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Abstract: Tissue biomarkers have been of increasing utility for sci-
entific research, diagnosing disease, and treatment response prediction.
There has been a steady shift away from qualitative assessment toward
providing more quantitative scores for these biomarkers. The appli-
cation of quantitative image analysis has thus become an indispensable
tool for in-depth tissue biomarker interrogation in these contexts. This
white paper reviews current technologies being employed for quanti-
tative image analysis, their application and pitfalls, regulatory frame-
work demands, and guidelines established for promoting their safe
adoption in clinical practice.
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B iomarkers are commonly used in nonclinical and
clinical research, as well as in clinical practice. The

Food and Drug Administration (FDA) defines a bio-
marker as an “indicator of normal biological processes,
pathogenic processes, or a response to an exposure or in-
tervention.” There are a number of biomarker subtypes
such as molecular, histologic, radiographic, and physio-
logical. Histologic or tissue biomarker identification can
range from routine histochemistry such as hematoxylin
and eosin (H&E), to a nucleic acid (ie, DNA, RNA) and
to protein detection. While traditional histochemical
staining continues to be the most extensively used method
to study tissues, immunohistochemistry (IHC) has become
the most commonly used technique for specific detection
of tissue biomarkers. IHC permits the detection of pro-
teins (or antigens) in tissues and compared with in situ
hybridization (ISH) that allows for nucleic acid detection,
IHC is more cost-effective, has a faster turnaround time,
and offers easier interpretation in routine pathology
practice. The interpretation of tissue biomarkers using any
of these staining techniques is typically performed by
observation via light [bright-field or immunofluorescence
(IF)] microscopy. However, modern pathology practice is
moving toward a digital workflow, meaning pathologists
can now perform their assessment of biomarkers on
computer screens. In addition, digital pathology allows for
image analysis tools to be used in tissue biomarker eval-
uation and quantification. These tools can aid pathologists
in providing more quantitative, detailed, objective, and
reproducible assessments of tissue biomarkers.1 While
quantitative studies of tissue biomarkers are valuable in
clinical practice, currently digital image analysis of tissue
biomarkers is more widely used in research settings.

The purpose of this white paper by the Digital Path-
ology Association (DPA) is to provide an overview of the
current status of quantitative image analysis (QIA) of tissue
biomarkers including relevant technologies and their pitfalls,
clinical and nonclinical applications, available guidelines,
and regulatory issues.
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TECHNOLOGIES FOR TISSUE BIOMARKER
DETECTION

Histochemistry, ISH, and Other Tissue Biomarker
Detection Technologies

The method used to stain tissues influences the type
of image analysis that can be performed. The most com-
mon histochemical stain used for general morphologic
evaluation of tissues is H&E. H&E staining is based on the
differential uptake of stain depending on the pH of dif-
ferent cellular compartments. To evaluate specific tissue
features, one may also utilize “special (biochemical or
histochemical) stains,” such as Trichrome which highlights
collagenous connective tissues, among others.2 Although
H&E does not label proteins specifically, artificial in-
telligence (AI) approaches are being developed to predict
biomarker expression [eg, programmed death-ligand 1
(PD-L1)] solely based on morphologic features derived
from H&E-stained sections, without the need for bio-
marker-specific staining.3

However, if we must label tissues for specific protein
biomarkers, the most common methodology is IHC staining.
In IHC, antibodies are employed to detect specific proteins.
After primary antibodies have bound to a specific protein (the
biomarker of interest) in tissue sections, they are then detected
by secondary antibodies to enable signal amplification and
visualization. For IHC, this secondary antibody binding can
be made visible employing enzymatic methods (eg, horse-
radish peroxidase or alkaline phosphatase) and chromogens
which results in a signal that can be visualized via bright-field
microscopy. Although many other chromogens exist, DAB
(3,3′-diaminobenzidine) in combination with horseradish
peroxidase-based staining is the most commonly used visu-
alization system.

Biomarker detection can also be performed using IF,
where the secondary antibody is bound to a fluorescent
molecule (ie, fluorochrome) that emits light at a specific
wavelength when excited by a laser. IF typically has a
higher signal-to-noise ratio, as well as a broader and linear
dynamic range than chromogenic IHC. These character-
istics of IF, in turn, allow for a more detailed quantitative
assessment of the fluorescent signal.4 In contrast, chro-
mogenic IHC stain intensity rarely reflects quantitative
protein expression as most immunostains are not validated
against a protein standard. In fact, chromogenic IHC stain
intensity dynamic range is lower than IF and also does not
linearly correlate with protein expression. Therefore, if
accurate measures of biomarker expression are required,
IF should be considered. However, IF has drawbacks such
as the requirement for specific technical expertise and
costly laboratory equipment, more time-intensive slide
preparation utilizing higher-priced reagents, and increased
whole-slide image (WSI) scan times, thereby oftentimes
constraining imaging and analysis to only selected high-
power fields (as opposed to the entire WSI). Traditionally,
IF can also be plagued by autofluorescence, though more
recent histochemical and image analysis developments
have resulted in improvements.5 In addition, depending
upon the IF reagents used, signal strength may fade over

time, whereas chromogenic IHC and histochemical stain
signals will remain persistent for longer. Imaging may be
performed on fluorescent microscopes that typically ac-
quire a single field of view at a time or whole-slide scan-
ners with fluorescent capabilities. When an IF slide is
digitally captured, it reduces the impact of signal deteri-
oration over time, so long as the acquisition was per-
formed at a suitable magnification. However, the physical
glass slides may need to still be retained, especially in a
regulated clinical environment.

