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� A Gaussian mixture model to classify
the pixel distribution of main brain
tissues is introduced.

� A hemisphere approach is proposed.
� Mixing probabilities at the sub-class
and class levels are estimated.

� The k-means algorithm optimizes the
parameters of the mixture
distributions.

� A difference in the mixing
probabilities between hemispheres is
determined.
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A Gaussian mixture model (GMM)-based classification technique is employed for a quantitative global
assessment of brain tissue changes by using pixel intensities and contrast generated by b-values in dif-
fusion tensor imaging (DTI). A hemisphere approach is also proposed. A GMM identifies the variability in
the main brain tissues at a macroscopic scale rather than searching for tumours or affected areas. The
asymmetries of the mixture distributions between the hemispheres could be used as a sensitive, faster
tool for early diagnosis. The k-means algorithm optimizes the parameters of the mixture distributions
and ensures that the global maxima of the likelihood functions are determined. This method has been
illustrated using 18 sub-classes of DTI data grouped into six levels of diffusion weighting (b = 0; 250;
500; 750; 1000 and 1250 s/mm2) and three main brain tissues. These tissues belong to three subjects,
i.e., healthy, multiple haemorrhage areas in the left temporal lobe and ischaemic stroke. The mixing prob-
abilities or weights at the class level are estimated based on the sub-class-level mixing probability esti-
mation. Furthermore, weighted Euclidean distance and multiple correlation analysis are applied to
analyse the dissimilarity of mixing probabilities between hemispheres and subjects. The silhouette data
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evaluate the objective quality of the clustering. By using a GMM in the present study, we establish an
important variability in the mixing probability associated with white matter and grey matter between
the left and right hemispheres.
� 2019 The Authors. Published by Elsevier B.V. on behalf of Cairo University. This is an open access article

under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
Introduction

Accurate and non-invasive methods capable of detecting and
correcting localized affected areas of the brain are of substantial
interest because there is significant variability in the location and
extent of such areas. Moreover, there is substantial variability
among individuals. The inter-subject variability of brain structures
is apparent for normal subjects as well as for patients with various
brain injuries [1,2].

The statistical analysis presented in this paper is based on Gaus-
sian models [3–10]. A Gaussian mixture model (GMM) is a proba-
bilistic model based on a Gaussian distribution for expressing the
presence of sub-populations/sub-classes within an overall popula-
tion/class without requiring the identification of the sub-class of
interest (observational data) [11]. That is, a GMM learns to detect
injured tissues using healthy patient data. Banfield and Raftery
[4] considered both Gaussian and non-Gaussian models to specify
the features of the clusters and to estimate which features likely to
differ between clusters. These authors applied the proposed
method to brain MRI images to identify similarly anatomical struc-
tures. Fraley and Raftery [6] systematically reviewed how finite
mixture models provide a statistical framework for application in
clustering, the effectiveness of a certain clustering method and
the influence of outliers on cluster analysis. Paalanen et al. [7]
investigated several estimation methods for GMMs, enabling an
improvement in the representation and discrimination of patterns.
Kim et al. [9] proposed a method to assess gross brain abnormali-
ties using a GMM, with at least two Gaussian components to allo-
cate a specific mixing probability to each subject. Then, the
assigned mixture probabilities are tested between the studied
groups. The authors stated that a GMM is an effective method in
terms of computing resources because it does not incorporate
any subject or group-specific parameters. Another popular
approach is the multivariate Gaussian method, which is used to
identify features and discriminate between different classes in var-
ious applications, such as hazardous chemical agents [12], moving
parts of electric motors under normal conditions and those with
bearing failure [13]. However, the usage of a single feature results
in a single fundamental class with variables exhibiting smooth
behaviour. Consequently, certain errors in the estimation of the
probability density function (pdf) occur, and the discrimination
between classes fails. A GMM treats analysed data as a mixture
of component distributions, and the main challenge here is to cor-
rectly estimate the model parameters such as the weight of the ith
component, which can be interpreted as the a priori probability,
mean or covariance matrix of the normally distributed random
variable. A GMM is a simple physical and data-driven model; it
permits a flexible characterization of unusual distributions of pix-
els and provides a quantitative analysis of DTI data [14]. DTI cap-
tures vital information and plays a significant role in in vivo
studies of anatomical structures in brain regions [15]. Generally,
brain tissues such as grey matter (GM), white matter (WM) and
cerebrospinal fluid (CSF) are considered classes; a few of their pixel
features are predominantly measurable and serve as model param-
eters. A GMM assigns a probability to each pixel if it belongs to
only one class. These parameters are learned using the
expectation-maximization (EM) algorithm [16,17]. More recently,
various associations between prior knowledge on human
neuroanatomy and conditional probability distributions that can
characterize various brain tissues or anatomy classes were made
feasible by considering a GMM associated with various neu-
roanatomical labels [18,19].

