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Abstract

The patterns of polymorphisms in genomes are imprints of the evolutionary forces at play in nature. In particular,
polymorphisms have been extensively used to infer the fitness effects of mutations and their dynamics of fixation.
However, the role and contribution of molecular biophysics to these observations remain unclear. Here, we couple
robust findings from protein biophysics, enzymatic flux theory, the selection against the cytotoxic effects of protein
misfolding, and explicit population dynamics simulations in the polyclonal regime. First, we recapitulate results on the
dynamics of clonal interference and on the shape of the DFE, thus providing them with a molecular and mechanistic
foundation. Second, we predict that if evolution is indeed under the dynamic equilibrium of mutation–selection balance,
the fraction of stabilizing and destabilizing mutations is almost equal among single-nucleotide polymorphisms segregat-
ing at high allele frequencies. This prediction is proven true for polymorphisms in the human coding region. Overall, our
results show how selection for protein folding stability predominantly shapes the patterns of polymorphisms in coding
regions.
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Introduction
How and why the observed patterns of DNA polymorphisms
arise in the genome, and what are their molecular and phe-
notypic effects, is central to our understanding of the evolu-
tionary forces at play in nature. In public health and medicine,
polymorphisms are crucial in inferring the origin of diseases
and genetic traits (McCarthy et al. 2008) and in understand-
ing the spread of pathogens such as viruses (Vignuzzi et al.
2006).

A major utility of polymorphisms is in estimating the dis-
tribution of fitness effects (DFE) of mutations. Although the
DFE has been measured for viruses (Sanjuan et al. 2004), its
measurement in living organisms is difficult and resolution-
limited (Eyre-Walker and Keightley 2007). Thus, studies on
the DFE have largely relied on Bayesian maximum-likelihood
approaches to fit population dynamic and demographic
models to patterns of polymorphisms and amino acid differ-
ences between species (Bustamante et al. 2005; Eyre-Walker
et al. 2006; Sawyer et al. 2007; Kryukov et al. 2009). A consen-
sus result is that the DFE is characteristically skewed and can
be described by a gamma distribution (Bustamante et al.
2005; Eyre-Walker et al. 2006; Kryukov et al. 2009). There is,
however, a debate on the magnitude and relative balance
between the types of substitutions that fix in the popula-
tion—some consider them to be neutral or near neutral
(Ohta 1973; Nei et al. 2010), whereas others consider them
to be predominantly adaptive and beneficial (Smith and Eyre-
Walker 2002; Eyre-Walker and Keightley 2007). Indeed, there
is a longstanding debate (with patterns of polymorphisms
used as empirical support by all sides) on whether evolution

is primarily neutral (Kimura 1968; Ohta 1973; Nei et al. 2010),
adaptive (McDonald and Kreitman 1991; Smith and Eyre-
Walker 2002), or driven by drift (Lynch and Conery 2003).
Distinguishing adaptive, neutral, and nearly neutral modes of
molecular evolution remains challenging (Akashi et al. 2012)
because the predictions are overlapping.

The patterns of polymorphisms can also be used to gain
insight into the dynamics of allele segregation and in deter-
mining which mutations are eventually fixed or lost in evo-
lution (for a practical example, see Strelkowa and Lassig 2012).
In general, the dynamics is expectedly complicated because of
the intrinsic stochasticity of drift and mutation, compounded
by history and demography of the evolving population. The
trajectories of mutations in polyclonal populations are dy-
namically rich because of potential clonal interference, hitch-
hiking, and/or background selection. Major advances have
been described in recent years to infer the dynamics
(Gerrish and Lenski 1998; Wilke 2004; Desai and Fisher
2007), but their connection to molecular biophysics is still
unclear.

Most of the approaches in the studies above assume the
DFE and then infer the possible dynamics (Gerrish and Lenski
1998; Desai and Fisher 2007) or assume the possible dynamics
and then infer the DFE (McDonald and Kreitman 1991;
Bustamante et al. 2002; Smith and Eyre-Walker 2002). This
poses a potential limitation because demography and the
DFE are intrinsically coupled (Silander et al. 2007). More im-
portantly, these approaches lack explicit connection to the
molecular properties of segregating polymorphisms, such
as folding stability, or to the widely accepted selective
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constraints on protein evolution, such as avoidance of protein
misfolding and misinteraction (Pal et al. 2006; Drummond
and Wilke 2008; Zhang et al. 2008; Koonin and Wolf 2010).

An alternative and complementary approach is to
develop an evolutionary framework based on a realistic
genotype–phenotype relationship and allow the patterns of
polymorphisms, mutational dynamics, and the DFE to be
consequences of the model. Knowledge of the genotype–
phenotype relationship entails systematic accounting of the
molecular properties encoded by the genome and the exten-
sive mapping of their interactions whether physical, biochem-
ical, or genetic. Although these relationships are overall
complex, at least for coding regions, there is a general con-
sensus that the fitness of the organism is a function of the
metabolic output (Edwards et al. 2001; Duarte et al. 2007),
itself also a function of the biophysical properties of proteins
(Bar-Even et al. 2010). Another emerging constraint on
protein evolution is the global selection against the
cytotoxic effect of aggregated, presumably misfolded proteins
(Bucciantini et al. 2002). The universality of such a constraint
is manifested in the consistent correlation between the rate of
protein evolution and cellular abundance (Drummond and
Wilke 2008; Yang et al. 2010; Serohijos et al. 2012).