While many tissue biomarkers are proteins, other
types exist. For example, DNA amplification or RNA
expression may be utilized. These can be detected using
ISH technology, which results in small dot-like staining of
tissues, each representing a nucleic acid probe binding.
ISH can be performed as a chromogenic (CISH) or fluo-
rescent (FISH) stain.6,7 In addition, several emerging
ex vivo visualization techniques are now available that
may require less sample preparation time and can be
nondestructive. These technologies include confocal mi-
croscopy, UV-based imaging such as microscopy with UV
surface excitation, light-sheet microscopy, and optical
coherence tomography.8 For example, microscopy with
UV surface excitation imaging relies on illuminating un-
stained tissues with UV light at wavelengths <300 nm,
which allows visualization of cellular properties in tissues
with similar information content to H&E stains, but
without the need for fixation and processing. Although
image analysis exists for these applications, they are much
less advanced compared with WSI.9–11

Multiplexing
In tissue biomarker studies, it is often necessary to

identify several markers in or on the same cell. This is
especially important when phenotyping immune cell
populations and assessing spatial relationships among
various cell types. The 2 main approaches employed for
multiplexing are: (1) consecutive serial sections of single-
plex IHC staining followed by digital image registration,
alignment, and fusion into a single plane; and (2) multi-
plex staining to detect several biomarkers within a single
tissue section. While the former approach uses more tissue,
the latter can pose significant challenges in the develop-
ment of appropriate staining protocols. In addition, it is
important to recognize that when consecutive serial sec-
tions are digitally fused into one image, multiple labeling
in the same area does not necessarily represent multiple
biomarker expression within the exact same cell. Due to
the thickness of each individual slide (3 to 5 µm), most cell
types are rarely present in > 1 to 2 serial sections.

Multiplex staining approaches are available for both
bright-field (mIHC) and fluorescence (mIF) platforms.
Chromogenic mIHC is usually performed as a low-plex
option, whereas mIF can include many more markers
(high plex). For mIHC, the main cause for limited multi-
plexing capability is the narrow range of available reagents
and chromogens. At times, the available chromogen signals
can be challenging to separate optically. This can be improved
upon via narrow absorbance bands, matched illumination
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channels, and monochrome imaging. In contrast, mIF allows
for the combination of a higher number of markers due to the
ability to excite tagged molecules at different specific wave-
lengths. In general, mIF is limited to ∼5 markers due to the
spectral overlap between different fluorescent molecules, but
several methodologies have become available to overcome
this limitation. For example, Opal technology uses special
fluorophores that can be “unmixed” to deconvolve the over-
lapping spectra, allowing for up to 9 concurrent labeling
colors. In contrast, technologies such as CODEX12 depend on
sequential imaging and washing of the fluorophore tagged to
a marker-specific barcode. In theory, this allows for an infinite
number of co-labelings, albeit resulting in low staining in-
tensity due to lack of signal amplification. Last, alternative
technologies such as mass spectrometry (eg, CyTOF,13

MIBI14) are available, where markers are labeled with metals
rather than fluorophores, and a mass spectrometry approach
is used for detection that allows for 40 or more simultaneous
biomarkers to be labeled. Depending upon the data acquired
and limitations of data/image capturing devices, mIF data
might only be collected from selected regions of interest
(ROIs) instead of from the entire tissue section.

Image Processing
After staining, slides can be digitized at various

magnifications to produce a WSI. The staining modality
(chromogenic or fluorescent) dictates the light source. These
WSI can be analyzed computationally to quantify the bio-
marker signal (so-called QIA). A QIA algorithm may auto-
matically detect and analyze an entire stained slide or limit the
analysis to specific ROIs. While those ROIs are often selected
by a pathologist, depending upon the types of analysis, this
manual selection can introduce significant bias into the data.
A typical QIA algorithm used to quantify an immunostained
biomarker may involve tissue and/or cellular classification,
target stain detection, segmentation, and stain quantification.
AI-based QIA approaches may include additional steps, such
as feature extraction and pattern recognition.

Impact of Preanalytical Variables on Biomarker
Staining

Every step along the way from removing the tissue
in vivo to the final stained slide can impact the quality of
staining and digitized WSI. Therefore, these so-called pre-
analytical variables may significantly affect the data generated
from these slides. The preanalytical test phase starts at the
simple step of cutting fresh tissue leading to tissue deformation
and shrinkage. With the tissue removed, blood circulation is
also severed, resulting in tissue ischemia. Some biomarkers are
particularly sensitive to degradation during this ischemic time,
and if the sample was chilled or not during this step.15,16

Among the preanalytical variables that can impact staining
quality are tissue fixation, grossing, tissue processing, and
embedding. Improper tissue handling and mechanical ma-
nipulation may result in crush artifacts. Similarly, in-
appropriate tissue fixation can impact staining results. In
addition, prolonged formalin-fixation can result in excessive
protein cross-linking that may render the biomarker un-
available for antibody binding and therefore visualization.

A full discussion of all preanalytical variables is beyond the
scope of this manuscript, as only a few key aspects are dis-
cussed in more detail in the following sections. The interested
reader is encouraged to consult other resources.17

Staining Consistency
Variation in standard H&E and IHC staining intensity

can exist among different instruments, reagents, staining runs
and laboratories, and can result in significantly discordant
results. Standardization of laboratory workflow, staining
protocol optimization, and clinical validation are necessary to
maintain staining consistency. Very faint staining or excessive
background staining may make it more difficult for scanners
to automatically identify tissue on a slide. Optimizing H&E
staining has been shown to result in better digital image
quality18 and similarly, we would expect that controlling
variability in IHC staining quality is an essential factor in
generating accurate and reproducible quantification of bio-
markers using imaging analysis. Recently, fully automated
QIA software with predefined “turn-key algorithms” can al-
low simultaneous validation of staining area and staining in-
tensity during the quantification process.19,20 However, to
maintain the reproducibility of biomarker quantification using
QIA, the correlation between algorithm and pathologist is
also necessary to control for H&E and IHC staining intensity.
Clear descriptions of such correlation data must be provided
during quality control measures and validation steps where
image analysis is used. In addition, to avoid staining incon-
sistency it is recommended that samples from an analysis
cohort are fixed and processed in the same way, the same
staining protocol is used, and an identical antibody batch is
applied to all samples.21

Tissue Thickness
Many predictive clinical biomarkers, including PD-

L1, have been FDA-approved with a specific tissue
thickness to ensure appropriate stain performance. Stain-
ing intensity is most impacted by section thickness.22

Thicker sections are expected to stain with a higher in-
tensity and vice versa. Sections that are too thin may result
in false-negative results. In addition, uneven section
thickness and tissue folds can cause scanner errors, re-
sulting in WSIs that are partially out of focus. A study by
Yagi and Gilberston23 indicated that thinner and more
consistent tissue sectioning positively correlates with faster
image acquisition and better scan quality. A WSI out of
focus could also cause problems during image analysis,
and although currently much of the WSI quality control is
manual, some researchers are integrating algorithms for
automated detection, and exclusion or automated re-
scanning of out-of-focus tissue areas.24 In general, tissue
thickness ranging from 3 to 5 μm for scanning single-plane
images is recommended.