In this study, a GMM-based classification scheme to identify the
variability in the main brain tissue in DTI images (rather than
searching for tumour areas) is proposed. To consider the signal
intensity and contrast effects on image quality, we used multiple
b-values. Han et al. [20] reported that brain imaging using a high
b-value likely improves both the contrast between tissues and
the capability of detecting less prominent lesions. As a probabilistic
model, a GMM can characterize arbitrary mixture distributions
composed of WM, GM and CSF with unknown parameters. A k-
means algorithm is used to optimize the means, variances and
mixture probability of the mixture distributions and to ensure that
a global maximum of the likelihood function is achieved. The
weighted Euclidean distance (wd) is used to validate the capability
of a GMM to discriminate between the mixing probabilities across
the studied classes. Moreover, a multiple correlation analysis
between the left and right hemispheres based on the established
mixing probabilities is performed. Finally, the silhouette plot (size
and width) is used to evaluate the clustering validity. DTI images of
a normal subject without a history of head injury or cerebrovascu-
lar disease (denoted H), a patient with multiple haemorrhage areas
in the left temporal lobe (HA) and another with ischaemic stroke
(IS) were studied.
Methodology

Finite GMM with m components

Brain DTI images contain heterogeneous sub-classes, and the
analysis based on the mixture of models is adequate to model
the entire distribution containing numerous sub-classes. Different
tissues such as WM, GM, and CSF or lesioned tissues aggregate
their intensities and contrast, which is essentially decided by the
b-values in DTI, under different Gaussian curves with distinct
mean and covariance parameters. The highest probability of classi-
fying each pixel as belonging to the WM, GM and CSF or lesioned
tissues is the basis of a GMM. The mean values of the weights of
each brain tissue and for each b-value are projected onto a vector
space with a three-dimensional feature [w1, w2, and w3]. This vec-
tor contains the intensities of the pixels for each available b-value.
First, healthy subject-specific information is integrated into the
algorithm using the GMM by means of a training stage. During this
training stage, the weights, mean, and variance for each individual
Gaussian density are determined. These factors are prior probabil-
ities for parameters required in the initialization step of the EM
algorithm. Then, the GMM parameters for the test data are estab-
lished using the maximum likelihood and an iterative EM algo-
rithm. The GMM generates a vector space, which contains the
probability function of the data computed using the intensities of
the pixels and their discriminative weights or mixture probability,
for each available b-value and for each considered tissue class. The
vector space is passed to the predictive model to capture the dis-
criminative subject-specific information regarding the brain inju-
ries from MRI images.

http://creativecommons.org/licenses/by-nc-nd/4.0/
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This approach is followed in an inter-hemisphere analysis, and
the mixture weight functions are determined as a posteriori prob-
ability to prevent the repetition of an excessively large number of
univariate analyses during the characterization of each subject. The
brain segmentation into hemispheres involves the following steps:
(i) skull stripping based on an irrational mask for filtration and bin-
ary morphological operations [21]; and (ii) mid-sagittal axis detec-
tion based on the location of the inter-hemispheric fissure and
determination of the image centroid, as reported in [22].

In a preliminary step, an image histogram that provides raw
information about the pdf of the pixel values is analysed. The num-
ber of components or Gaussian sources is established at three,
according to the multimodal distribution in the histograms of the
pixel distribution. The finite mixture model is based on the
assumption that each finite mixture has similar probability distri-
butions for each sub-class; however, inside the sub-class, different
multivariate probability density distributions and different param-
eters are present [3]. For an image, let X denote a vector of pixel
intensities X ¼ xif g; i ¼ 1;N. X is a feature vector of the observa-
tion data for a specific subject and a specific b-value. This vector
describes a sub-class, which, in turn, belongs to a class
Xm; m ¼ 1;2;3. The probability function at the observation xi is
expressed as

f xi; hð Þ ¼
X3
m¼1

w
�

mfm xijbj
� �

; 8j ¼ 1;6 ð1Þ

f m xijbj
� �

denotes a component of the Gaussian mixture or ‘mix-

ture distribution’, and w
�

m is the prior distribution of the pixel
xi; xi 2 Xm for each sub-class corresponding to b-values and is
called mixing proportions or weights. The weights must satisfy

the following conditions to be valid:
P3

m¼1w
�

m ¼ 1 and

0 < w
�

m 6 1, for each sub-class. As an a priori distribution, it is
obtained by observing a healthy patient. Each density function of
the mixture component f m xijbj

� �
is characterized by a mean li

and a variance R and is a univariate normal pdf expressed as

f m xijbj
� � ¼ 1ffiffiffiffiffiffiffiffiffiffi

2pR
p exp �1

2
X � li

� �TR�1 X � li

� �� �
;