To arrive at a more mechanistic origin of the patterns of
polymorphisms that explicitly account for their biophysical
effects, we coupled molecular biophysics, the emerging
knowledge of the genotype–phenotype relationship, and ex-
plicit population dynamics simulations. First, we show that
the DFE is not constant but a dynamic consequence of the
evolutionary process. Specifically, under the equilibrium of
mutation–selection balance and because of the epistatic in-
teractions between mutational effects on protein folding sta-
bility, the DFE evolves to be concentrated around effective
near neutrality with the characteristic gamma distribution
(Kryukov et al. 2009). Second, even under equilibrium, we
observe pervasive background selection and hitchhiking
that expand the regime of effective near neutrality, consistent
with prior studies (e.g., McVean and Charlesworth 2000;
Neher and Shraiman 2011). Because we base our premise
on molecular biophysics and emerging genotype–phenotype
relationships, our approach could provide a molecular foun-
dation to these observations. More importantly, we could also
relate these findings in evolutionary biology to predictions of
their molecular consequences. In particular, we predict that if
evolution is indeed under equilibrium, the fraction of stabi-
lizing and destabilizing mutations are almost equal among
single-nucleotide polymorphisms (SNPs) segregating at high
allele frequencies. Despite some simplifying assumptions, this
prediction is proven true for polymorphisms in the human
coding region.

Results

Coupling Biophysics and Population Dynamics in the
Polyclonal Regime

To couple population dynamics and molecular biophysics, we
model an evolving population of Ne = 103 organisms with
explicit genomic sequences consisting of ten open reading

frames that code enzymes from the folate biosynthetic path-
way (fig. 1A and supplementary table S1, Supplementary
Material online), an essential biochemical pathway for
amino acid synthesis. These model genes have corresponding
3D structures from the protein databank that can be used in
estimating the biophysical effects of mutations (see Materials
and Methods). We assume that the fitness f of the organism
or its probability of replication is a function of both the total
metabolic output (Dykhuizen et al. 1987) and the total
number of misfolded proteins in the cell; the latter accounts
for the cytotoxicity of misfolded proteins (Drummond and
Wilke 2008). Thus, the total fitness is

f ¼ fflux � ftoxicity ð1Þ

From linear pathway theory, the flux term may be ex-
pressed as (see Materials and Methods)

fflux ¼
a0P10

i¼1

"i Ai
e���Gi

1 + e���Gi

� ��1
ð2Þ

where ei is the enzyme efficiency, Ai is the cellular abundance,
and �Gi is the folding free energy. The index i is for each gene
in the model. We make the simplifying assumption that all
enzymes have the same efficiency ei = 1. The factor �= 1/kBT
(kBT = 0.593 kcal/mol) and a0 is a normalizing constant (see
Materials and Methods). The contribution to fitness of the
misfolding toxicity may be expressed as (Serohijos et al. 2012)

ftoxicity ¼ c
X10

i¼1

Ai
1

1 + e���Gi

� �
ð3Þ

where c = 10�4 is the fitness cost per misfolded protein
(Drummond and Wilke 2008). In this formulation, the opti-
mal fitness is 1 and occurs in the regime where proteins are
very stable (supplementary fig. S1, Supplementary Material
online). Equations (1)–(3) constitute an explicit biophysics-
based genotype–phenotype relationship. The model also fea-
tures epistasis between genes because they are all coupled in
the fitness function (eqs. 1–3).

We coupled the genotype–phenotype relationship to an
evolutionary dynamics model that includes mutation,
selection, and drift (see Materials and Methods and supple-
mentary fig. S2, Supplementary Material online). Specifically,
at each replication event, a cell divides into two daughter cells,
each can potentially mutate at the rate of �= 0.01/genome/
replication (1.5� 10�6/base pair/replication). If the mutation
is nonsynonymous, we estimate the change in folding
stability (��G = �Gmutant��Gwildtype) using a physical
force field (Yin et al. 2007) and then update the fitness of
the organism (see Materials and Methods). We ran our
simulation until it achieved mutation–selection balance
(fig. 1B). Throughout the simulation run, we saved the full
history of all arising mutations and the genomes of all
surviving individuals (see Materials and Methods). Analysis
was performed only in the regime of mutation–selection
balance.
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Mutation–Selection Balance Under Pervasive Clonal
Interference

We then analyzed the various types of mutations and the
dynamics of their segregation in the population. Because the
simulations are performed at high mutation rate, there is
pervasive clonal interference (fig. 1C). We classified all arising
mutations according to their fitness effect, quantified by the
selection coefficient s = (fmutant� fwildtype)/fwildtype. Because
the fitness function is protein-centric, mutations that increase
folding stability (��G< 0) are beneficial, whereas those that
decrease stability (��G> 0) are deleterious. Synonymous
substitutions are considered neutral. In figure 2A, we show
typical trajectories of mutations that eventually fixed in the
population (see also supplementary fig. S3, Supplementary
Material online). In the regime of high mutation rate, several
mutations arise over the lifetime of a segregating allele (fig. 1C
and 2A). The distribution of minor allele frequencies for the
SNPs in simulation and the human coding region are shown
in supplementary figure S4, Supplementary Material online.

