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Abstract: This study discusses a quantitative fatigue evaluation of polymer–ceramic composites
for dental restorations, i.e., commercial (Filtek Z550) and experimental Ex-nano (G), Ex-flow (G).
Their evaluation is based on the following descriptors: mechanical strength, elastic modulus and strain
work to fracture. Supposed to reflect factors of environmental degradation conditions, thermal fatigue
was simulated with a special computer-controlled device performing algorithms of thermocycling.
The specimens intended for the strength test underwent 104 hydro-thermal fatigue cycles. This procedure
of thermocycling was preceded by aging, which meant immersing the specimens in artificial saliva at
37 ◦C for 30 days. The strength tests after aging only and after aging and thermocycles were performed
in line with the three-point flexural strength (TFS) test, specified in ISO 4049, and the biaxial flexural
strength (BFS) test, specifically piston-on-three-ball in accordance with ISO 6872. Based on the results,
it can be stated that composites with higher volume content of inorganic particles after aging only
show higher strength than materials with lower filler particle content. For example, the average
flexural bending strength of the Ex-flow (G) composite was about 45% lower than the value obtained
for the Ex-nano (G) material. The residual strength after thermocycles is significantly lower for the
experimental composites, whereas a smaller decrease in strength is recorded for the commercial
composites. Decreases in strength were about 4% (Filtek Z550), 43% (Ex-nano (G)), and 29% (Ex-flow
(G)) for the BFS test; and about 17% (Filtek Z550), 55% (Ex-nano (G)), 60% (Ex-flow (G)) for the TFS
test. The elastic modulus of the experimental composites after only aging is higher (about 42%) than
that of the commercial composite, but the elastic modulus of the commercial composite increases
significantly after thermocycling. A descriptor known as strain work to fracture turns out to be a
good descriptor for evaluating the hydro-thermal fatigue of the tested polymer–ceramic composites.
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1. Introduction

Composite materials are used in a variety of applications due to their special properties and
benefits for transferring loads in biomechanical systems [1–5]. Composite biomaterials are presently
common in dental practice. Polymer–ceramic composites, more precisely light-cured polymer matrix
ceramic composites (LC PMCCs), are mainly applied as fillings in human teeth, but are also applied in
structures for permanent composite dental prostheses like crowns and bridges, dentures, and partial
dentures, as well as temporary and permanent splinting [5,6].

Their mechanical properties, which are important in the operational environment, depend
on various factors, such as the materials’ microstructure, failure mechanisms and environmental
effects [7–9]. When considering the microstructure of a composite, crucial aspects include: the type and
content of the resin matrix; the filler particle size, content and dispersion; and the adhesion between
the matrix and the filler [10,11]. Therefore, all new LC PMCCs should be tested in order to determine
their properties.

In the mouth environment, dental composites undergo cyclic occlusive and thermal loading,
so their high fatigue resistance is a fundamental factor in their design [12]. Here, the authors focus on
thermal fatigue and related aging/hydrolitic fatigue, denoted in [13] as hydro-thermal fatigue.

Thermal fatigue chiefly results from mechanical deformation in the material by acting bonds.
These bonds can be classified as internal or external [14]. External bonds include all elements that
restrict the freedom of deformation of the material. Internal bonds can result from temperature gradient,
anisotropic structure, and phases with different coefficients of thermal expansion. In polymer–ceramic
composites, the filler and the matrix have different coefficients of thermal expansion, e.g., the linear
mean value of this parameter for composite resins in an operating temperature range of 0–60 ◦C is
as follows: Bis-GMA—120.3 × 10−6/◦C; TEGDMA—110.1 × 10−6/◦C; whereas for the microhybrid
composite Filtek Z-250, it is 33.0 × 10−6/◦C. The process of thermal fatigue is regarded as a consequence
of a synergetic operation of two processes, i.e., cyclical deformation and creep [15]. Additionally, stress
relaxation occurs at the highest temperatures of the cycle, in heating. Experiments confirm thermal
stress relaxation in polymer composites [16] and that the speed of these processes is also important in
cyclic loads. Milewski [17] claims that the capability of the material to relax local fields of stress affects
its fatigue strength. Also, [18] proves that processes of creep and relaxation depend on the filler content
and the composition of the monomer, as well as the shape and size of the filler particles. It has been
shown that hybrid composites with more differentiated particle shapes and sizes are more resistant to
higher fatigue damage [19].