8m ¼ 1;2;3 and8j ¼ 1;6 ð2Þ

h ¼ w
�
i

n o
;li;R

� �
denotes a set of the main parameters of the

GMM to be estimated by the EM algorithm. The likelihood function
of the training vectors based on the probability function (2) is as
follows:

L hð Þ ¼
YN
i¼1

X3
m¼1

w
�
mf xijbj
� �

; 8j ¼ 1; 6 ð3Þ

where N is the total number of pixels in the image. The function
permits one to establish the statistical model parameters. There is
incomplete data in h; therefore, these partially observed parameters
in h are estimated using an EM algorithm [23]. As an iterative algo-
rithm, EM starts by using an initial model X, estimates a new model
X0, and in the next iteration, this new model X0 becomes an initial
model to determine a new model, X00, etc. This process is repeated
until a predefined convergence condition is achieved. In the studied
problem, the mixing proportions are estimated and subsequently
validated.

(i) In the initialization step, the mean, variance and mixing
coefficients of the training data were estimated for m = 3
classes. Established during the training stage, these parame-
ters are the prior distribution. This distribution is used to ini-
tialize the value of the probability.
(ii) In the expectation step, based on the current estimated
parameters h, the EM algorithm computes the posterior
probability using the current parameter values established
in the initialization step; furthermore, the algorithm esti-
mates the posterior probability that an observation xi
belongs to a sub-class j over all feasible assignments of data
points to Gaussian sources, as

wij ¼
w
�

mf xijbj
� �

f xið Þ ; i ¼ 1;N; j ¼ 1;6; m ¼ 1;2;3 ð4Þ

Then, for each sub-class j, the prior probabilities are computed
by averaging the posterior probabilities for each class as

wj
	 
 ¼ 1

N

XN
i¼1

wij; j ¼ 1;6 ð5Þ

(iii) In the maximization step, the values of the old estimated
parameters h are updated or re-estimated by computing
the maximum likelihood estimates of h with the expected
membership values [24,25]. The derivative of function (3)
is determined and equated to zero. The determination of
the global maxima of the likelihood functions implies the
determination of those parameters that maximize the prob-
ability of observing the data. The new mean, variance and
weight parameters are estimated, and the likelihood func-
tion is evaluated.

The iterative process continues through the expectation and
maximization steps successively until convergence. Convergence
implies that the changes in the parameters become small enough,
i.e., it stops when hi � hi�1j j � e, where e = 0.00001 is small enough
to assure no significant changes from one iteration to the next
exist. If the convergence criterion is not attained, the algorithm
returns to the expectation step.

k-means algorithm for clustering

The k-means algorithm is used to assess the data clustering for
the selected number of classes (m = 3) [26,27]. Each mixture compo-
nent is associated with a class or cluster based on identical estimated
statistical parameters. The data produced by a GMM are clusters
with centroids at the means. In the GMM, the EM algorithm con-
verges to the local maxima of the likelihood function. However,
the EM algorithm has a drawback, namely, it fails when the covari-
ance matrix associated with a sub-class is singular or the number of
observations is reduced. According to the GMM, three initial cen-
troids are defined based on the set of parameters h established in
the maximization step of the EM algorithm. Thirty-five restarts of
the k-means algorithm were executed to ensure that a global maxi-
mum is determined for each data set. That is, k-means optimizes the
mean, variance and weight of the mixture distributions.

Weighted Euclidean distance and multiple correlation

To validate the ability of the GMM mixtures to differentiate
between different subjects in a hemisphere approach, we used
the wd between two j-dimensional vectors [28]:

wdm
H�IS ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX
j

wH
ij

sHj
�wIS

ij

sISj

 !2
vuut and wdm

H�HA ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX
j

wH
ij

sHj
�wHA

ij

sHAj

 !2
vuut

ð6Þ
where wij is given by Eq. (4) for the studied sub-classes, and sj is the
corresponding standard deviation. H denotes the normal subject,
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HA a patient with multiple haemorrhage areas in the left temporal
lobe and IS another with ischaemic stroke. The wd balances the con-
tributions of the variables in the computation of distance. The
weight attached to the jth variable in a vector is related to the stan-
dard deviation of each distribution sHj ; s

IS
j and sHAj [29]. A continuous

image belongs to a metric space that uses metrics exhibiting the fol-
lowing properties: non-negativity, identity of indiscernibles, sym-
metry and triangle inequality. The wd is appropriate for
measuring the dissimilarity of the two given mixing probabilities
because other metrics fail to exhibit a few of these properties,
e.g., the Kullback–Leibler distance fails to exhibit the symmetry
property, and the Hellinger distance fails to exhibit the triangle
inequality. The Minkowski and Mahalanobis distances are general
formulations of the Euclidean distance. Hershey and Olsen [30]
reported that the Kullback–Leibler divergence metric between
two GMMs cannot be analytically applicable and that the algorithm
is highly time consuming. Durrieu et al. [31] demonstrated that the
Kullback–Leibler divergence metric can be approximated only.