Our simulations exhibit clonal sweeps, characterized by the
correlated fixation of mutations, usually driven by a beneficial

mutation (fig. 2B). Such clonal sweeps are typically character-
ized by a slow rise followed by a rapid drop in polymorphisms
(fig. 2C). The anatomy of such sweeps entails deleterious mu-
tations hitchhiking on the beneficial mutations; consequently,
these deleterious mutations now have a significant probabil-
ity of fixation compared with the monoclonal regime (fig. 3).
Beneficial mutations, however, do not fix as likely as in the
monoclonal regime because they now arise in the context of
many deleterious mutations (fig. 4A, C, and E; supplementary
fig. S3, Supplementary Material online). The deleterious hitch-
hikers effectively dampen a beneficial mutation’s overall fit-
ness effect, thus lowering its probability of fixation (fig. 3). The
extent of hitchhiking by destabilizing mutations on stabilizing
ones can be estimated from the distribution of ��G for all
possible arising nonsynonymous mutations available to a
wildtype sequence. This distribution appears to be universal
across types of protein folds (Tokuriki et al. 2007).
Approximately 20% of nonsynonymous mutations are stabi-
lizing (��G< 0), whereas the rest are destabilizing (Tokuriki
et al. 2007; Zeldovich et al. 2007); see also the blue curve in
(fig. 6B). The extent of hitchhiking and background selection

FIG. 1. Model of protein evolution that couples biophysics and population dynamics in the polyclonal regime. (A) A model of organism composed of
ten genes from the folate biosynthetic pathway (supplementary table S1, Supplementary Material online). Cellular fitness f is proportional to the
effective metabolic output of this pathway and the total number misfolded proteins (eqs. 1–3). The population is subject to mutation, drift, and
purifying selection. Mutations can change the folding stability �G of a gene and hence the fitness of the cell (see Materials and Methods). Effective
population size is Ne = 103. (B) Fitness under mutation–selection balance. (C) Detailed trajectory of the folding stability of each gene in individuals in the
population. Individual cells are indexed along the y axis, where spatial proximity is proportional to kinship.
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is generally a function of mutation rate and population size;
nonetheless, from purely biophysical considerations, there are
potentially four destabilizing mutations that could hitchhike
for every stabilizing mutation.

We also show the probability that a mutation reaches an
allele frequency l (fig. 3). Interestingly, alleles segregating at
~50% are almost determined to fix (fig. 3). We note that the
pervasive clonal interference in our simulation occurs under
mutation–selection balance and is distinct from the more
common treatment of clonal interference in literature,
which is only among beneficial mutations and specifically in
the context of adaptation (Gerrish and Lenski 1998; Fogle
et al. 2008).

Fitness and Molecular Effects of Mutations Under
Mutation–Selection Balance

As noted earlier, one of the primary utilities of the patterns of
polymorphism in genomes is quantitatively estimating the
DFE. Thus, we next explore the resulting DFE from our sim-
ulation and compare the distribution with estimates from
Bayesian approaches.

In the genotype–phenotype relationship defined by equa-
tions (1)–(3), epistatic interactions on folding stability play a
crucial role in determining the fitness effects of mutations
(fig. 4). Specifically, in our model, the fitness effect of a mu-
tation with a molecular effect ��G depends on the folding

FIG. 2. Mutation–selection balance under pervasive clonal interference. (A) Sample history of mutations that reached fixation. Time interval corre-
sponds to figure 1C. Arrows indicate the correlated fixation of mutations. (Only three genes are shown; see supplementary fig. S3, Supplementary
Material online, for the complete trajectory.) (B) Selection coefficients of mutations that successfully fixed. (C) Extent of polymorphism in the evolving
population. Drop in diversity accompany clonal sweeps. (D) Distribution of SNPs in the simulation. All SNPs (blue); SNPs with allele frequencies �1%
(black).

FIG. 3. Probability of an arising mutation to reach an allele frequency l.
l= 1 corresponds to fixation. Red line is the probability of fixation in the
monoclonal regime. Fixation probability of a neutral mutation in the
monoclonal regime (1/2Ne) is indicated. Interference among clones
takes two specific forms: background selection and hitchhiking.
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stability of the current wildtype or �Gpremutation (fig. 4). The
same ��G can have very near neutral effect if it occurs
in proteins that are stable but can have sizable effects if
it occurs in proteins that are unstable. For example, a desta-
bilizing mutation of ��G = 1 kcal/mol occurring in genes
with �Gpremutation =�8 kcal/mol has a fitness effect of
Ns � �10�4; however, the same mutation occurring in
genes with �Gpremutation =�0.5 is lethal. A stabilizing
mutation of ��G =�1 kcal/mol occurring in genes with
�Gpremutation =�8 kcal/mol has a fitness effect of
Ns � + 10�4; however, if it occurs in genes with
�Gpremutation =�0.5 kcal/mol, the mutation is extremely
beneficial Ns � + 102. Thus, in the regime where proteins
are stable, both destabilizing and stabilizing mutations have
N j s j << 1; however, because of the larger supply of desta-
bilizing than stabilizing mutations, most mutations that fix
are destabilizing. This imbalance gives rise to a mutational
drift of �G toward less stable proteins and away from the
flatter part of the fitness landscape (fig. 4f and supplementary

fig. S2, Supplementary Material online). In the regime where
proteins are less stable, selection for stabilizing and selection
against destabilizing mutations lead to fixation of a larger
fraction of stabilizing mutations (fig. 4f and supplementary
fig. S2, Supplementary Material online). This dominance of
selection drives �G toward more stable proteins and away
from the less fit part of the fitness landscape (supplementary
fig. S2, Supplementary Material online). The balance between
selection and drift occurs at some intermediate folding sta-
bility (fig. 4f, ~4 kcal/mol), where stabilizing and destabilizing
mutations have equal likelihood of being fixed.