It is obvious that hydrolytic aging of polymer–ceramic composites occurs, but destruction
mechanisms have not yet been clearly identified. Researchers believe that water in a polymer matrix
composite structure acts like a plasticizer, so stress is relaxed and stiffness is reduced [20]. It is also
probable that chemical compounds decompose the polymer network in the aqueous solution by
disintegrating ester bonds [21]. It is also considered that moisture absorption depends on the number
and type of filler particles, as well as the type of monomers used in the matrix production [22]. Thermal
diffusion of water molecules can occur in the process of hydro-thermal fatigue, which can easily be
seen in the swelling and contracting of wood-based materials, polymers and concrete [14]. This type of
diffusion is irreversible.

In state-of-the-art applications, hydro-thermal fatigue depends to a large extent on microstructural
changes; more precisely, on damages in a zone of organic (resin) and inorganic (filler) phase separation
caused by acting local structural bonds. Local thermal deformations of phases are different, contributing
to interphase stresses, whereas anisothermal cyclic thermal interaction causes a stress gradient. Variability
in temperature fields related to an impact of moisture is probably more destructive. With reference to
the above considerations, it can be assumed that hydro-thermal fatigue of polymer–ceramic composites
leads to an unfavorable change in their functional properties, including mechanical properties, which are
clinically fundamental.
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The aim of this study was to determine the mechanical properties of new, experimental composites
and to compare the results with commercial ones under operational conditions. More precisely, the study
aims to quantitatively evaluate the fatigue strength of selected polymer–ceramic composites by means
of descriptors like mechanical strength, elastic modulus and work to fracture.

2. Material and Research Method

2.1. Materials

In this study, three groups of materials—two experimental and one commercial (referential)—were
selected: Ex-nano (G), Ex-flow (G), and Filtek Z550 (3M ESPE). These materials are identified in Table 1.
Specimens of these composites were prepared in accordance with the manufacturers’ recommendations.
This means that the specimens were shaped by a single operator in a metal split-mold and then
light-cured using Megalux LED (Megadenta, Radeberg, Germany) 1200 mW/cm2 for 40 s with a
soft-start system. The specimens were polished after polymerization with abrasive discs covered with a
layer of diamond particles in a resin matrix of 600 and 1200 grid on a single wheel grinder and polisher
Saphir 550 (ATM Gmbh, Mammelzen, Germany) equipment and then cleaned in water. Morphologic
images were made by scanning electron microscopy (Quanta FEG 650). SEM (FEI, Hillsboro, OH, USA)
microimages of morphology of the composites are given in Figure 1. These images were observed in
the break faces after strength tests.

Table 1. Details about tested composites.

Parameter
Name of Materials

Filtek Z550
(Abbreviation—Z550) Ex-nano(G) Ex-Flow(G)

Manufacturer 3M ESPE (USA) – –

Type Nanohybrid composite Nano composite Semi-liquid composite

Matrix
BIS-GMA, UDMA,

BIS-EMA, PEGDMA,
TEGDMA

BIS-GMA, UDMA, TEGDMA BIS-GMA, UDMA, TEGDMA

Filler
SiO2 20 nm, ZrO2/SiO2
5–20 nm, (0.6–1.4 mm

clusters)

The inorganic filler particles
consist of barium aluminum

bore glass and highly
dispersed silicon dioxide.

The inorganic filler particles
comprise silica, dental glass

(strontium aluminum-
boron-silicate glass)

Content of Filler
Molecules (wt.%) 82% 82% 74%
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Figure 1. SEM microimages of the fractured surfaces of the composite structures: (a) Z550, (b) Ex-nano
(G), (c) Ex-flow (G).

2.2. Method of Thermocycling

Multi-component materials based on polymers are sensitive to cyclic temperature fluctuations.
Some authors report that in the mouth environment, there are 6000 thermal cycles in five years [23].
This process can lead to thermal fatigue of polymer–ceramic composites [6].

The simulated thermal fatigue process under laboratory conditions is known as thermocycling.
Thermocycling simulates real temperature fluctuations corresponding to physiological processes, i.e.,
eating, drinking, breathing [24,25]. Results achieved in such a way cannot be clearly interpreted with
respect to clinical conditions. In real (clinical) conditions, there are also differences between patients
because of, e.g., their dietary habits [26]. Thermocycling, however, offers high approximation and is
frequently applied by researchers [27–29].