Coverslips and Pen Markings
Coverslip material can be broadly classified into

glass and plastic. Plastic (or film) coverslips are commonly
used in laboratories performing high volume scanning for
primary diagnosis because these slides dry rapidly, which
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minimizes their processing delay. However, plastic cover-
slips may get scratched, warp, or more easily peel off slides
compared with glass coverslips. Cleaning pen markings off
plastic slides may turn the plastic opaque and hence in-
terfere with image analysis. In contrast, a glass coverslip
offers better resolution and is also less liable to scratch,
thus offering better image quality. Further studies are
needed to drive a recommendation about which materials
are best to use for digital scanning. Despite the type,
coverslips need to be appropriately placed to avoid the
formation of air bubbles to prevent autofocusing problems
during digital scanning. However, image analysis can also
aid scientists in the evaluation of slide quality to detect
artifacts such as tissue folds,25,26 color variation,26 and
out-of-focus regions24 as helpful preprocessing steps for
quantification of biomarker staining.

Another common interfering issue is the use of a
marker pen on coverslips to point out areas of interest or
separate pieces of tissue (eg, controls placed on a slide and
separated by a line drawn across the slide). Pen marks may
directly or indirectly impede QIA. Due to the high con-
trast of these pen markings compared with surrounding
tissue, scanner algorithms may likely select these marks for
inclusion in focusing. The pen markings can also impact
the color of the pixels in proximity to tissue. Avoiding or
manually wiping away pen markings, tweaking color
threshold algorithms27, and preprocessing images with AI
algorithms that correct or ignore these pen markings are
potential approaches to minimize the impact on QIA.28,29

APPLICATIONS OF BIOMARKER
IMAGING ANALYSIS

Nonclinical Research
An image analysis-based approach permits a quantita-

tive metric to be applied to different biomarkers that can be
used to make drug and project decisions; this includes safety,
target expression/validation, understanding mechanisms of
action, as well as pharmacodynamic (PD) and efficacy stud-
ies. Safety studies that require hundreds of specimens to be
manually assessed by pathologists are extremely cumbersome,
time-consuming, and expensive. QIA can aid scientists in this
evaluation. Traditionally, safety studies evaluate changes
based on histochemical stains (such as H&E and Masson
trichrome), and several studies have demonstrated the feasi-
bility of automated scoring in murine studies of liver
fibrosis,30,31 quantification of hepatic lipid droplets and
steatosis,32,33 heart ischemic injury,34 lung fibrosis,35,36 kidney
injury,37 and pancreatic toxicity.38 Biomarker studies that rely
on IHC and QIA have been successfully deployed, for ex-
ample, to quantify proliferative Ki-67 cells in rodent mam-
mary glands39 and endometrium40 to study reproductive
toxicity. Other studies have similarly utilized image analysis to
examine processes relevant to several pathologies such as
caspases in cell death,41 T-cell and B-cell markers in
inflammation,42 and collagen deposition related to fibrosis.43

For targeted therapies, image analysis can help
measure a threshold-based metric for therapeutic efficacy
as well as confirm target inhibition. For example, in

antibody-drug conjugate programs, target expression is
critical for the drug payload to be delivered to the ap-
propriate target-expressing (tumor) cells.44,45 A quantita-
tive approach can help the research team understand if
there is a cutoff or certain expression level that results in
the drug getting to the target population which then leads
to the appropriate biological effects which include path-
way inhibition and tumor cell death. Theoretically, this
cutoff assessment could be translated to a patient selection
biomarker in a clinical study. A biopsy can be collected,
an IHC assay protocol performed, and QIA utilized to
produce a metric for selection. If the patient expressed the
biomarker above the determined cutoff, they would be
enrolled in the study. Target expression biomarkers and a
quantitative approach can also benefit other aspects of
drug discovery. For example, a variety of tumor models
can be analyzed to rank order target expression to identify
negative, low, medium, and high expression models.46

These “scoring” models can be used to explore PD-
efficacy relationships.

PD biomarkers are also utilized to confirm the mech-
anism of action and drive lead optimization efforts. Devel-
oping a set of pathway biomarkers allows a better
understanding of how target inhibition may lead to the ap-
propriate biological pathway effects. PD biomarkers can be
considered direct, indirect, or terminal indicators of outcome.
Direct target engagement markers are those proteins targeted
by the compound or possibly the drug itself, presuming the
drug has an IHC-compatible aspect. As the name implies,
direct biomarkers are preferred to confirm target engagement,
while indirect markers provide an understanding of down-
stream biological pathway effects. Last terminal outcome
markers provide information on the amount of cell death or
other outcomes resulting from the drug’s target inhibition.
Digital pathology can readily support studies of all direct,
indirect, and terminal outcome biomarkers provided that
there is a method or technology to obtain a digitized image
from the specimen.21 Several studies have shown QIA effec-
tiveness to measure downstream biomarkers to assess the ef-
fects of certain drugs in pathways like DNA damage repair,47

and posttranslational modifications such as neddylation48 and
sumoylation.49

In addition to understanding the mechanism of action,
image analysis of PD biomarkers provides a quantitative
metric that can correlate with the potency of compounds and
therefore be used to support medicinal chemistry efforts to
improve potency in compound screening campaigns. If the
PD effect is related to the drug effect, then increasing potency
should correlate with the increasing PD effect. This PD effect
can also be correlated with efficacy to develop a PD-efficacy
relationship. Multiple digital pathology approaches have been
applied successfully to study preclinical efficacy in cancer re-
search, inflammation, fibrosis, and neurosciences. In neuro-
science, for example, image analysis is applied to quantify
how drugs affect different brain cell populations such as as-
trocytes and microglial cells,50 but also to measure the effect
on disease features such as amyloid plaques in Alzheimer
disease.51 Inflammation and immune cell markers are un-
questionably among the most useful biomarkers of efficacy
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and many researchers have developed image analysis algo-
rithms to study immune infiltration in mouse models of
colitis,42 asthma,52 and cancer.53