Because mutation–selection balance is a dynamic equilib-
rium, the protein finds itself on the left or right hand side of
~4 kcal/mol, but on average, it resides in this neighborhood,
giving rise to the observation that proteins are “marginally
stable” (Taverna and Goldstein 2002; Bloom et al. 2007;
Zeldovich et al. 2007). The balance between drift and selec-
tion defines the mode of the equilibrium distribution of fold-
ing stabilities (fig. 4E). This equilibrium distribution is in

FIG. 4. Influence of epistasis in the mapping between the molecular effect of a mutation ��G to its phenotypic effect s. X axis is the premutation �G.
Mutations are colored according to the magnitude of the ��G (see leftmost panel for color assignment). (A) Arising random beneficial (stabilizing)
mutations. (B) Fixed beneficial mutations. (C) Arising random deleterious (destabilizing) mutations. (D) Fixed deleterious mutations. In panels (A)–(D),
premutation �G modulates the magnitude of s for a given ��G such that mutations are more neutral when it occurs in more stable proteins. (E) Solid
line is the distribution of arising beneficial mutations (panel A) while dashed line is the distribution of arising deleterious mutations (panel C). Each
histogram is normalized to the total number of mutations. (F) Similar to panel E but for fixed mutations. In the stable regime, drift dominates, whereas
in the unstable regime, selection dominates. For the sake of clarity, we plot only 1/102 or 1/(10Ne) of the total number of arising mutations sampled
randomly.
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agreement with the empirically measured �G distribution in
ProTherm (Kumar et al. 2006), as pointed out in earlier works
(Zeldovich et al. 2007; Wylie and Shakhnovich 2011).
Additionally, for protein coding regions, the strictly neutral
regime (s = 0) is not a stable attractor in protein evolution
because mutational drift due to nonsynonymous substitu-
tions always drives proteins toward marginal stability (figs.
4F and 5) (Taverna and Goldstein 2002).

Because the folding stability �G evolves as consequence of
mutation–selection balance, so should the fitness effect s,
which itself is a function of folding stability. Thus, the DFE
is expectedly a dynamic consequence of the resulting popu-
lation dynamics. Shown in figure 5B and C are the resulting
DFE of arising random mutations and fixed nonsynonymous
substitutions. The DFE of fixed deleterious mutations is
bounded on one side by drift away from the neutral regime
(i.e., drift from stable �G) and on another side by selection
(fig. 4C). The DFE of fixed beneficial mutations is more
nuanced. It is bounded on one side by drift and limited on
the other side by the supply of stabilizing mutations. These
stabilizing and beneficial mutations have only effectively
near neutral effect in the background of the folding stability
values under mutation–selection balance (fig. 4B). In short,
the observation of marginal folding stabilities of proteins is
coupled to the effective near neutrality of the fitness effects of
fixed amino acid substitutions.

Additionally, under mutation–selection balance, the mag-
nitude of the selection coefficient is of near neutral effect,
whereas the magnitude of the folding stability changes is far
from neutral (fig. 5A). The nonneutrality of the molecular
effect (��G) and the near neutrality of fitness effect s are
due to the background �G, which evolves to an equilibrium
distribution that ensures the near neutrality of the fixed del-
eterious and beneficial mutations (fig. 5A). The effective near
neutral theory, originally a postulate (Ohta 1973), finds a solid
and mechanistic foundation in protein biophysics and the
selection against protein misfolding and selection for function
due to metabolic flux.

We note that the resulting DFE from simulations is skewed
and can be fitted to a gamma distribution (fig. 5C and D), in
agreement with studies that estimated the DFE using maxi-
mum likelihood methods on human and in flies (Bustamante
et al. 2005; Eyre-Walker et al. 2006; Kryukov et al. 2009).
Similar works have also shown that most mutations
could be of near neutral effect (Bustamante et al. 2005;
Eyre-Walker et al. 2006; Sawyer et al. 2007; Kryukov et al.
2009); however, the molecular basis was unclear. Our work
provides a molecular and mechanistic origin of these obser-
vations based on the emerging genotype–phenotype rela-
tionships (eqns. 1–3).

Mutation–selection balance is a dynamic equilibrium;
thus, there should be equal numbers of fixed beneficial and
deleterious mutations, a result hypothesized as early as 1930
by Fisher (1930) and articulated recently in the monoclonal
regime by some groups (Sella and Hirsh 2005; Mustonen and
Lassig 2009). Our own simulations in the monoclonal regime
with a biophysics-based genotype–phenotype relationship
(Serohijos et al. 2012) also confirm this hypothesis

(supplementary figs. S7 and S8, Supplementary Material
online). We show that despite the more complicated dynam-
ics in the polyclonal regime, this inference is robust as man-
ifested by the bimodal distribution of the selection
coefficients of fixed mutations (fig. 5C). In strictly monoclonal
populations, the boundary of near neutrality is at N j s j~ 1
(Sella and Hirsh 2005; Goldstein 2011; see also supplementary
figs. S7 and S8, Supplementary Material online). However, in
the polyclonal regime, because of extensive hitchhiking and
background selection that effectively lead to a flatter proba-
bility of fixation (fig. 3), the bounds of effective near neutrality
extend beyond N j s j~ 1 (fig. 5A, C).

Stability Effects of Nonsynonymous SNPs Segregating
at Various Allelic Frequencies

We have shown that the inferred DFE (Bustamante et al. 2005;
Eyre-Walker et al. 2006; Kryukov et al. 2009) can be explained
under mutation–selection balance. Because this result from
simulations seem to contradict the large body of literature
arguing for a predominantly adaptive (hence, out of equilib-
rium) tempo of protein evolution (McDonald and Kreitman
1991; Smith and Eyre-Walker 2002), we then sought to estab-
lish another empirical support for our analysis.

