-C and 
E-G, pFN (50 gg/ml) was 
post-adsorbed for 1 h at 37~ 
in serum-free DME; in wells 
D and H, DS-PGs (100 ~tg/ml) 
were post-adsorbed in the ab- 
sence of any exogenous pFN. 
After rinsing the wells, BSA 
was added to 250 gg/ml to all 
wells; DS-PG-s (100 ktg/ml) 
were added to wells B and F; 
or CS/KS-PG (300 I~g/ml) to 
wells Cand G. Finally, EGTA- 
detached 313 cells were inoc- 
ulated into wells A-D and 
EGTA-detached bovine der- 
mal fibroblasts into wells E-H. 
After 4 h of incubation, all 
wells were rinsed twice with 
PBS and adherent cells fixed 
with glutaraldehyde as de- 
scribed in Materials and Meth- 
ods for phase-contrast micros- 
copy. Bar, 20 gin. 

the PGs can inhibit attachment and spreading of either 3T3 
cells (Fig. 4, A-D) or bovine dermal fibroblasts (Fig. 4, 
E-H) on substrata coated with type I collagen. At 4 h, both 
3T3 cells (Fig. 4 A) and dermal fibroblasts (Fig. 4 E) attach 
and spread effectively on type I collagen post-adsorbed with 
pFN. Neither 100 ~tg/ml DS-PG (Fig. 4, B and F)  nor 300 
~tg/ml CS/KS-PG (Fig. 4, C and G) had any inhibitory 
influence on adhesion processes by either cell type. Simi- 
larly, in the absence of any exogenous pFN, adsorption of 
DS-PGs to the collagen layer had no adverse effect on attach- 
ment or spreading by either cell type (Fig. 4, D and H). 
These results were also observed at shorter or longer time 
points, as well as higher concentrations of PG adsorbed over 
longer periods of time. These data are consistent with 
collagen-dependent and fibronectin-independent mecha- 
nisms of adhesion of these cells, as found previously (26, 31, 

39), that are insensitive to the inhibitory influence of these 
proteoglycans. Therefore, the biochemical complexity of the 
extracellular matrix is a critical determinant in providing 
sensitivity or resistance of fibroblasts to the adhesion- 
modulating effects of proteoglycans. 

Affinity Chromatography of Proteoglycans 

A series of affinity chromatography experiments were de- 
signed to evaluate the binding between these proteoglycans 
and pFN or PF4 as a biochemical correlation of the adhesion 
function studies described above. Each proteoglycan applied 
in milligram quantities (using the carbazole assay to quanti- 
rate the uronic acid contents of column fractions) was tested 
on PF4-Sepharose or pFN-Sepharose under subsaturating 
conditions. As shown in Fig. 5 A, cartilage DS-PGs bind 
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Figure 5. Affinity chromatog- 
raphy of proteoglycans. PF4- 
(A and B) or pFN-Sepharose 
(C and D) affinity columns 
were prepared as described in 
Materials and Methods. Col- 
umns were rinsed well with 
TMC buffer, and 1-2-mg quan- 
tities of cartilage DS-PGs (A 
and C) or CS/KS-PC~ (B and 
D) were applied in TMC. At 
the open arrowhe~ (I), a NaCl 
gradient in TMC was intro- 
duced (0-0.6 M for pFN or 
0-0.8 M for PF4). At the sin- 
gle arrow (I/), a solution of 
0.6 or 0.8 M NaCl in TMC 
was introduced for pFN or 
PF4, respectively. Finally at 
the double arrow (III), 2 M 
NaC1 in TMC was introduced. 
Fractions were assayed for 
uronie acid contents by the 
earbazole assay at an OD of 
530 nm (recoveries apprmd~ 
82-88% of the material ap- 
plied). Salt content was deter- 
mined by refractometry. 