Moreover, an inter-hemisphere multiple correlation analysis
between the mixing probabilities was performed to characterize
the association of the grey level intensities and contrast for the
selected injured subjects and healthy subjects. The multiple corre-
lation coefficients between the independent variables HA and IS
and the dependent variable H are defined as

Rm
H�ðIS;HAÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rmIS;H
� �2

þ rmHA;H
� �2

� 2rmIS;Hr
m
HA;Hr

m
IS;HA

1� rmIS;HA
� �2

vuuuut ð7Þ

where rmIS;H; r
m
HA;H; r

m
IS;HA, m = 1, 2, 3 are the covariance between the

two random variables in each of the pairs IS and H, HA and H and
IS and HA, respectively [32]. Accordingly, the correlation coefficient
between two sub-classes j that belong to a class m for two random
variables is illustrated in the example below:

rmH;HA ¼
P

i;jw
H
ij w

HA
ij � K wH

i

	 

wHA

i

	 

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
i;j

wH
ij

� �2� �
� K wH

i

	 
� �2s ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
i;j

wHA
ij

� �2� �
� K wHA

i

	 
� �2s ð8Þ

where wij and wih i are defined in the expectation step, and K = 10 is
the number of samples (i.e., images) for each sub-class.

Clustering validation

The analysis is focused on three main brain tissues (i.e., GM,
WM and CSF), and an a priori assumption of three-class clustering
is considered. The goal is to examine whether these classes reflect
the actual clustering structure of the data or whether these data
were partitioned into a few artificial groups in the context of the
GMM [33]. The quality of the clustering analysis is addressed,
and the silhouette index and silhouette plots are used as the vali-
dation criteria [34]. If compact and clearly separated clusters are
obtained, the targeted tissues were considered well classified. Let
a multivariate data wij be separated into m clusters, Am,
wij 2 Am ¼ AmH [ AmHA [ AmIS, m ¼ 1;2;3. Let us suppose that the

GM tissue is described by wH
1i; i ¼ 1;N and A1 ¼ A1H [ A1HA [ A1IS.

We define the average dissimilarity of wH
1i with all the other points

k of the same cluster having the vector norm A1j j, as follows:

kH1 ¼ 1
A1j j � 1

XN
k¼1

k wH
1i �wH

1k k1A wH
1k

� �
; i–k ð9Þ

where || || denotes a 2-norm (L2). Further, kH�HA
1 and kH�IS

1 describe
the average dissimilarity of the mixing probability of H with all
the points belonging to other clusters HA and IS, respectively:
kH�HA
1 ¼ 1

A1j j � 1

XN
k¼1

k wH
1i �wHA

1k k1A wHA
1k

� �
and kH�IS

1

¼ 1
A1j j � 1

XN
k¼1

k wH
1i �wIS

1k k1A wIS
1k

� �
The smallest average dissimilarity to another cluster is defined

as k�1 ¼ min kH�HA; kH�IS
n o

. The silhouette index is

s ið Þ ¼ k�1 � kH1
max k�1; k

H
1


 � ¼
1� kH1

k�1
if kH1 < k�1

0 if kH1 ¼ k�1
k�1
kH1
� 1 otherwise

8>>><
>>>:

ð10Þ

From Eq. (10), s ið Þ 2 �1;1½ �, and if s ið Þ � �1, the least effective
situation manifests. This method is also used for WM and CSF. Sil-
houette plots facilitate the interpretation of cluster analysis results
because they are independent of the clustering algorithm used and
rely only on the actual partition of the ‘objects’ [34].
Subjects, image acquisition, and processing

The algorithm flow is presented in Fig. 1.
Three subjects (age range 36–60 y; one female and two males)

underwent MRI scans. A subject presented multiple haemorrhage
areas in the left temporal lobe (male, 48 y), and another
presented with IS in the left frontal lobe (female, 60 y, median
8-mo post-stroke). The third subject was a healthy patient
(male, 36 y). A series of DTI images were acquired using a
pulsed gradient spin-echo sequence in 15 directions and five
b-values (b1 = 250 s/mm2; b2 = 500 s/mm2; b3 = 750 s/mm2;
b4 = 1000 s/mm2; b5 = 1250 s/mm2). Moreover, images without
diffusion gradients (b0 = 0 s/mm2) and with otherwise identical
imaging parameters were acquired. A total of 190 images were
tested. A b-value encompasses information regarding the strength
and timing of the gradients used to generate diffusion-weighted
images. Larger b-values provide better contrast among tissues.
The selection of b-value continues to be a challenge and strongly
depends on the investigated anatomical features or pathology, field
strength and average number of signals. In the case of the GMM,
the mixing probabilities depend on the experimental conditions,
i.e., the diffusion effect or b-value. Multiple b-values permit the
use of a small sample size because each data set exhibits character-
istics unique to it. The within-subject correlation is avoided by
summarizing each mixing probability sequence with a single
number. In this case, only a comparison of the statistics between
the classes (see data in Table 3) is performed. Averaging repeated
measurements is a reasonable choice, especially when the effect
of the injury is maintained quite steadily over acquisition time.