We know the full history of all mutations, thus we can
relate the stability effects (��G) of SNPs to their allele fre-
quencies (fig. 6A). Most arising mutations are destabilizing,
and those SNPs segregating at low frequencies are still pre-
dominantly destabilizing (fig. 6A). This high fraction of desta-
bilizing mutations among low-frequency SNPs is directly
supported by explicit biophysical measurements of the sta-
bility effects of SNPs from a diverse set of 16 human enzymes
(Allali-Hassani et al. 2009) and by bioinformatics analysis (Yue
and Moult 2006). This result is also in agreement with the
observation that disease-associated SNPs, because of their
very deleterious effects, segregate at lower frequencies than
regular polymorphisms (De Baets et al. 2012). On the other
hand, among SNPs segregating at higher allele frequencies, the
fraction of destabilizing SNPs decreases because of purifying
selection. In particular, for SNPs segregating at 40% allele fre-
quency, close to the probability of fixation (fig. 3), the fraction
of stabilizing and destabilizing SNPs are almost equal (fig. 6A).
The estimates of the folding stability effects of SNPs in the
human coding region (fig. 6B) indeed show the increasing
manifestation of purifying selection among SNPs of higher
allele frequencies. Most importantly, arguing for mutation–
selection balance (at least for protein evolution), SNPs that
are close to fixation approach the limit of equal fraction of
stabilizing and destabilizing ��G (fig. 6B).

Discussion
By developing an evolutionary model based on molecular
biophysics and on an intuitive genotype–phenotype relation-
ship, we provide a more mechanistic and molecular under-
standing on how polymorphisms could arise and segregate in
the coding region of genomes. Several works have tried to
bridge molecular biophysics and population genetics both in
coding (DePristo et al. 2005; Bloom et al. 2007; Drummond
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and Wilke 2008; Goldstein 2011; Serohijos et al. 2012) and
noncoding (Mustonen et al. 2008) regions of genomes.
However, these studies are in the monoclonal regime and
do not explore the relevance of biophysics to polymorphisms
as we do here.

The DFE is not a constant in evolution but an evolvable
property and a consequence of the evolutionary dynamics. In

this work, we showed how, in the context of coding region
evolution, the protein folding stability evolves to ensure the
near neutrality of the fitness effects of stabilizing mutations,
reaching a dynamic steady state defined by the mutation–
selection balance. Specifically, the DFE evolves to be centered
around effective near neutrality with a characteristic skewed
gamma distribution. The boundaries of effective near

FIG. 5. Fitness and molecular effects of mutations under mutation–selection balance. (A) Mapping of ��G to the selection coefficient among fixed
mutations. Dots are colored similar to figure 4. (B) Arising random mutations are predominantly deleterious (fig. 4A, C). The deleterious and beneficial
DFE are both characteristically leptokurtic and fits a gamma distribution. Stricly lethal mutations (Ns =�103) are excluded in the fit to a gamma
distribution. (C) The consequence of mutation–selection balance is a bimodal distribution of s and, in particular, equal number of fixed beneficial and
deleterious mutations. Strict neutrality (s = 0) is not a stable fix point because mutational drift drives proteins to destabilization (fig. 4F). (D) Bimodal
and equal fraction of fixed beneficial and deleterious s (panel C) maps into a symmetric distribution ��G.

FIG. 6. Stability effects of nonsynonymous SNPs segregating at various allelic frequencies. (A) k is the maximum frequency that a segregating SNP attains
over its lifetime. Selection shifts the distribution of higher frequency alleles toward more stabilizing SNPs. (B) ��G of SNPs in the coding region of the
human genome estimated using FoldX (Schymkowitz et al. 2005) and compiled by the database SNPeffect (De Baets et al. 2012) (see Materials and
Methods). Allele frequency is taken from dBSNP. For arising ��G, we use the empirically measured ��G from a diverse set of proteins in the
ProTherm database (Kumar et al. 2006; Tokuriki et al. 2007). Enclosed in parentheses are the number of SNPs for the indicated frequency cutoff.
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neutrality are strongly determined by the population dynam-
ics; in this case, pervasive clonal interference leads to weak-
ened selection that expands the regime of near neutrality.
This effective weakening of selection due to hitchhiking has
been described previously (e.g., McVean and Charlesworth
2000; Neher and Shraiman 2011). However, here, we provide
a mechanistic and direct connection on how it can arise in
the context of protein evolution. The extent of the weakening
of selection is expectedly a function of population size and
mutation rate (Neher and Shraiman 2011; Wylie and
Shakhnovich 2011)—in this work, we chose the population
size of 103 organisms, which we tried to be as close the human
effective population size (104) (Lynch and Conery 2003) but
still computationally tractable.

Under this dynamic equilibrium of mutation–selection
balance, the near neutral theory (Ohta 1973) is not a postu-
late but a robust consequence of the interplay between bio-
physics and evolutionary dynamics. The standard molecular
argument for the claimed neutrality of most mutations is that
a significant fraction of residues in a protein (~85%) do not
participate in the active site thus unrelated to function.
However, this is inconsistent with molecular biophysics
where mutations are never neutral, as they always affect fold-
ing stability (Tokuriki et al. 2007; Zeldovich et al. 2007) and
other molecular properties of proteins such as their interac-
tions with other proteins in cytoplasm (Vavouri et al. 2009;
Heo et al. 2011). Here, we have shown the despite the
nonneutral effects of mutations at the level of macromole-
cules, the population evolve to ensure the near neutrality of
their fitness effects (fig. 5).