In oncology, some studies also aim to correlate in vivo
imaging [positron emission tomography (PET), magnetic
resonance imaging (MRI)] to QIA of histologic sections. Syed
and colleagues studied intratumoral heterogeneity in a murine
model of human epidermal growth factor receptor 2 (HER2)-
positive breast cancer treated with trastuzumab. Since differ-
ent rates of proliferation and metabolic activity leads to varied
regions of cellular density, these investigators wanted to cor-
relate PET and MRI studies to image analysis of histologic
sections. They used H&E images, Ki-67 and CD31 IHC to
assess cellular density in histologic sections and compared
these results to PET/MRI findings. This particular study
showed that quantitative data from in vivo imaging is con-
sistent with data derived from quantitative studies in histo-
logic sections to study intratumoral heterogeneity.54

As a result of the exploration of PD and efficacy in
preclinical studies, PD-efficacy relationships can be mod-
eled in translational research. These models can help guide
several important aspects of a clinical biomarker assay,
from estimating what clinical dose will result in PD effects
to defining the ideal sampling time point for biopsy col-
lection.

Early Phase Clinical Research
The utility of digital pathology is well demonstrated

in the study of biomarkers for clinical research, especially
in early clinical development. In a study of metastatic
renal cell carcinoma, investigators utilized image analysis
to quantify B7-H1 (PD-L1) and B7-H3 and correlated the
results with overall survival and cancer-specific survival.55

Due to the importance of Ki-67 in cancer diagnosis and
prognosis, there are multiple studies that rely on this bi-
omarker in clinical studies of cancer therapies. A recent
study evaluated 3 different image analysis platforms to
quantify the Ki-67 index and compared results with the
outcome (cancer-specific survival, recurrence-free survival)
in 2 breast cancer patient cohorts.56 They used the same
training set for segmentation in HALO (Indica Labs),
QuantCenter (3D Histech), and QuPath (open source),
and subsequently quantified Ki-67 cells separately in the
tumor, stroma, and the associated immune component.
When Ki-67 was compared against outcome the re-
searchers found no differences within and between these
different platforms. Of note, they also found excellent
interoperator reproducibility. Apart from Ki-67, other
biomarkers that have been investigated using automated
scoring in breast cancer include estrogen receptor (ER),
progesterone receptor (PR), and HER2.57,58 While digital
pathology has been applied mostly in the oncology field, a
few other studies have demonstrated the efficacy of using
image analysis to measure surrogate biomarkers59,60 and
target/pathway validation.61–63

Similar to preclinical studies in murine models, tissue
classification based on the identification of morphologi-
cally distinct features is also an important tool to examine
and score patient samples. There are abundant studies

reporting automated histologic assessment of liver fibrosis,64

kidney injury,65 tumor/stroma classification,66,67 colon archi-
tecture alterations,68 and immune infiltrate compartment.69 In
addition, lymphocytic immune infiltrates have been broadly
studied as a promising biomarker of drug response and
prognosis in breast,70 cervical/uterine, prostate, lung, colon,
pancreas, stomach, bladder, rectum, and skin cancer.71,72

Late Phase Clinical Research
Late clinical development traditionally represents phase

3 and 4 clinical trials. Phase 3 clinical trials are typically
pivotal studies designed to assess the effectiveness/efficacy of a
drug in large-scale randomized controlled settings. Phase 4
studies are typically postmarket studies designed to monitor
drug safety over time in a “surveillance” manner, often re-
ferred to as pharmacovigilance.

The primary use of biomarkers in late-phase clinical
trial testing is for prospective patient selection or strat-
ification used in primary or secondary endpoint analysis.
Biomarkers can also be used as direct endpoints that serve
as “surrogates” for clinical outcome, understanding
mechanisms of action or underlying biology of patient
resistance/response, and/or general biology related to dis-
ease mechanisms, as well as more advanced hypothesis
generation or cutpoint selection of predictive biomarkers.
Such use cases have ultimate utility for designing sub-
sequent trials and/or exploring novel targets and mecha-
nisms for discovery.

It has been proposed that WSI can be useful in late
clinical trials in the setting of central pathology review for
the purposes of standardizing methods and efficacies of
remote review.73,74 More recently, digital pathology-based
biomarker evaluation is finding growing use in the retro-
spective exploratory analysis of immune-oncology drugs
in late phase clinical trials for understanding the mecha-
nism of action or PD effects.75–77 However, to date, there
is little evidence of the use of digital pathology–based bi-
omarkers to directly increase the technical success of late-
stage drug trials in terms of prospectively defined patient
selection or stratification. This is in stark contrast to
standard IHC, genomic, blood-based tests, or noninvasive
imaging tests which have found widespread use in late-
stage clinical trials for patient selection, stratification, or
as direct endpoints.78–81

The advantages of using digital pathology/AI-based
methods are clear in terms of increasing intrareader re-
producibility, and perhaps even interreader reproducibility
since WSI is employed as opposed to just using ROI-based
methods.82 It has been demonstrated in several studies
that intrareader reproducibility of scoring PD-L1 of im-
mune cells is poor83,84 and it is likely that digital
pathology–based methods can have a positive impact on
improving the repeatability of scoring. However, despite
poor intrareader variability, PD-L1 IHC testing has
reached market approval as a companion and comple-
mentary diagnostic test for both tumor cell scoring as well
as combined tumor and immune cell scoring using manual
methods.85 Outside of PD-L1 testing, it is unclear if this
trend will continue. Other studies have shown that
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emerging immune cell markers may be relevant for pre-
dicting response to emerging second-generation check-
point therapy. For example, anti-LAG3 in combination
with anti-PD1 may be effective in late-stage melanoma
patients who express high LAG3.86 It is unclear if scoring
novel markers such as LAG3 is more or less challenging
than PD-L1, and whether such tests will require digital
pathology-based approaches.