completely to PF4 and require relatively high NaCI for elu- 
tion whereas CS/KS-PG binds completely but requires lower 
NaC1 for elution (Fig. 5 B). When DS-PGs are tested on 
pFN columns (Fig. 5 C), binding is complete and a subset 
of molecules requires very high NaC1 for elution. In marked 
contrast, only a relatively small subset of CS/KS-PG mole- 
cules binds to pFN (Fig. 5 D) while the vast majority of mol- 
ecules flow through the column without any retardation; the 
molecular basis for the binding and nonhinding subsets has 
not been determined. However, these affinity chromatogra- 
phy studies reveal the basis for the differences in adhesion 
inhibition on pFN versus PF4 substrata described above-  
namely, the much more effective and complete binding of 
DS-PGs to pFN compared with the cartilage CS/KS-PG. 

Adhesion on Cell-binding Fragments of  Fibronectin 

To further evaluate the roles of fibronectin's heparin-binding 
or cell-binding domains in the inhibitory process, adhesion 
studies were performed using various fragments of human 
plasma or cellular fibronectin molecules after their digestion 
with a specific protease and subsequent purification on 
affinity columns. 120K CBF purified from chymotrypsin 
digests of human pFN was used initially, since it lacks 
collagen- and heparin-binding activities when assayed as a 
soluble ligand (3, 14, 45). 3T3 cells attach, spread partially, 
and generate a distinctive pattern of close contacts and 
microfilament reorganization on this 120K CBF (29, 34). 

When 3T3 cells were tested on 120K CBF substratum after 
post-adsorption with a high concentration of the core protein 
of DS-PGs (Fig. 6 A) or dermatan sulfate chains (Fig. 6 B; 
insufficient amounts of chains restricted the testing of even 
higher concentrations), attachment and spreading were iden- 
tical to a CBF-coated well that did not receive chains or core 
(not shown); 1caving the chains or core in the wells through- 

out the attachment process also failed to inhibit adhesive re- 
sponses. However, the intact DS-PGs were highly inhibitory 
to attachment on CBF, either with re-addition of CBF after 
the DS-PG treatment period (Fig. 6 C and Table II) or with 
no further addition of CBF (not shown). Also, 100 ~tg/ml 
CBF added in the medium along with the DS-PGs (at 5-50 
gg/ml) could not "neutralize" the inhibitory activity, indicat- 
ing that the substratum-bound CBF has a binding activity not 
displayed by solution-borne CBF; also, pretreatment of cells 
in suspension with DS-PGs did not alter their responses on 
CBF (data not shown). When the dose of DS-PGs was var- 
ied, concentrations as low as 5 ~g/ml were inhibitory (Fig. 
6 D),  demonstrating a far greater sensitivity than that dis- 
played by the intact pFN molecule as described above. In all 
cases, CS/KS-PG at concentrations as high as 300 lag/ml had 
no effect on CBF-mediated adhesion (Fig. 6 E and Table II), 
indicating specificity in the process. Treating the CBF sub- 
stratum for time periods as short as 5 min with the DS-PGs 
was also inhibitory (Fig. 6 F).  The effectiveness of binding 
of DS-PG to a CBF-saturated substratum (such that no BSA 
binding can be detected in the ELISA using anti-BSA) is 
demonstrated in Table I. Approximately twice as much DS- 
PG antigen binds to the CBF coating when compared to the 
pFN coating; this binding is still well below the level ob- 
served for DS-PG binding to naked surfaces in the same as- 
say. This would suggest either that the specific activity for 
PG binding on CBF is twice as high as that on the intact pFN 
molecule (consistent with the size difference for the two 
polypeptides) or that the dissociation process is reduced, 
thereby permitting detection of higher steady-state levels of 
binding. 