We also note the major distinctions between our work and
the theoretical models that advocate selection for mutational
robustness (van Nimwegen et al. 1999; Wilke et al. 2001). First,
these neutral network models assume that mutations are
either neutral or lethal. The relative fraction of neutral to
lethal neighbors defines the degree of mutational robustness.
In our model, no a priori assumptions are made on the DFE.
As argued above, the same ��G mutations could have a
fitness effect of be N j s j >> 1 or N j s j << 1 depending
on background �Gpremutation.

Second, these theoretical and computational models also
assume that there are multiple peaks in the fitness land-
scape—the flattest, most mutationally robust peak is distinct
from the highest peak, which could be less robust. In our,
genotype–phenotype model based on the thermodynamics
of protein folding stability, the regime that is most robust is
also the regime that is most fit (supplementary fig. S2,
Supplementary Material online), and this is the regime of
high folding stability. We note, however, that under our
model of mutation–selection balance, proteins evolve toward
marginal stability, hence organisms are not optimally fit (sup-
plementary fig. S2, Supplementary Material online).

Third, in the models arguing for mutational robustness,
under low mutation rate, the population evolves to higher
peaks even if less robust. Under high mutation rate, the pop-
ulation evolves to the flatter peaks, because selection for
mutational robustness outweighs selection for fitness, hence
the “survival of the flattest.” In both cases of high and low

mutation rates, evolution is always a process of optimiza-
tion—high robustness at high mutation rate or high fitness
under low mutation rate. In our model, however, the evolu-
tion is always toward mutation–selection balance, where pro-
teins are marginally stable (fig. 4), the fitness effects are near
neutral (fig. 5), and the organisms are not optimally fit (sup-
plementary fig. S2, Supplementary Material online). This evo-
lution toward marginal folding stability and suboptimal
fitness holds under low mutation rate, where the bounds of
near neutrality is N j s j~ 1 (supplementary figs. S7 and S8),
and under high mutation rate, where the bounds of near
neutrality is greater than N j s j~ 1 because of hitchhiking
and background selection (fig. 5). Of course, when the muta-
tion rate is very high or when the population size is too small,
the condition for mutation–selection balance may not be
satisfied leading to extinction (Zeldovich et al. 2007; Wylie
and Shakhnovich 2011). In short, in our model, evolution is
not necessarily a process of optimization.

Fourth, in the neutral network models of sequence
evolution, the most neutral part of the landscape represents
a stable attractor. In our model, however, the flattest part
of the landscape is not an attractor because of mutational
drift. Thus, evolution proceeds “toward near neutrality”
is the correct description rather than simply “toward
neutrality.”

Altogether, the terms neutral and near neutral is rather
unfortunate, because they suggest that the latter is simply an
update or a correction to the neutral theory. However, as
noted above, there are fundamental mechanistic and concep-
tual differences between the two, and it is the near neutral
theory that is most consistent with protein biophysics.

We have also shown that the patterns of polymorphisms,
when framed in very direct observables such as changes in
folding stability, in fact, support the argument for a predom-
inantly nonadaptive tempo of evolution (Bustamante et al.
2005), contrary to prior claims resulting from the so-called
tests of neutrality (McDonald and Kreitman 1991; Smith and
Eyre-Walker 2002). In the future, to further reconcile the
adaptive view of evolution and the effective near neutrality
(as argued here), an extensive analysis of polymorphisms
generated from our approach and the McDonald–Kreitman
tests must follow. Additionally, biophysical analysis of SNPs
in model organisms across all kingdoms of life will systemat-
ically test the universality of the results demonstrated in
figure 6B.

We explicitly discussed the mechanism for how the DFE of
coding region mutations becomes centered around effective
near neutrality under mutation–selection balance. This result
may be extended to the noncoding region because the emer-
gent near neutrality under mutation–selection balance is
robust to the details of the fitness function, as long as the
genotype–phenotype relationship features a convex
curved functional form reflecting the diminishing fitness im-
provement upon further optimization of molecular proper-
ties (Akashi et al. 2012). In the noncoding region, a “curved”
genotype–phenotype relationship arises from the ability
of replication-related proteins (such as polymerases, tran-
scription factors) to bind to DNA or RNA (Mustonen
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and Lassig 2009). In this respect, the thermodynamics of
protein–DNA interaction is analogous to the thermodynam-
ics of protein folding.

The molecular view of mutation–selection balance
described here also clarifies a meaningful distinction (previ-
ously pointed out in Mustonen and Lassig [2009]) between
positive selection (existence of beneficial mutations that
eventually outcompetes wildtype) and true adaptation
(moving selection target). Indeed, here, there is an ample
supply of beneficial mutations originating from constantly
arising stabilizing mutations; however, these beneficial
mutations are not truly adaptive but only maintain
mutation–selection balance. That is, the observation among
biophysicists that proteins are marginally stable (Privalov
1979; Taverna and Goldstein 2002; Kumar et al. 2006;
Bloom et al. 2007; Zeldovich et al. 2007) and the observation
in evolutionary biology that coding region evolution is pre-
dominantly nonadaptive (e.g., in human; Bustamante et al.
2005) are the molecular and phenotypic manifestation of the
balance between drift and selection for folding stability.

The nature and shape of the DFE should depend on the
mutation rate, population size, and number of genes in
the organism. However, the natural expectation is that the
higher population sizes and higher mutation rates increase
the extent of clonal interference and thus could in principle
further expand the bounds of near neutrality. The systematic
effects of mutation rate, population, and the number of
genes on polymorphisms in the context of this biophysics-
based population dynamics model will be explored in future
studies.