Diagnostic Clinical Testing
The most frequent clinical applications of QIA include

scoring of IHC stains for ER, PR, and HER2 as well as
automated HER2 FISH analysis in breast cancer as prog-
nostic and predictive biomarkers.87–96 Other applications in-
clude QIA of IHC for Ki-67, PD-L1, and multiplexed IHCs
(eg, CD3 and CD8).97–101 The key to successfully in-
corporating QIA into clinical practice includes: (i) preanalytic
elements such as optimizing glass slide quality (eg, tissue
sectioning and staining) and WSI quality (eg, scanning and
viewing); (ii) analytic elements such as ROI selection and al-
gorithm selection; and (iii) postanalytic elements such as
pathologists’ expertise in being able to correlate image anal-
ysis results with clinical information. All QIA tools must be
validated before clinical implementation for patient care, fol-
lowed by ongoing routine maintenance and development of
quality control and quality assurance program as specified by
a board of pathologists, such as the College of American
Pathologists (CAP) in the United States.102

HER2
HER2 (ERBB2) gene amplification and/or protein

overexpression occurs in ∼20% of breast cancers.103–106

HER2 status is usually assessed by IHC for HER2 protein
expression and/or by FISH for HER2 gene amplification.
HER2 IHCs are typically evaluated by pathologists
manually in a semiquantitative manner and given a score
from 0 to 3+ based on membranous staining of the HER2
protein. Despite the fact that the American Society of
Clinical Oncology (ASCO) and the CAP published de-
tailed guidelines on how to properly assess HER2 IHC,
interobserver variability still occurs.107–109 Hence, QIA
offers an objective and reproducible alternate scoring
method to assess HER2 IHC.92–96 Studies have demon-
strated that QIA can reduce HER2 IHC equivocal
cases.92,93,110 The ASCO/CAP HER2 guideline has ac-
knowledged QIA as a diagnostic modality for HER2
status assessment.107 Moreover, the CAP has created
guidelines to safely facilitate the adoption of HER2 QIA
into routine clinical pathology practice.102 The 510(k)
FDA-cleared QIA algorithms available for HER2 IHC
quantification include ACIS (Chromavision), Aperio XT
(Leica), Ariol (Applied Imaging Corp.), Pathiam (Bio-
imagene), QCA (Cell Analysis Inc.), VIAS (Tripath
Imaging), and Virtuoso (Roche Diagnostics/Ventana).
Other products (eg, Visiopharm HER2-CONNECT algo-
rithm) (Fig. 1) have also received CE marking. Visiopharm’s
QIA algorithm for HER2 IHC has demonstrated an accurate
assessment of both breast carcinoma and gastric/esophageal
adenocarcinoma.92,111,112 A recent study demonstrated that

employing QIA to score HER2 IHC had excellent concor-
dance with pathologists’ scores and accurately discriminated
between HER2 FISH positive and negative cases.113

FISH is also widely used for the determination of
HER2 status in breast cancer, especially to resolve in-
determinate (eg, 2+) IHC scores. However, manual signal
enumeration for this test is time-consuming. Automation of
the HER2 FISH test by means of image analysis has been
shown to reduce workload and improve precision.114–117

Commercial QIA systems have been developed that are able
to recognize nuclei within tissue sections to determine the
HER2 amplification status. Overall concordance between
manual scoring and automated nuclei-sampling analysis for
some systems was reported to be 98.4% (100% for non-
amplified cases and 96.9% for amplified cases).114 Systems
that automate FISH evaluation have also been shown to
improve workflow, consistency and save hours of technologist
time.118

ER and PR
Assessment of ER and PR expression is essential for

breast cancer patient management, as their expression is a
strong predictive factor for response to hormonal therapies
such as tamoxifen, and also has prognostic value.119–121 AS-
CO/CAP recommend that the ER and PR status be de-
termined on all primary breast cancers and recurrences.122 ER
or PR status is usually assessed using visual scoring of IHCs
by pathologists using different scoring methods (eg, Allred
score, H-index). However, this semiquantitative visual meth-
od is prone to human bias (eg, due to heterogenous staining
intensity), interobserver and intraobserver variability, as well
as limited standardization.123–126

QIA has been demonstrated to yield comparable results
of ER quantification to manual scoring and may be more
reproducible than manual scoring.88–91,127 ImmunoRatio, a
free web application, can calculate the percentage of the
positively stained nuclear area (labeling index) by using a
color deconvolution algorithm for separating the staining
components (DAB and hematoxylin) and the adaptive
threshold for nuclear area segmentation.128 ImmunoRatio has
been used to quantify ER and PR IHCs and the results have
been shown to highly correlate with manual scoring by
pathologists. Some QIA algorithms can provide the ratios of
positive nuclei for different staining intensities as well as the
H-score which can be calculated from the percentages of
nuclei classified as 3+, 2+, 1+ (the 3 positive categories, where
3+ has the highest staining intensity) multiplying them with
their grade: H-score= (Percentage of 3+)×3+(Percentage of
2+)×2+(Percentage of 1+) (Fig. 2). When using such algori-
thms, the invasive carcinoma regions need to be annotated,
typically performed manually, to define an ROI to be
analyzed. The act of performing the actual outlining and
running the algorithm can be performed by a technologist.

PD-L1
Assessment of PD-L1 expression is critical for cer-

tain cancer patients’ eligibility for immunotherapy. Cur-
rently, PD-L1 expression is examined using an IHC
method, and immunostained slides are usually evaluated
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manually by pathologists. Similar to manual quantitation
of other biomarkers, PD-L1 IHC assessment has inter-
observer variability.129–132 Several studies have explored
automated imaging analysis algorithms to assess PD-L1
expression from IHC slides. In one study, PD-L1 IHCs
with the 22C3 antibody in non–small cell lung carcinomas
were interpreted first by pathologists and secondly by a
commercial image analysis algorithm for both tumor cells
and immune cells. The results demonstrated that the au-
tomated scoring method was concordant with the path-
ologists’ average scores that were comparable to
interpathologist scores.98 An additional study using Qu-
Path, an open-source deep-learning platform, to quantify
PD-L1 expression on both tumor cells and inflammatory
cells reported objective, reproducible, and accurate
results.133 But, to date, few automated studies have been
validated against patient outcomes in a clinical trial set-
ting. Beyond demonstrating just concordance with path-
ologist’s manual reads, it will be important to validate

automated PD-L1 scoring against clinical trial endpoints
if QIA methods are to be adopted into clinical practice as
potential companion or complementary diagnostic tests.