A number of other experiments were used to explore the 
mechanism of this inhibition. A potential problem would 
arise if a protease contaminated the DS-PG preparations, 
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Figure 6. DS-PGs and adherence on 120K CBF of plasma fibronectin. Cluster dish wells were coated for 1 h at 37~ with 20 ~tg/ml of 
the 120K CBF generated by chymotrypsin digestion of human plasma fibronectin and purified by affinity chromatography (Materials and 
Methods). After rinsing the wells of excess CBF, the following solutions were added for a 1-h incubation at 37~ (A) Core protein of 
DS-PG (250 pg/ml) plus BSA (250 I~g/ml), followed by rinsing of the well; (B) dermatan sulfate chains of DS-PG (250 I~g/ml) plus BSA 
(250 ~tg/mi), followed by rinsing of the well; (C) DS-PGs (50 Ixg/ml) plus BSA (250 ~tg/ml) and CBF (100 Ixg/ml), followed by rinsing 
of the well and re-addition of CBF (100 txg/ml); (D) DS-PGs (5 ~tg/ml) plus BSA (250 Ixg/ml); followed by rinsing of the well; (E) CS/KS-PG 
(300 ixg/ml) plus BSA (250 Ilg/ml) which was left in the well throughout cell attachment period. In the case of E DS-PGs (100 ~tg/ml) 
plus BSA (250 Ixg/ml) were used to treat the substratum for only 5 min before rinsing of the well. 3T3 cells were then inoculated in BSA- 
containing adhesion medium. After 4 h, adherent cells were fixed with glutaraldehyde and photographed. Bar, 40 Ixm. 

resulting in destruction of the CBF on the substratum. This 
appears not to be the case since BSA added at high concen- 
trations throughout the experiment could not "neutralize" the 
activity; pretreating the DS-PG with a multitude of protease 
inhibitors (EDTA, N-ethylmaleimide, pepstatin, phenylmeth- 
ylsulfonyl fluoride, benzamidine hydrochloride, 6-amino- 
caproic acid) was also without effect. In addition, the inhibi- 
tion could also be effected by high concentrations of heparin 
chains (>500 I~g/ml), consistent with the much weaker activ- 

Table IL Quantitation of Inhibition of Attachment 
on CBF by DS-PG* 

Substratum Time point Unattached cells 

mitt cpm 

CBF 15 330 + 12 
60 175 + 8 

120 170 + 5 

CBF + CS/KS-PG 15 490 + 9 
60 280 + 8 

120 310 • 15 

CBF + DS-PG 15 850 • 11 
60 872 + 7 

120 845 + 23 

* Wells coated with CBF alone (20 I.tg/ml) or a mixture of CBF (20 lag/mt) 
and CS/KS-PG (300 I~g/ml) or DS-PG (100 l~g/ml) as indicated received 
[3H]thymidine-radiolabeled BALB/c 3T3 cells. At the indicated time points 
(in minutes), the radioactivity in triplicate wells of the unattached cells was 
quantitated as described in Materials and Methods: at t = 0, this value was 980 
cpm + 16. 

ity of univalent binding chains as demonstrated previously 
(30). PF4 (100 l~g/ml) when pre-mixed with DS-PG (50 
~tg/ml) before treating the CBF substratum completely "neu- 
tralized" the inhibitory activity of the proteoglycan (data not 
shown). All of these data taken together indicate that the 
120K CBF contains a cryptic GAG-binding domain that be- 
comes active when the fragment is bound to the substratum 
and that binding to this domain by DS-PGs (but not CS/KS- 
PG) interferes with the cell-binding activity of the molecule. 