The approach we present here can only be improved as we
become more quantitative and systematic in our understand-
ing of the genotype–phenotype relationship and integrate it
into a comprehensive cellular model (Karr et al. 2012). The
explicit genotype–phenotype relationship could be the start-
ing point for investigating the evolutionary consequences of
the cellular quality control machinery (chaperones and pro-
teases) that can modulate the fitness effects of mutations and
hence the expected patterns of polymorphisms. Additionally,
a realistic cellular model representing more complete prote-
omic and metabolic network information could explore
the relationship between the DFE per gene and the DFE
on the whole organism (Soskine and Tawfik 2010).

We note that this approach of coupling molecular bio-
physics and population genetics has already been crucial in
explaining other emerging genomic patterns, such as why
highly abundant proteins consistently evolve slowly
(Pal et al. 2001; Drummond and Wilke 2008; Yang et al.
2010; Serohijos et al. 2012) or tend to be more stable
(Drummond and Wilke 2008; Cherry 2010; Serohijos et al.
2012, 2013). Because the representation of the evolving pop-
ulation is explicit, our approach could also provide a frame-
work to account for the role of changing environments.
We also believe that this approach could provide an explicit,
mechanistic null model for statistically inferring muta-
tions that are truly functional and adaptive (Kumar et al.
2012).

Materials and Methods

Fitness Function

To begin with the most basic model of evolution that has
some semblance of realism in accounting for the biophysical
properties of proteins and the genotype–phenotype relation-
ship, we choose to model an organism (supplementary
table S1, Supplementary Material online) based on a core
metabolic pathway and postulate that its fitness is propor-
tional to the metabolic flux (Milo and Last 2012). Assuming
that all the enzymes follow a linear metabolic pathway, the

fitness due to flux fflux ¼ a=
P10

i¼1
"i

Ci
, where a is the number of

input metabolites, ei is the enzymatic efficiency, and Ci is the
number of functional copies. The functional copies
correspond to number of enzymes in the folded (native)
state Ci = AiPnat,i, where Pnat,i is the Boltzmann probability
of the protein i to be in the native state and Ai is the total
concentration of protein i in the cell. Assuming a two-
state folding thermodynamics Pnat ¼ e���Gi=ð1 + e���GiÞ

(Privalov 1979).
Another emerging constraint in protein evolution is the

global selection against the cytotoxicity of protein misfolding
(Drummond and Wilke 2008; Serohijos et al. 2013). Formally,

the fitness due to toxicity is ftoxicity ¼ c
P10

i¼1 Ai 1� Pnat,i

� �
,

where c = 10�4, the fitness cost per misfolded protein
(Drummond and Wilke 2008; Geiler-Samerotte et al. 2011).
Altogether, the total fitness is described by equation (1).
Without loss of generality, we require that fitness is
optimally 1 at very stable regimes, f ð�G!�1Þ ¼ 1,

leading to a ¼ 1=
P10

i¼1 Aið Þ
�1. When ftoxicity> fflux, the fit-

ness is defined to be f = 0, hence f � 0. The resulting
fitness defined by equations (1)–(3) is essentially parame-
ter-free.

In our earlier work (Serohijos et al. 2012), the goal was to
determine whether selection against the cytotoxity of protein
misfolding is sufficient to explain the widely observed abun-
dance–evolutionary rate correlation (Drummond and Wilke
2008). Thus, to make an explicit comparison and connection
with earlier literature, we only focused on the selection against
protein misfolding. In this study, we generalize the fitness
function to include the notion of selection for more func-
tional copies, motivated by numerous works that map met-
abolic output to fitness (Edwards et al. 2001; Duarte et al.
2007), which depends on the biophysical properties of pro-
teins (Bar-Even et al. 2010).

We note that in our model, there is epistasis between
genes because they are coupled in the nonlinear fitness
function (eqs. 1–3). In the fitness effect s ¼ fmutant=ð

fpremutationÞ � 1, the value of fpremutation is determined by the
biophysical properties of all genes in the cell. Thus, the
quantitative effect of a prior mutation in one gene could
influence the fitness effect of the current mutation in
another gene. The epistasis is strongest when mutations fall
on the genes with low folding stability, because this is where
the curvature of the fitness landscape is most pro-
nounced (supplementary fig. S2, Supplementary Material
online).
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Evolutionary Dynamics with Mutation, Selection,
and Drift

We follow the standard Moran process in the evolutionary
simulations (supplementary fig. S2, Supplementary Material
online). The fitness function (eq. 1) defines the replication
rate. We make no prior assumption on the dynamics and/or
the resulting DFE. To update the evolution of the organism,
we use the Gillespie algorithm: At each replication event, the
replicating cell splits into two daughter cells, each can poten-
tially mutate at the rate of�= 0.01/genome/replication. If the
mutation is nonsynonymous, the folding stability of the
mutated gene is updated with ��G values estimated using
a physical force field and the 3D structures as input (discussed
later). We performed this simulation of mutation, selection,
and drift toward the dynamic equilibrium imposed by muta-
tion–selection balance (fig. 1B).

All the genes are initialized with folding stability
�G0 =�5 kcal/mol at time t = 0. This dynamic equilibrium
of mutation–selection balance is robust to the choice of
starting �G0. When the proteins are initialized at the very
stable regime, these genes will migrate toward less stable
regime because of drift. On the other hand, when the proteins
are initialized in the less stable regime, the genes migrate
toward greater folding stability because of selection. All anal-
ysis reported are performed only after the population has
reached mutation–selection balance (fig. 1).

After the simulation reaches mutation–selection balance,
we save the information of all arising mutations, including
their location in the genome, nucleotide change, ��G, and s.
We also save the genomes of all cells in the population every
10 generations (i.e., every 10Ne replication events). The infor-
mation allows us to reconstruct the trajectories and all arising
mutations.