Proliferation Index (Ki-67)
The cellular proliferation index determined by IHC

staining with Ki-67 offers an insight into the biological
behavior of tumors and is important in grading/subtyping
of certain neoplasms including brain tumors, breast car-
cinoma, certain non-Hodgkin lymphomas, and neuro-
endocrine tumors. Nuclear Ki-67 antigen can be detected
using MIB-1 antibody which serves as a good proliferation
marker.134 The Ki-67 proliferative index is usually eval-
uated manually in clinical practice, but interobserver
variability occurs. QIA algorithms have provided a more
accurate estimate of the proliferation rate.1,135,136 In one
study with pancreatic neuroendocrine tumors, the authors
concluded that although it was practical to perform only
a single-field hotspot analysis to determine the Ki-67

FIGURE 1. Example of HER2-CONNECT (Visiopharm) quantitative image analysis in breast carcinoma. The left panel of images
(A, C, E, G) shows IHC staining and the right panel (B, D, F, H) shows HER2 membrane connectivity (green color line) detected by
the algorithm. HER2 IHC 0 (A, B); HER2 IHC 1+ (C, D); HER2 IHC 2+ (E, F); HER2 IHC 3+ (G, H). HER2 indicates human epidermal
growth factor receptor 2; IHC, immunohistochemistry.
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proliferative index, the results varied when using 10 con-
secutive fields, suggesting that automated QIA using WSI
may yield more accurate results.137

Immunoscore
The tumor microenvironment and host immune re-

action have gained growing importance in cancer prog-
nosis and treatment. Immunoscore, a prognostic score (I0
to I4) for colon cancer, applies a QIA algorithm to
quantify the combination of CD3-positive and CD8-
positive cells in the central tumor and invasive margin
areas of colon adenocarcinoma.138,139 A study looking at
CD8 tumor-infiltrating lymphocytes in oropharyngeal
squamous cell carcinoma has demonstrated similar
benefit,140 but its utility in other indications is still under
investigation and requires separate evaluation for every
tumor type.

REGULATORY FRAMEWORK AND GUIDELINES

FDA
As of April 2020, there are 33 QIA applications

cleared by the FDA. These QIA applications represent
automated image analysis applications of routine manual
scoring paradigms and despite agency clearance, as far as
the authors are aware no “FDA guidance document”
exists and many of these QIA are no longer in the market.
Interestingly, in these FDA-cleared algorithms, the system
software usually makes no independent interpretations of
the data but instead, a pathologist selects an ROI to be

analyzed and the algorithm provides a qualification or
quantification score which the pathologist needs to con-
firm. If the pathologist does not agree with the algorithm
assessment, the result can be overridden and a manual
score is reported out. The quantitative data produced by
these algorithms is almost entirely based in color detection
and threshold and a few more recent applications include
machine learning (ML) approaches that classify tissue for
inclusion or exclusion in the analysis (eg, to include tu-
moral area and exclude stroma). These classifier algo-
rithms were trained involving conventional supervised ML
learning (ie, algorithm training was conducted by a
pathology expert who provided input such as slide anno-
tations). In general, ML supervised algorithms usually
require less training data compared with AI-based algo-
rithms employing deep learning. Deep learning requires
larger datasets but much validation is needed in a con-
trolled way. In addition, deep learning represents a “black
box” for exactly how an algorithm works, compared with
current cleared applications that are better understood
and as such are perceived as easier to bring to market.

As outlined in previous sections, there are many
advantages for adopting the digital environment. Just like
in radiology, this will have to evolve and digital pathology
can learn from this evolution. Recently, deep-learning AI-
based algorithms have been cleared for radiology (eg,
retinopathy diagnostic algorithm DEN180001 and bone
fracture DEN180001). While these radiology algorithms
do not serve as a “predicate” for FDA approval of digital
pathology QIA applications, they do provide a precedent

FIGURE 2. Example of estrogen receptor quantification (Visiopharm). Representative images from 2 cases with strong (A, B)
(H-score: 275) and weak (C, D) (H-score: 21) estrogen receptor staining. A and C, Original IHC images. B and D, Analyzed images
with pseudo-colors. Brown: Original IHC color; blue: original nuclear counterstain; red: strong staining intensity; yellow: weak
staining intensity. IHC indicates immunohistochemistry.
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and could support faster clearance of AI-based digital
pathology algorithms. To that regard, the Agency issued a
position paper on AI entitled “Proposed regulatory
framework for modifications to AI/ML-based software as
a medical device.”141 This document refers to a ML sys-
tem as a system that has the capacity to learn based on
training on a specific task by tracking performance mea-
sure(s). When this software is intended to be used to di-
agnose, treat, cure, mitigate or prevent disease it is
considered Software as a Medical Device (SaMD). When
SaMD is used in clinical practice, it can be locked or open
for continuous learning. Within this spectrum of con-
tinuously learning, general principles regarding data
management, retraining, and performance could be con-
sidered. These general principles can be grouped under
Good Machine Learning Practices (GMLP). GMLP can
then be used to author a SaMD Pre-Specification which
includes the anticipated modifications which the manu-
facturer plans to accomplish when the SaMD is in use (ie,
the “what” the algorithm should become when it is
learning). The Algorithm Change Protocol describes how
this should be accomplished in a safe and effective way (ie,
the “how” the algorithm remains safe and effective). What
is not evident in the FDA paper is the role of the health
care provider for locked and continuous learning SaMDs.
Currently in clinical practice, the pathologist expert role
provides the best mitigating strategy for diagnostic deci-
sion making. For AI/ML algorithms in digital pathology
this same relationship will exist, where the pathologist is
the “special control.” As an example we will mention class
II medical devices, for which design and development re-
quires “special controls” that are device specific and may
include special labeling requirements such as requiring a
pathologist to confirm the output of the device (eg, the
results), to provide reasonable assurance of its safety and
effectiveness.

In summary, there are still unanswered questions
around FDA-clearance of AI-based QIA applications.
These include, but are not limited to, specifications for
complex algorithms that may assess features not readily
visible by the human eye, what should constitute GMLPs,
and the role of the health care provider to help drive the
field forward.