Prior to our experiments, all of the specimens were immersed in artificial saliva at 37 ◦C for
30 days to simulate an aging process. Then, half of them underwent strength tests and the second half
underwent thermocycling. In this study, the groups were formed according to the type of material as
the aging only procedure (control group) and the aging and thermocycling (TC) procedure (n = 10).
All thermocycles were conducted between 5 ◦C and 55 ◦C for a dwell time of 30 s. Time of filling and
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emptying the vessel with a working liquid (water) was 15 s. The number of thermal cycles was 104,
which according to the review article [30] is considered to be a sufficient number.

2.3. Methods for Investigating Strength

Two types of strength tests were performed. The bending strength test was a three-point bending
test that does not entirely reflect the loads that occur in clinical applications [31]. This is, however,
a method codified by ISO 4049 [32], and tests conducted in line with these rules can be easily compared.
Twelve specimens per material group of dimensions b = 2 mm (width), d = 2 mm (thickness), c = 25 mm
(length) were prepared (Figure 2). The strength test was performed with the Zwick/Roell Z100
(ZwickRoell GmbH & Co. KG, Ulm, Germany) with a traverse speed of 0.5 mm/min, support span
L = 20 mm, and radius of the supports and pin are 1 mm (Figure 2). In tests, a nominal force applied
with the use of Xforce load cell was 500 N.
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Figure 2. Support system, pin and specimen in the three-point bending test (values are given in millimeters).

According to ISO 4049 [33] on dental composite materials applied to reconstruct hard dental
tissues, the strength of the material is chiefly specified by the three-point flexural strength (TFS) test [34].
The literature, however, describes the application of other research methods, e.g., the biaxial flexural
strength (BFS) test [35–37].

Covered by ISO 6872 [38], the BFS test means that maximum tensile stresses occur in the central
part of the specimen and decrease by dispersing over a larger area, or by increasing the radius between
the area of tensile stress and the center of the specimen [33]. A positive aspect of this method is that
rounded specimens are used. Maximum stresses in the center of the specimen prevent cracks at edges
that affect specimen strength. It should be emphasized that the zone of stress is smaller than that in the
TFS test, so stresses in the defective volume are less likely to occur. It should be added that the process
of polymerization of rounded specimens is more repeatable [34]. In the BFS test (manufacturer, city,
country), the fifteen specimens per material group were used, which were in the shape of discs with a
thickness of 2 mm thick and a diameter of 15 mm. The BFS test is schematically shown in Figure 3.
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The BFS test made it possible to determine the tensile strength σBI in accordance with the following
formulas:

σBI =
−0.2387 P(X −Y)

h2 (1)

X = (1 + ν) ln
(

r2

r3

)2

+
[1− ν

2

]( r2

r3

)2

(2)

Y = (1 + ν)

1 + ln
(

r1

r3

)2+ (1− ν)
(

r1

r3

)2

(3)

where:

P—maximum force, given in N,
h—specimen height, given in mm (Figure 3),
ν—Poisson ratio, for of the tested composites is ν = 0.24 [34]
r1—circle radius of the steel rounded grips (Figure 3), r1 = 5 mm,
r2—pin surface radius, r2 = 0.6 mm,
r3—specimen radius, given in mm (Figure 3).

3. Results and Discussion

3.1. BFS and TFS Strength (Aging Only)

The results of the BFS test with the following quantities are given in Table 2: FBI—maximum force,
dL (FBI)—specimen’s deflection under the maximum force, FFract—damage force, dL(FFract)—maximum
deflection, W(FBI)—strain work to maximum force, W(FFract)—strain work to fracture, nTC—number
of conducted hydro-thermal cycles, x—mean, s—standard deviation, CV—coefficient of variation.
The mean values and standard deviation of the biaxial flexural strength (σBI) are given in Figure 4.
Table 3 presents the results of the TFS test with the following quantities: Ef—flexural modulus,
σfm—bending strength, εfm—specimen’s deflection under the maximum force, σfB—damage stress,
εfB—specimen’s deflection in damage, Wfm—strain work to maximum force, WfB—strain work
to fracture.
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Table 2. Descriptive statistics of the results obtained in the BFS test.