In our earlier work (Serohijos et al. 2012), where N�� 1
and the population is monoclonal, we employed
Wright–Fisher’s discrete nonoverlapping generations model.
Also, in the earlier work, we defined the fitness
as w ¼ exp �c total count of misfolded proteinsð Þ½ � follow-
ing Drummond and Wilke (2008). In the present work,
where we wish to determine the dynamics of segregation
and clonal interference between alleles, we perform our
simulations in the overlapping generations model where
the fitness (eq 1) is of the Malthusian type. Both fitness def-
initions satisfy the transformation fMalthusian ¼ lnðfWright�FisherÞ

(Orr 2009).

Updating the Folding Stability During
Nonsynonymous Substitutions

When a nonsynonymous substitution occurs, we update the
folding stability according to �G ¼ �G0 +

Pn
i¼1 ��Gi,

where �G0 is the stability of the protein at time t = 0,
��Gi is the estimated change in folding stability due to a
single point mutation, and n is the total number of amino
acid differences of the current sequence with respect to the
sequence at time = 0. ��G is estimated using a physical force
field (Yin et al. 2007). Our protocol assumes that the effect on
folding stability of multiple mutations is simply the additive

effect of all mutations acting independently (Fersht et al.
1992).

This assumption cannot accurately predict the �G of a
sequence that is significantly diverged from the sequence at
time = 0. Indeed, we do not claim that when a specific
sequence from simulation is experimentally expressed and
purified, the measured �G is similar to the one predicted
in simulation. Ideally, one could calculate the ��G using the
3D structure as input as soon as these mutations arise in the
population during an evolutionary run. However, this imple-
mentation is currently computationally intractable because
estimation of the ��G of one mutation takes ~5 min per
mutation, and the evolutionary simulation evaluates 108

mutations. The assumption of linearity, however, does not
compromise biophysical correctness because the model cap-
tures the essential features of protein evolution.

First, these force fields coupled with selection for folding
stability can recapitulate the extent of per site amino acid con-
servation among naturally occurring homologous sequences
(Ding and Dokholyan, 2006). Indeed, this is one important
test during the development of these biophysical tools.

Second, for any “wildtype” sequence in our simulation,
the distribution of ��G for all arising single amino acid
mutations is consistent with the ��G distribution for
random mutations in naturally occuring sequences
(Tokuriki et al. 2007). This feature is important because it
quantitatively determines the balance between the supply
of destabilizing and stabilizing mutations and the strength
of the mutational drift.

Analysis of Simulation Trajectories

After simulation, we trace the history of each arising mutation
by counting the number of individuals that exhibit the muta-
tion in the future generations. The tracing of mutational
history ends when the mutation fixes in the population or
is lost to random drift (fig. 2 and supplementary fig. S3,
Supplementary Material online). From these trajectories, we
calculate the correlated fixation events (fig. 2B). To estimate
the probability of fixation (fig. 3), we group the trajectories
according to their allele frequencies and selection coefficients.
The estimated probability is the number of trajectories that
reached a given allele frequency � divided by all arising tra-
jectories of that given selection coefficient.

We use Matlab to fit a gamma distribution to the DFE.
Also, we follow the standard procedure in evolutionary biol-
ogy to model the demography of an asexual organism in
estimating the DFE among sexual organisms such as human
and flies (Bustamante et al. 2005; Eyre-Walker et al. 2006;
Kryukov et al. 2009).

Bioinformatics Analysis

For bioinformatics analysis of the SNPs in the human genome,
we use the database dBSNP (Sherry et al. 2001) for allele
frequency information and SNPEffect (De Baets et al. 2012)
for biophysical estimation of the ��G. SNPEffect used the
3D structure of the protein as input to FoldX (Schymkowitz
et al. 2005). We group the SNPs according to their allele
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frequencies and plotted the distribution of their ��G
(fig. 6B). For arising ��G (fig 6B, blue line), we use the em-
pirically measured ��G from a diverse set of proteins in the
ProTherm database (Kumar et al. 2006; Tokuriki et al. 2007).

Simulations in Monoclonal Populations as Control

To serve as a control and show that the results in this study
are robust to the modeling of the cell or to the formal equa-
tion of the fitness function, we perform simulations of an
evolving monoclonal population. The methods are described
in greater detail in a recent work (Serohijos et al. 2012). Briefly,
in the monoclonal simulations, the cell is composed of 103

genes, each with protein abundances ranging from 10 to 106

copies per cell to recapitulate the broad distribution of abun-
dances in real organisms (Ghaemmaghami et al. 2003;
Ishihama et al. 2008). The effective population size in the
monoclonal simulation is Ne = 104. Effects of folding stability
are estimated from the Gaussian distribution of ��G whose
parameters are derived from the ProTherm database (Kumar
et al. 2006). The evolutionary dynamics likewise include mu-
tation, selection, and drift (see Serohijos et al. [2012] for de-
tails). This specific approach, which recapitulates the universal
observation of highly expressed proteins evolving slowly
(Drummond and Wilke 2008; Serohijos et al. 2012) or that
highly expressed proteins tend to be more stable (Cherry
2010; Serohijos et al. 2013), also exhibits the near neutrality
of the fixed beneficial mutations (supplementary figs. S7 and
S8, Supplementary Material online) and the equal partitioning
of fixed mutations into ��G> 0 and ��G< 0.

Supplementary Material
Supplementary figures S1–S8 and table S1 are available at
Molecular Biology and Evolution online (http://www.mbe.
oxfordjournals.org/).
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