The properties of this cryptic domain were explored fur- 
ther by using a series of fragments of plasma or cellular 
fibronectin from thermolysin digests as previously purified 
(4, 7). Using cellular fibronectin as the starting material, 
fragments of 44 and 47 kD (f44+47) contain the COOH- 
terminal heparin-binding domain and the so-called "extra do- 
main" (EDa) sequence characteristic of cellular fibronectins 
but no RGDS-dependent cell-binding domain. As shown in 
Fig. 7 A, 3T3 cells adhere and spread partially on these frag- 
ments and these responses are completely inhibited by the 
DS-PGs as would be expected by their binding to the avail- 
able heparin-binding domain (Fig. 7 B). Of particular in- 
terest were 3T3 responses on fU0 generated from both the ~t 
and 13 chains of plasma fibronectin, since this fragment con- 
tains RGDS-dependent cell-binding activity but no heparin- 
binding activity when assayed in solution; 3T3 cells attach 
and spread even more effectively on fU0 (Fig. 7 C) than on 
f44+47 (Fig. 7 A) and, in agreement with the CBF experi- 
ments above, spreading is completely inhibited by DS-PGs 
and attachment is less than 30% of the control value (Fig. 
7 D). Similar results were observed on fl45 (Fig. 7, E and 
F), which contains the RGDS-dependent cell-binding and 
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Figure 7. DS-PGs and adherence on various thermolysin-generated fragments of plasma or cellular human fibronectin. Cluster dish wells 
were coated for 1 h at 3-/0C with 20 l~g/ml of purified fragments generated with thermolysin digestion and subsequent affinity chromatogra- 
phy as described in Materials and Methods and references 4 and 7. (A and B) f44+47 from cellular fibronectin which contain the COOH- 
terminal heparin-binding domain but no RGDS-dependent cell-binding domain; (C and D) ill0 from plasma fibronectin which contains 
the RGDS-dependent cell-binding domain but no heparin-binding domain when assayed as a soluble protein; (E and F) fl45 from the r 
chain of plasma fibronectin which contains the RGDS-dependent cell-binding domain and the COOH-terminal heparin-binding domain; 
and (G and H) f155 from the 13 chain of plasma fibronectin which contains the RGDS-dependent cell-binding domain and the COOH- 
terminal heparin-binding domain, as well as an additional type IN homology unit. BSA was then added to wells to 250 Itg/ml, as well 
as 100 lxg/ml DS-PGs to wells B, D, F, and H (or No PG in wells A, C, E, and G as controls) for an additional 1-h incubation. 313 cells 
were inoculated into wells. At 4 h of exposure to the substratum, adherent cells were fixed with glutaraldehyde and photographed. Bar, 
60 ~tm. 

COOH-terminal heparin-binding activities of the ~t subunit 
of pFN (and some IIICS sequence at the COOH-terminus of 
this fragment). However, a similar fragment from the 13 
subunit of pFN (1~5 in Fig. 7, G and H) with an additional 
type 1II homology unit is much more resistant to the effects 
of the DS-PG. Also, PF4 could "neutralize" the inhibitory ac- 
tivity of DS-PGs on these fragments and inhibition was also 
effected by heparin at concentrations >500 ltg/ml (data not 
shown). These results reveal that the cryptic GAG-binding 
domain must be located close to the cell-binding domain and 
is extremely sensitive to the conformation of the protein se- 
quence that lies between the cell-binding and COOH-termi- 
hal heparin-binding domains of the molecule. Identical 
results were obtained when glass substrata were used in place 
of plastic substrata; however, cell spreading on 120K CBF, 
ill0, and f145 on glass was more pronounced than on plastic. 

Discussion 

These experiments demonstrate that bovine articular carti- 
lage DS-PGs are effective inhibitors of attachment and 
spreading of BALB/c 313 cells on a plasma fibronectin- 
coated matrix. By comparison with previous studies (32, 48) 
and the results of this study using bovine cartilage CS/KS- 
PG, the DS-PGs are much more potent inhibitors of these 
processes. This probably reflects the more effective and com- 
plete binding of the DS-PGs to pFN, as demonstrated in 
affinity chromatography experiments of soluble-state mole- 
cules or in evaluation of PG binding to pFN on the substra- 
tum by ELISA methodologies, than the binding of CS/KS- 
PG. The inhibition by these DS-PGs is comparable to that 
observed for a rat yolk sac CS-PG with the use of L2 tumor 
cells adhering to fibronectin or collagen matrices, as re- 
ported by Brennan et al. (5). 