Quantity FBI dL (FBI) FFract dL (FFract) W (FBI) W(FFract) h

Unit N mm N mm Nmm Nmm mm

Material Z550

nTC = 0

x 154.00 0.10 59.90 0.10 10.70 10.80 1.44

Std.dev. 24.60 0.00 9.50 0.00 3.72 3.73 0.065

ν 15.97 22.14 15.86 21.93 34.81 34.50 4.53

nTC = 10,000

x 129.00 0.10 49.00 0.10 8.21 8.51 1.31

Std.dev. 36.70 0.00 15.40 0.00 3.92 3.65 0.074

CV 28.42 26.01 31.34 21.25 47.76 42.86 5.66

Material Ex-nano(G)

nTC = 0

x 156.00 0.20 60.40 0.20 12.39 12.53 1.26

Std.dev. 10.60 0.00 4.17 0.00 1.30 1.30 0.057

CV 6.80 6.81 6.90 6.72 10.47 10.37 4.51

nTC = 10,000

x 93.90 0.10 36.50 0.10 5.13 5.19 1.31

Std.dev. 14.30 0.00 5.85 0.00 1.50 1.50 0.071

CV 15.23 14.10 16.03 13.92 29.23 28.94 5.42

Material Ex-flow(G)

nTC = 0

x 114.00 0.10 44.20 0.10 8.80 8.88 1.24

Std.dev. 19.00 0.00 7.22 0.00 2.75 2.75 0.055

CV 16.67 15.51 16.33 15.29 31.30 30.93 4.43

nTC = 10,000

x 81.30 0.10 31.80 0.10 4.41 4.45 1.24

Std.dev. 12.40 0.00 4.93 0.00 1.31 1.31 0.063

CV 15.28 17.29 15.51 17.06 29.77 29.49 5.08

Table 3. Descriptive statistics of the results obtained in the TFS test.

Quantity Ef σfM εfM σfB εfB WfM WfB

Unit MPa MPa % MPa % Nmm Nmm

Material Z550

nTC = 0

x 6730 71.2 1.1 62.9 1.1 4.75 4.76

Std.dev. 1120 16.8 0.3 16.8 0.3 2.24 2.25

CV 16.65 23.66 24.76 23.66 24.76 47.24 47.24

nTC = 10,000

x 9990 59.4 0.7 53.0 0.7 2.36 2.37

Std.dev. 1700 20.6 0.3 14.4 0.3 1.51 1.52

CV 17.04 34.66 48.94 27.12 48.76 64.16 64.20
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Table 3. Cont.

Quantity Ef σfM εfM σfB εfB WfM WfB

Material Ex-nano (G)

nTC = 0

x 9910 99.5 1.1 78.4 1.1 6.41 6.43

Std.dev. 1010 14.9 0.2 8.97 0.2 2.01 2.01

CV 10.19 14.97 19.54 11.44 19.53 31.31 31.27

nTC = 10,000

x 9030 44.4 0.5 44.4 0.5 1.19 1.19

Std.dev. 753 9.38 0.1 9.40 0.1 0.55 0.55

CV 8.34 21.11 23.45 21.18 23.36 46.21 46.08

Material Ex-flow (G) (N = 15)

nTC = 0

x 9190 54.4 0.5 54.4 0.5 1.65 1.65

Std.dev. 517 9.86 0.1 9.86 0.1 0.6 0.6

CV 5.63 18.12 16.99 18.12 16.99 36.17 36.17

nTC = 10,000

x 7980 21.5 0.2 21.5 0.2 0.30 0.30

Std.dev. 605 2.98 0.0 3.02 0.0 0.09 0.09

CV 7.58 13.85 21.87 14.08 21.46 30.64 30.04
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The Ex-nano (G) achieved the highest strength in the BFS and TFS tests after aging in artificial
saliva (Figure 4b and Table 3). This material contains the smallest average number of filler particles,
whereas the filler content by weight is the same as in the Z550 material and higher than in the Ex-flow
(G) composite. As predicted, the BFS strength of the Ex-flow (G) composite with the lowest filler
content was the lowest among the tested materials (Figure 4c). This relationship is in agreement with
other studies [16,39–41]. On the other hand, some authors claim that there is no relation between the
filler content and strength of composites [42,43]. In the paper, the influence of the filler size on strength
can only be seen in the case of the TFS test. It seems that this is connected with the occurrence of the
failure mechanism in the specimen during these two tests. Some authors observed no effect of filler
particle size on strength [44,45]. Similar relationships as for tensile strength were obtained in our own
research when the W(FFract) parameter was analyzed (Table 3), which is consistent with the literature
reports, because bending work depends exponentially on the filler content [46]. Increasing the filler
content, similarly as for the strength parameter, increases strain work to fracture but to a certain level
only (critical concentration), above which this property improves only slightly [16,33], and sometimes
even deteriorates [47].