For the data acquisition, a 1.5-T MRI scanner was operated (Phi-
lips Medical Systems, Best, Netherlands). The diffusion-weighted
scans utilized a system with six-channel sensitivity encoding
(SENSE) for faster scanning (FS = 1.5). The imaging parameters
were as follows: 3D gradient echo with echo time ranging from
83 to 110 ms; repetition time ranging from 6500 to 7800 ms (it
varies between subjects); bandwidth = 1070 Hz/pixel; flip angles
(2- and 6-); voxel resolution ranging from 2.5 to 3.0 mm; and slice
thickness = 4 mm. The acquisition matrix was 128 � 128. The stan-
dard Digital Imaging and Communications in Medicine (DICOM)
image dataset was used.

Approval for the study was obtained from the Research Ethics
Committee of the Dunarea de Jos University of Galati and Saint
Andrew Hospital. Voluntary and written informed consent was
obtained from each participant. The privacy policy is based on
DICOM Confidential [35].



Fig. 1. Algorithm scheme.
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Results

The proposed GMM-based classification approach in a brain
hemisphere framework is aimed at facilitating the identification
of variability in the main brain tissue in DTI images and circum-
venting the subsequent processing for detecting tumours or
lesions. For example, a DTI image (b = 500 s/mm2) of a healthy sub-
ject and the results of the GMM classification and hemisphere seg-
mentation are shown in Fig. 2.

The estimated weights (Eq. (5)) across the entire control group
(H) and for each injured group (IS and HA) are presented in Table 1
(for the left hemisphere) and Table 2 (for the right hemisphere).
The data in Tables 1 and 2 present details on the difference in
the averaged weights or mixing probabilities between the left
and right hemispheres for each subject and over the entire range
of diffusion gradient values. There are no differences in mixing
probabilities for each tissue class between the left and right hemi-
spheres for H class. This result indicates the ‘normality’ of the
healthy subject. For HA and IS, visible differences in the mixing
probabilities are presented.

In Fig. 3, the estimated average wds (Eq. (6)) for all diffusion
gradients and for each brain hemisphere and subject are presented.

Fig. 3 indicates that the proposed approach exhibits the ability
to highlight the differences between brain tissues in the right and
left hemispheres for each level of diffusion weighting and subject
Fig. 2. DTI brain image of a healthy patient for b = 500 s/mm2. (a) Skull stripping of
category. This distance balances the contributions of the variables
by considering the standard deviation of each distribution.

The correlation matches images characterized by various inten-
sities and contrasts, albeit with largely similar local intensity vari-
ations. The results of the correlation analysis (Eqs. (7) and (8)) are
presented in Table 3. First, the correlation between each pair of
classes has been investigated. The results indicate that classes HA
and IS are not correlated because the correlation coefficient is near
zero. This observation leads to the following hypothesis: H is the
dependent variable, and HA and IS are not correlated and are the
independent variables. Therefore, the multiple correlation coeffi-
cient is computed according to Eq. (7).

As the data in Table 3 indicate, for the CSF class (index 3), HA
and IS do not correlate with H for neither the left or right hemi-
sphere. The results for the WM class (index 2) illustrate that, for
the left hemisphere, HA and IS are marginally correlated with H.
The correlation increases by approximately 50% for the right hemi-
sphere. For the GM class (index 1), HA and IS correlate well with H
for the right hemisphere and do not correlate with H for the left
hemisphere.

The resulting silhouette plots (Eq. (10)) for the whole brain and
the left and right hemispheres are displayed in Fig. 4.

The average silhouette width is approximately 0.9, i.e., 90% of
the selected clusters are considered the optimal number of clusters
(Table 4). The a priori selection of the three main brain tissues or
the whole brain; (b) result of GMM classification; (c) hemisphere segmentation.



Fig. 3. Average weighted Euclidean distances for pairs of probability density function distributions of mixtures probability of GMM. Estimation is performed for all diffusion
gradients and for each brain hemisphere. L denotes the left hemisphere, and R denotes the right hemisphere.