Laboratory Developed Tests (LDTs)
According to the FDA, an LDT is “a type of in vitro

diagnostic (IVD) test that is designed, manufactured and
used within a single laboratory.” In contrast to FDA-
cleared IVDs that are sold as commercial kits, LDTs are
not to be promoted or distributed, and they are currently
not FDA-regulated (see additional information about the
VALID act below). LDTs can be used to study bio-
markers in human samples, and although a commercial
FDA-cleared IVD test for this biomarker might be
available, some laboratories decide to develop their own
test. This is particularly relevant for tissue biomarker
image analysis, because only 33 FDA QIA tests are
commercially available, assessing only 5 biomarkers total
(p53, Ki-67, HER2, ER, and PR).

Recently, the FDA issued guidelines that impact all
medical device software, including draft guidance “Clin-
ical Decision Support Software.”142 These guidelines in-
clude the “21st Century Cures Act”143 which provides
clarity on what software is not overseen by the FDA, and
the subsequent “Changes to section 3060”144 which pro-
vides guidance on Clinical Decision Software (CDS) no
longer considered to be a medical device, a so-called non-
CDS device. A non-CDS device is when the health care
provider can independently review the basis for the rec-
ommendation provided by the device so that it is not the
intent that the user rely primarily on such recom-
mendation. Hence the guidelines have a risk-based ap-
proach that consider if these technologies pose any risk to
patients for example, on the significance of the in-
formation provided by that software function, and what is
the role and involvement of the health care provider. The
risk-based approach is leveraged from the IMDRF
framework.145

Another document relevant for LDTs, is the “Verifying
Accurate, Leading‑edge IVCT Development (VALID) Act.”
The VALID Act is a draft bill that defines a regulatory path
for “in vitro clinical tests” (IVCTs). IVCTs are clinical diag-
nostic tests that include LDTs and IVDs and are manufac-
tured, promoted, and sold by manufacturers. The FDA has
been contemplating regulating LDTs for many years and the
VALID Act is an example of such potential LDT regulation.
According to these newly proposed regulatory pathways,
high-risk IVCTs would likely still be subject to premarket
approval, while low-risk IVCTs could be exempted. This is
similar to class I devices, which are devices that pose the
lowest risk to the patient and/or user, but still need to follow
general controls.

Good Laboratory Practice (GLP)/Good Clinical
Practice (GCP) Guidelines

GLP is an internationally recognized quality system
that regulates all the systems and facilities under which
data is collected during research. GLP ensures the validity
and reliability of such data. In contrast, GCP ensures
patients’ safety and rights through the regulation of the
ethical and scientific quality of clinical research (ie, re-
search in human subjects). Good Clinical Laboratory
Practice (GCLP) is an international standard that com-
bines the principles of both GLP and GCP and ensures the
reliability of the data and the ethical standards that clin-
ical trials require.

When working with AI-powered algorithms during
drug development, it is key to understand in which de-
velopment phase the drug is and what is the device’s in-
tended use. Pharmaceutical research often requires devices
to be “21 CFR part 11” compliant (21 CFR 11: “The
regulations in this part set forth the criteria under which
the agency considers electronic records, electronic sig-
natures, and handwritten signatures executed to electronic
records to be trustworthy, reliable, and generally equiv-
alent to paper records and handwritten signatures exe-
cuted on paper.”) However, when data collected during
drug clinical trials can be provided by a Medical Device
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but signed off in a different data system, then the device
does not have to be 21 CFR 11 compliant. In contrast, if
the device management system is being used for data
analysis, then compliance to 21 CFR 11 is required. Be-
cause GLP and GCLP are globally recognized and
adopted, adherence to these principles is most important.
One of the requirements of GCP is that for all types of
research, drug discovery, related biomarker development,
and as such algorithms (including AI training) involving
human subjects, the subjects should have given consent
that their data, which includes images, can be used. It is
noteworthy to mention that different local regulations and
guidelines could apply for using leftover specimens.

Depending on the country, additional requirements
on top of GCLP may apply, but in general, all toxicology
studies (nonclinical testing) and clinical testing must ad-
here to GCLP. Data already collected during drug dis-
covery and development can be reused to train an
algorithm, and when compliant with GCLP and used as a
nonmedical device, its making the deep-learning AI ap-
proach less cumbersome than when developing the algo-
rithm as a SaMD or even LDT.

Non-USA Regulations
Outside the United States, guidance on medical de-

vice development is changing with respect to In Vitro
Diagnostic Directives into Regulations (IVDR) in Europe.
The IVDR are planned to become effective in May 2022.
Per IVD directives, an IVD product refers to a reagent,
instrument, or system (eg, image analysis algorithm) that
is intended for clinical diagnostic use. Instead of a list-
based approach, that is, Annex II with list A including
high-risk devices such as determining blood groups re-
quiring a notified body to verify the Common Technical
Specifications; and list B including moderate-risk devices
such as reagents for which the manufacturer must declare
conformity to requirements as described in Annexes. The
IVDR is akin to the FDA Quality System Regulation
(QSR) in the United States, now following a risk-based
approach, that is, classification depends on the risk it
poses to the patient and/or user. Also, there is a USA
federal initiative (RIN 0910-AH99, is the Regulatory In-
formation Number (RIN) from the USA Department of
Health and Human Services initiative for “Harmonizing
and Modernizing Regulation of Medical Device Quality
Systems.”) (RIN 0910-AH99) to increase alignment of the
FDA QSR with ISO13485 [ISO13485 is the standard
certification that proves Quality Management compliance
for the Medical Device industry. Its purpose is to ensure
that medical device manufacturers (and related suppliers)
have systems for effective design and production and that
their products are safe.] which would harmonize IVD
development worldwide. However, the big difference be-
tween the European Union (EU) and the United States is
that the EU requires active Post Market Clinical Follow
Up (PMCFU) and surveillance for medical devices. The
active PMCFU has the potential for allowing the collec-
tion of real-world data to utilize as real-world evidence.
This could enable the establishment of well-controlled

plans for continuous deep-learning algorithms for bio-
marker analysis. Although the FDA published guidance in
August 2017,146 the acceptance of world data to be used as
real-world evidence for medical devices has yet to be seen.
Nevertheless, it is plausible that data collected in the EU
could be used in the United States.