A sizable body of evidence indicates that the mechanism 
of inhibition of adhesion by the DS-PGs requires its binding 
to the GAG-binding domains on substratum-bound pFN, 
thereby interfering with pFN's binding to its multiple ce~ sur- 
face determinants (36, 37, 68). This evidence would include 
(a) comparable inhibition by both proteoglycans on PF4 sub- 
strata in contrast to the greater specificity for DS-PGs using 
pFN substrata; (b) persistent inhibition when the pFN sub- 
stratum is post-adsorbed with DS-PGs and rinsed free of ex- 
cess PG; (c) correlation of the affinity chromatography 
studies with the potency of inhibition by the two PG classes; 
(d) quantitation of PG binding to pFN on the substratum by 
ELISA; and (e) the absence of inhibition when cells are 
treated in suspension with high concentrations of DS-PGs. 
The question then arises as to how the binding of DS-PGs 
to the GAG-binding domains of pFN, binding processes 
which would be expected to directly interfere with binding 
to HSPGs on the surface of the cell (14, 30, 33, 36, 37, 68), 
can additionally interfere with the binding of pFN to the 
140-kD glycoprotein receptor (6, 9, 21, 47) or to a possible 
second receptor for fibronectin (1, 39, 61, 65). As discussed 
by Brennan et al. (5), there are probably two possible 
explanations- (a) the binding by DS-PGs sterically inter- 
feres with the RGDS sequence of pFN's binding to the 140- 
kD glycoprotein (as well as the second receptor), or (b) the 
binding of the PGs changes the conformation of the protein 
such that its association constant for receptor decreases 
markedly. Evidence for a conformational change upon hepa- 
ran sulfate binding has been recently reported for human 
pFN (42, 60). Many additional experiments will be required 
to resolve these possibilities. 

In light of the increasing evidence for association of DS- 
PGs with collagen fibrils and their influence on fibrillogene- 
sis (8, 20, 55, 64), inhibition of cell responses on colla- 
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gen/pFN matrices was tested with the two PG classes. There 
was a complete lack of inhibition of attachment and spread- 
ing by either cell type on type I collagen matrices, either 
when the DS-PGs or CS/KS-PG were previously adsorbed 
to the collagen alone (or to collagentpFN complexes for 
short or long periods of time) or when the PG was added to 
the collagen/pFN matrix at the same time that cells were 
added. A parallel finding was the relative lack of inhibition 
by DS-PGs of bovine dermal fibroblast adherence and 
spreading on pFN-coated substrata; this is consistent with 
the ability of these cells to make their own endogenous colla- 
gen matrix, thereby providing additional mechanisms of 
adhesion for these cells (1, 24a, 39, 61, 65). That cyclohexi- 
mide pretreatment makes these dermal cells more sensitive 
to PG inhibition supports this argument. These results stand 
in contrast to the common inhibition of rat yolk sac tumor 
cell adherence to either FN or collagen matrices using the 
rat yolk sac CS-PG as the inhibitory ligand (5). This would 
suggest that the mechanisms of association of CS-PGs or DS- 
PGs with collagen matrices are significantly different and 
that there are differing influences on cell responses. Since 
fibronectin complexed to collagen has been shown previ- 
ously to bind GAGs with the same specificity (5, 52, 69), 
it is unlikely that these results could be explained by altera- 
tion of binding of the proteoglycans once the fibronectin has 
eomplexed with the collagen. However, these results suggest 
that (a) there are fibronectin-independent mechanisms by 
which DS-PGs bind to the collagen lattice and (b) there are 
collagen-dependent, fibronectin-independent mechanisms for 
adherence of these cells as shown by previous studies (26, 
31, 38, 39). Furthermore, these processes apply to 3T3 cells, 
which fail to make a collagen matrix at their undersurfaces, 
as welt as to bovine dermal fibroblasts which do make such 
a matrix. All of these results suggest that inhibition of cell 
attachment and/or spreading responses on fibronectin ma- 
trices is selectively dependent upon the nature of the matrix 
in tissues (39, 59). It is known that fibroblast adherence and 
spreading on collagen matrices results in their eventual con- 
traction in response to cytoskeletal rearrangements (2, 58) 
and it will be interesting to evaluate the possible modulation 
by DS-PG binding and function during collagen contraction 
processes. 