Table 1
GMM average mixing probability for the left hemisphere with and without diffusion gradients. The data are summarized for three mixing probabilities (w1 for GM, w2 for WM
and w3 for CSF) and for three subjects H, HA and IS.

w1h i 	 sHj w1h i 	 sHAj w1h i 	 sISj w2h i 	 sHj w2h i 	 sHAj w2h i 	 sISj w3h i 	 sHj w3h i 	 sHAj w3h i 	 sISj

b0 0.30 ± 0.012 0.26 ± 0.008 0.22 ± 0.014 0.55 ± 0.049 0.58 ± 0.048 0.55 ± 0.064 0.14 ± 0.045 0.15 ± 0.045 0.17 ± 0.061
b250 0.32 ± 0.021 0.30 ± 0.017 0.29 ± 0.020 0.52 ± 0.046 0.52 ± 0.051 0.54 ± 0.059 0.14 ± 0.051 0.15 ± 0.051 0.15 ± 0.0.047
b500 0.32 ± 0.027 0.30 ± 0.020 0.29 ± 0.021 0.52 ± 0.056 0.54 ± 0.057 0.55 ± 0.048 0.14 ± 0.045 0.15 ± 0.047 0.15 ± 0.051
b750 0.33 ± 0.023 0.29 ± 0.023 0.29 ± 0.021 0.54 ± 0.015 0.55 ± 0.052 0.56 ± 0.053 0.13 ± 0.007 0.15 ± 0.042 0.15 ± 0.041
b1000 0.32 ± 0.021 0.29 ± 0.020 0.29 ± 0.019 0.52 ± 0.048 0.55 ± 0.053 0.55 ± 0.058 0.14 ± 0.050 0.15 ± 0.052 0.15 ± 0.048
b1250 0.33 ± 0.025 0.28 ± 0.018 0.28 ± 0.016 0.55 ± 0.059 0.55 ± 0.055 0.55 ± 0.056 0.14 ± 0.044 0.15 ± 0.050 0.15 ± 0.049

Table 2
GMM average mixing probability for the right hemisphere with and without diffusion gradients. The data are summarized for three mixing probabilities (w1 for GM, w2 for WM
and w3 for CSF) and for three subjects H, HA and IS.

w1h i 	 sHj w1h i 	 sHAj w1h i 	 sISj w2h i 	 sHj w2h i 	 sHAj w2h i 	 sISj w3h i 	 sHj w3h i 	 sHAj w3h i 	 sISj

b0 0.32 ± 0.016 0.33 ± 0.018 0.28 ± 0.013 0.54 ± 0.041 0.53 ± 0.050 0.57 ± 0.039 0.12 ± 0.032 0.13 ± 0.041 0.14 ± 0.048
b250 0.34 ± 0.022 0.33 ± 0.041 0.30 ± 0.021 0.51 ± 0.053 0.53 ± 0.051 0.53 ± 0.059 0.14 ± 0.045 0.13 ± 0.044 0.15 ± 0.047
b500 0.34 ± 0.022 0.34 ± 0.029 0.30 ± 0.028 0.50 ± 0.050 0.51 ± 0.059 0.52 ± 0.055 0.14 ± 0.045 0.14 ± 0.044 0.15 ± 0.050
b750 0.35 ± 0.016 0.34 ± 0.029 0.28 ± 0.023 0.52 ± 0.007 0.48 ± 0.042 0.52 ± 0.041 0.13 ± 0.039 0.13 ± 0.039 0.16 ± 0.043
b1000 0.33 ± 0.018 0.33 ± 0.029 0.30 ± 0.029 0.51 ± 0.054 0.51 ± 0.060 0.53 ± 0.055 0.14 ± 0.044 0.14 ± 0.045 0.15 ± 0.047
b1250 0.34 ± 0.019 0.33 ± 0.026 0.30 ± 0.023 0.54 ± 0.053 0.51 ± 0.057 0.51 ± 0.061 0.14 ± 0.044 0.14 ± 0.045 0.15 ± 0.046

Table 3
Correlation coefficients and multiple correlation coefficients.

Correlation coefficient Multiple correlation coefficient

r1HA;H r2HA;H r3HA;H r1IS;H r2IS;H r3IS;H r1IS;HA r2IS;HA r3IS;HA R1
H�ðIS;HAÞ R2

H�ðIS;HAÞ R3
H�ðIS;HAÞ

Left hemisphere 0.658 �0.421 0.214 0.654 0.515 �0.612 0.214 �0.031 0.295 0.528 0.429 0.545
Right hemisphere 0.751 �0.773 0.654 0.443 0.339 0.622 0.336 �0.214 0.345 0.714 0.699 0.564
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‘natural determination’ is validated and performs best with respect
to the hemisphere approach. The width of cluster 2 (HA subject) is
not significantly high for CSF and GM in the left hemisphere. This
narrow silhouette is interpreted as a spread of the point inside
the cluster and as a slightly inadequate separation of the cluster.
Discussion