CAP/CLIA Guidelines
The CAP has established a number of guidelines

governing the use of WSI147 as well as quantitative anal-
ysis using digital images, particularly in regard to IHC for
biomarkers.148 Importantly, FDA approval is not re-
quired to deploy digital pathology systems in the clinical
workflow (although CAP recommends that this should be
explicitly stated in the pathology report), instead relying
on the LDT mechanism for validation.102

Best practices for validating WSI for diagnostics
generally include steps to demonstrate: (i) concordance
with traditional diagnostics that do not use these tech-
nologies; (ii) periodic validation and revalidation when a
component to the system has changed in a significant way;
(iii) documentation of changes to systems or algorithms,
documentation of training for users and backup proce-
dures for system downtime; and (iv) consistency with other
activities and requirements, such as IHC validation and IT
policies. It is essential that the validation procedure uses
an adequate number of samples considered to be repre-
sentative of the use case under study. The minimum
number of samples to be analyzed should be 60 for one
application, and it is recommended that another 20 cases
be included for each additional application (such as IHC
or additional special stains).149 Systems should be vali-
dated in their entirety, from input to output. Furthermore,
revalidation of each biomarker should be performed when
there is an expectation of a difference between expression
pattern, or when the algorithm differs between bio-
markers. Comparison against a gold standard should be
performed, in which an external validation set and manual
assessment are commonly chosen.

At present, these guidelines are not explicitly laid out
or tailored to the unique requirements of digital pathol-
ogy. Nevertheless, both CAP and Clinical Laboratory
Improvement Amendments (CLIA) currently require that
AI-based technologies similarly undergo validation before
being applied to patient samples, and recommend that the
aforementioned general considerations for WSI and
quantitative analysis are applied.102 This includes: (i) en-
suring that the use case is appropriate and validation data
is representative; (ii) there is high sensitivity and specificity
in comparison to surrogate markers or manual assessment
(with intraobserver and interobserver validation applied
where appropriate); and (iii) that the algorithm is re-
validated upon change. This may pose a problem for
adaptive deep-learning AI algorithms that are designed to
continuously learn based on exposure to new data.

Apart from HER2, there is a lack of clinical guide-
lines for QIA of biomarkers. According to the CAP 2016
Histology Quality Improvement Program (HQIP)—A
mailing, 183 (∼22.1%) of participating laboratories
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reported using QIA. However, there was no information
on exactly how QIA was conducted. To fill this gap, the
CAP Quality Center convened an expert and advisory
panel to work on a QIA guideline for HER2. QIA of
HER2 IHC was selected because this is one of the most
commonly tested biomarkers in pathology practice, and it
is more challenging with respect to reproducibility due to
the membranous staining pattern as compared with other
nuclear-stained biomarkers such as ER, PR, and Ki-67.
While the ASCO/CAP HER2 testing guidelines address
key preanalytical-related, analytical-related, and report-
ing-related issues of IHC for this biomarker and advocate
using image analysis, there is no detailed information on
how HER2 IHC QIA for breast cancer should be con-
ducted. The intent of the CAP guideline for QIA of HER2
was to thus provide recommendations for improving the
precision and accuracy of this test.

The CAP guideline for QIA of HER2 was developed
following the National Academy of Science (formerly
Institute of Medicine) standards for developing clinical
practice guidelines.150 The robust process developed by
CAP Quality Center includes a systematic literature review,
draft recommendations by an expert panel with input from an
advisory panel, public comment period, and grades provided
for the strength of evidence and strength of recommendation
to complete recommendations, independent peer-review, ap-
proval, publication, implementation, and maintenance. The
key questions that needed to be addressed included: What
equipment, validation, and daily performance monitoring was
needed? What training of staff and pathologists was required?
What are the competency assessment needs over time? How
does one select or develop appropriate algorithms for inter-
pretation? How does one determine the performance of image
analysis? How should image analysis be reported? Among 376
articles were initially identified, 39 underwent data extraction
and only 9 articles had sufficient data to inform the guideline
statements. Following a public comment period, 11 recom-
mendations were published.102

The main messages delivered in the CAP guideline
regarding QIA of HER2 IHC are that such analysis and
its related procedures must be validated before im-
plementation, followed by regular maintenance and on-
going evaluation of quality control and quality assurance.
Laboratories should validate their QIA results for clinical
use by comparing them to an alternative, validated
method(s) such as HER2 FISH or consensus images for
HER2 IHC. HER2 QIA performance, interpretation, and
reporting should also be supervised by pathologists with
expertise in QIA and those involved with using the
technology should be trained. The length of retention for
images, annotations, and computer-generated results
should be comparable to the current requirements for
similar clinical image assets and based on the laboratory
documented standard operating procedures and policies.
In the United States, the latest accreditation standard for
datasets from ex vivo microscopic imaging systems is
10 years. As with any clinical evidence-based guideline,
following these recommendations is not mandatory.
Of course, such recommendations may ultimately be

incorporated into future versions of the CAP Laboratory
Accreditation Program checklists; however, they are not
currently required by Laboratory Accreditation Program
or any regulatory or accrediting agency. Nevertheless, it is
highly encouraged that laboratories participating in QIA
of HER2 adopt these recommendations and of course,
these recommendations can also be extrapolated to QIA
of other biomarkers.

CONCLUSIONS
QIA is becoming an indispensable tool for biomarker

research, discovery, nonclinical studies, and clinical trials. In
addition, it is increasingly used in clinical practice. The tech-
nologies employed to detect biomarkers in tissues and cells
today have become increasingly complex (eg, multiplex fluo-
rescence, CYTOF), resulting in staining that can be chal-
lenging to evaluate manually. Applying QIA tools in these
scenarios will produce faster results and more accurate and
reproducible data. Validation of all components of the
workflow (staining, digitization, and algorithm analysis) is
necessary and crucial for proper implementation of QIA of
tissue biomarkers for both in-house and commercially avail-
able algorithms. Additional guidelines from federal regulatory
agencies are needed that go beyond the currently available
CAP recommendations for HER2 IHC evaluation by QIA.
In addition, more contemporary regulations are needed, as
well provisions for billing and addressing liability issues for
medical personnel.151 There are currently several such ini-
tiatives underway including the redefinition of a medical de-
vice and of the agencies’ role in the clearance of AI-based
deep-learning algorithms for clinical use. The outcome of
these initiatives will significantly impact how digital tools for
biomarker research and clinical purposes are going to be
cleared and utilized.
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