Of special interest was the discovery that certain fragments 
of the fibronectin molecule that contain no apparent GAG- 
binding activity in solution do expose a cryptic GAG-binding 
domain when bound to the substratum, thereby becoming 
highly sensitive to the inhibitory effects of the proteoglycans 
(or to GAG chains at very high concentrations). The most 
likely explanation for this finding is a change in conforma- 
tion of the fragments when they bind to substrata, resulting 
in accessibility of this binding site to the proteoglycan and 
subsequent interference with the cell-binding activity by one 
or both mechanisms summarized above. In fact, DS-PG 
binds more effectively to CBF on the substratum when com- 
pared to pFN as determined by ELISA. Consistent with such 
a model, binding of human pFN to a number of artificial ma- 
trices has been shown to induce significant changes in its 
conformation (60) and activation of adhesion-promoting 
activity upon substratum binding has been reported for a 
chymotrypsin-generated 105-kD fragment of plasma fibro- 
nectin via the cell-binding activity of the fragment (53). 
Brennan et al. (5), using a similar 120-kD cell-binding frag- 

ment of pFN, could not detect this inhibitory activity with 
the rat yolk sac CS-PG and the studies reported here were 
unable to detect any inhibition with the cartilage CS/KS-PG; 
these results argue for the specificity of the cryptic site for 
binding heparan sulfate/dermatan sulfate classes of GAG. 
Analyses of small fragments from subtilisin digests of human 
pFN provided initial evidence for a third heparin-binding do- 
main between the collagen- and cell-binding domains of the 
molecule (24) and binding of thermolysin-generated frag- 
ments to heparin can be modulated by pH and Ca ++ (57). 

Of particular note in the studies here are differences in sen- 
sitivity of the two large cell-binding fragments purified from 
thermolysin digests by Zardi and his collaborators from the 
a and 13 subunits of pFN (4, 7). F145 from the r subunit was 
sensitive to inhibition with the DS-PGs while the f155 from 
the 13 subunit was relatively resistant. This would indicate 
that the protein sequence differences of these two fragments 
between the cell-binding and COOH-terminal heparin- 
binding domains (or the additional type III homology unit of 
f155 and small IIICS sequences that persist at the COOH ter- 
minus of fl45) do not contain this cryptic activity but do 
regulate accessibility to it. Studies with multiple overlapping 
combinations of fragments will be required to precisely map 
this third GAG-binding activity in the fibronectin molecule. 
These experiments raise the interesting possibility that the 
ability of certain cells to proteolytically modify the fibronec- 
tin at their adhesive contacts (10), thereby generating cell- 
binding fragments similar to those used here, would become 
much more susceptible to DS-PGs in their adhesive and 
migratory activities. 

These studies have revealed the versatility in the binding 
of the dermatan sulfate proteoglycans to the fibronectin mol- 
ecule and subsequent effects on adhesive functions. The col- 
lagenous nature of the substratum, as well as the conforma- 
tion of the fibronectin molecule itself as it binds to the 
extracellular matrix, provide critical determinants whether 
this class of proteoglycan is competent for influencing adhe- 
sive responses of many sorts. The availability of large 
amounts of purified DS-PGs and the construction of more 
complex, but biochemically defined, matrices now make 
many studies feasible. 
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