A different classification scheme based on the GMM for identi-
fying the variability in the main brain tissue through a hemisphere
approach (rather than by searching for tumours or lesion areas)
was presented. A whole-brain imaging analysis is labour intensive
and tends to be biased towards structural anatomical boundaries.
Brain asymmetry analysis is a tool for analysing the neuroanatom-
ical basis of disorders with an assumed developmental aetiology,
such as dyslexia, autism and schizophrenia, in men and women
[36–39]. Most studies have focused on exploring the asymmetry
of the WM structure. Furthermore, these studies are mostly based
on a region of interest in an image data set that is specified by
users. Our results follow these observations and enlarge the appli-
cability of the research of hemispheric specialization to the appar-
ent difference in statistical features to reveal abnormal
asymmetries of the statistical distribution of the main brain tis-
sues. By using multiple b-values, we constructed a tool to evaluate
Gaussian diffusion based on the decreased degree of diffusion-
related signal attenuation with the increased b-value.

Mixture distribution models such as a GMM expresses the pres-
ence of the sub-class in a class without requiring that the sub-class
of interest (observational data) be identified [11]. That is, a GMM



Fig. 4. Silhouettes of a data set for three clusters (line 1 on the silhouette plot corresponds to healthy subjects, line 2 for HA and line 3 for IS). Row 1: whole brain; Row 2: right
hemisphere; Row 3: left hemisphere.

Table 4
Average silhouette width for evaluating clustering validity.

Class Whole brain Left hemisphere Right hemisphere

H 0.9176 0.935 0.9284
HA 0.9829 0.9774 0.9326
IS 0.9989 0.8578 0.9296
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expresses the probability distribution of the observational data in a
class. We are focused on the three main brain tissues; thus, a GMM
extracts a class’s characteristic from a sub-class. As a mixture dis-
tribution model, a GMM does not seek the sub-class’s information
identification; since a GMM can simultaneously provide the obser-
vational data about the class, it also provides a statistical inference
about the characteristic of the sub-class. Generally, a GMM
requires the number of components to be specified in advance
for analysing the data, i.e., inputting the number of components
m (Eq. (1)) present in the mixture is necessary [40]. For ten classes
of univariate distributions (including Gaussian distributions), Kha-
lafal–Hussaini and Ahmad [41] established that all the finite mix-
tures generated by the family of parameters are identifiable.
Chen et al. [42] reported that a finite mixture model with k compo-
nents (k = 2 and k 
 3) appears to provide consistent results in
both cases (k = 2 and k = 3). Moreover, these authors claimed the
absence of evidence that indicates k 
 4.

The images contain multiple regions with different intensity
distribution characteristics. Pixels with similar characteristics will
cluster together. However, pixel classification as either CSF, GM, or
WM can have a < 100% probability of belonging to a certain brain
tissue. In this case, a low mixing probability can be interpreted
as a possibility that a pixel has lower percentages of content of
the various tissues, as data in Tables 1 and 2 showed for GM and
CSF.

Specifying that the pdfs were estimated and that the mixing
probabilities were computed based on the individual pixel distri-
bution is necessary. Therefore, the highlighted differences in the
probability density function originate from the particular feature
of each mixing probability. The GMM analysis through the hemi-
sphere approach evidently indicates the ‘normality’ of the healthy
subject. There is no difference in the mixing probabilities between
the left and right hemispheres for any of the classes. In contrast, a
GMM with mixture probabilities tested between the left and right
hemispheres for the injured subjects (both HA and IS) indicated
differences and permitted the estimation of the effect of disease
on the pixel distribution. A higher difference is captured for the
w2 mixing probability characteristic of WM, according to the
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restricted diffusion mechanisms. The difference in the diffusion
coefficient between normal WM water diffusion and diseased tis-
sue indicates the loss of WMmicrostructural elements. w1 exhibits
smaller albeit visible differences. The proposed approach tran-
scends limitations identified by Schmithorst et al. [43], which have
determined developmental differences between males and females
in the brain structure or various pathologies such as alcoholism
[44] and schizophrenia [45].

To validate these observations, we computed the wd based on
the mixing probability between pairs of subjects. One of each pair’s
members is a healthy subject (H), whereas the other is a patient
with one of the studied diseases (HA and IS). Fig. 3 shows the
results of significant variation in the wd values. An evident differ-
ence between the brain hemispheres is apparent when a paired
comparison is performed between the parameters of the healthy
subject and the patients with HA and IS diseases. The differentia-
tion of mixing probabilities for the left and right hemispheres by
wd provides a simple tool for assessing the variability in the main
brain tissue in DTI images. To cross-verify this hypothesis, we per-
formed a multiple correlation analysis. This analysis highlighted
that HA and IS do not correlate and are the independent variables
and that H is the dependent variable. The multiple correlation
analysis reinforced the conclusion that for an uninjured right
hemisphere, the mixing weights for HA and IS correlated well with
those for H, and for the left hemisphere, the correlation weakened
and indicated brain injuries. A weak correlation between the
injured subjects and the control for the left hemisphere validates
the variability of mixing probabilities inside the class. Furthermore,
because we have a priori grouping of our data into three clusters,
the silhouette plots graphically validate that the analysed ‘objects’
are grouped into three natural clusters. The explanation for the less
wide silhouette of cluster 2 (HA subject) for the CSF and GM in the
left hemisphere (Fig. 4) lies in the spread of the points inside the
cluster. The data reported in Table 4 validate the initially assumed
hypothesis for the three classes used in the GMM.

To our knowledge, no studies have been reported on a GMM
based on pixel intensities and contrast and following a hemisphere
approach to assist with brain injury diagnosis. A GMM approach
with fMRI data has been proposed to explore hemispheric lateral-
ization for language production or the human visual system in
genome-wide association [46–49]. The hemispheric functional lat-
eralization index probability density function was modelled sepa-
rately for both the hemispheres using a mixture of n Gaussian
components with fMRI data [47]. Furthermore, recent develop-
ments used an alternative thresholding approach based on model
fit as part of mixture distribution to demonstrate that mixture
modelling provides satisfactory results for the human visual sys-
tem [48]. A study carried out by Kherif and Muller [49] on subjects
with aphasia caused by IS demonstrated that GMMs are capable of
dissociating between the sub-groups of the subject based on the
main sources of variability in fMRI (i.e., handedness, sex, and
age). Moreover, the authors reported that the GMM in combination
with fMRI and automated lesion detection techniques is a reliable
method for analysing how a normal language function is sustained
notwithstanding brain injuries in the critical area. A recent study
performed by Pepe et al. [50] investigated the local statistical
shape analysis of gross cerebral hemispheric surface asymmetries
through the brain’s morphological features (i.e., surface vertices)
to establish the correspondence between the hemispheric surfaces.
The proposed statistical method was tested on a small sample of
healthy patients and first-episode neuroleptic-naïve patients with
schizophrenia.

A few limitations of the proposed approach are the following:
(i) an important topic for further studies is the monotone change
of relative pixel numbers with the age of the patients. A decrease
of the relative number of pixels from the brain tissues as the age
of the patient increases exists and age-related changes were found
in the mean and variance. GMM can be affected by this finding and
further examinations with more extensive age classes are required
and (ii) in the current study, the optimal number of Gaussian com-
ponents (m) for GMM was determined based on histogram distri-
bution. Other methods like the Akaike Information Criterion or
Bayesian Information Criterion can be used to determine this
number.

Employing a GMM provides flexibility in terms of pixel spatial
distributions that can be associated with a specific pathology. This
method may be used to automatically detect brain microstructural
differences, which exhibit statistical characteristics different from
those for the same hemisphere in a normal subject, when mixing
weights are considered. A major advantage is that the statistical
approach over hemispheres accurately identifies the structural
variations in the brain tissues by using a small number of data
samples to estimate the GMM parameters. Another advantage of
using the GMM for this application is that it is based on unsuper-
vised learning; in addition, it can be rapid and to a certain extent,
capable of circumventing the subsequent processing for detecting
tumours or lesions. Moreover, the proposed approach is unbiased,
not operator dependent and circumvents the region of interest. The
main drawbacks of a DTI acquisition system (such as noise, vibra-
tion and movement artefacts) can be overcome by this multimodal
approach.
Conclusions

This study, based on the asymmetries of mixture distributions
between the left and right hemispheres in the human brain, can
improve and more effectively assist in early diagnosis. This study
is a collection of cross-sectional data samples of different subjects.
The main advantage of this approach is that it is very simple, fast
and can summarize the existing differences between subjects. An
important source of variability in the probability density function
distribution for the w2 (associated with the WM) and w1 (associ-
ated with the GM) mixing probabilities between the left and right
hemispheres was established. The differences between the sub-
jects in terms of mixing probabilities were also reflected by the
variation in the wds. The GMM approach, mixing probabilities
and wd measure represent practical and convenient tools for
large-scale meta-analysis of DTI data without searching for delim-
itation of tumour/affected areas. Specifically, two advantages were
identified. The statistical approach over the hemispheres accu-
rately identifies structural variations in brain tissues by using a
small number of data samples to estimate the GMM parameters;
moreover, it is unbiased, operator independent and circumvents
the region of interest.
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