The normative requirements for mechanical strength in ISO 4049 define the TFS bending strength
only. Specified in this ISO 4049 standard, the value of TFS strength for the composites tested in this
paper is ≥ 80 MPa. Z550 and Ex-flow (G) materials aged in artificial saliva for 30 days at 37 ◦C did
not show the appropriate minimum TFS strength (Table 3). It should be pointed out that in the TFS
test, the exposed side of the specimen on the supporting structure faced up (Figure 2) towards the
strain, which, as the authors of this paper claim, better reflects real conditions of use, but may influence
the achievement of lower strength, namely, in the general theory on material strength, the largest
stress was demonstrated to occur in the upper and lower layers of the beam material, whereas stress is
nearly zero in the neutral layer passing through the center of gravity of the cross-section. The lower
layer, which in this study is on the unexposed side, is stretched. It is possible that despite the fact that
material manufacturers allow even 3 mm curing depth of composites (ISO 4049 specifies that the curing
depth of a single layer should not be less than 1.5 mm), the composite on the exposed side was more
strengthened. Moreover, the compression strength of RBCs falls within the range of 200–400 MPa and
the tensile strength within 30–60 MPa (from the diametral tensile strength test) [48], which indirectly
indicates that the stretched beam layer is more vulnerable to destruction initiation.

The literature, e.g., the paper [49], specifies the recommended minimum value of elastic modulus
as ≥ 10 GPa (104 MPa). Determined in the TFS test, the values of the elastic modulus after aging of
the Ex-nano (G) and Ex-flow (G) materials were similar to the expected value given in the literature.
The elastic modulus after aging of the Z550 material was, however, lower than expected (Table 3).
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Nevertheless, more generally, the elastic modulus of RBCs can be 3 ÷ 15 GPa [50,51]. The lower value of
the elastic modulus of the Z550 may be caused by the size of filler particles. According to Ilie, there is a
relationship between the filler particle size and the elasticity modulus of the composite [48]. Moreover,
the lower value may result from, e.g., moisture absorption into the composite structure in the aging
procedure. Moisture sorption into a matrix of nano and nano-hybrid composites is ~ 5 ÷ 7.5% after
immersion in the liquid for 30 days at a temperature ~ 37 ◦C [52]. The moisture content of the specimens
was not measured in the present study. The section surface areas of the specimens used in the TFS after
the aging procedure were, however, different due to the type of material. All of the specimens were
made in the same manner and form, and they later underwent the 30-day aging procedure in artificial
saliva. The average cross-section areas of the Z550, Ex-nano (G) and Ex-flow (G) after aging were:
5.13 mm2, 4.42 mm2 and 4.41 mm2. The cross-sectional area of the Z550 was the largest, which may
indicate that the specimens of this material swelled more than those of the experimental materials.
According to [20], moisture in the structure of a polymeric matrix composite acts as a plasticizer, and its
action leads to relaxation of natural stresses and reduction of stiffness, which probably influenced the
average elastic modulus of the Z550 material under these specific conditions (Table 3).

3.2. Impact of Thermocycling

The influence of thermal cycles on the deterioration of the resistance to damage was demonstrated
in [53], and a decrease in bending strength of composites subjected to thermal shocks was recorded
in [22]. These authors first immersed the materials in water for 30 days at a temperature of 37 ◦C and
then subjected them to thermal loads (temperature range: 5–55 ◦C; number of cycles: 500; exposure
time: 30 s). The specimens after such thermal loading conditions were compared to those immersed in
water for 24 h at a temperature of 37 ◦C. A decrease in strength of the tested composites ranged from
~1.4% to 44%. The influence of thermocycling on the bending strength of LC PMCCs was investigated
by [25] under the following conditions: cycle temperature range: 5–55 ◦C, exposure time: 30 s and
number of thermal load cycles: 0 cycles (the material was immersed in water for 24 h), 15,000 cycles,
30,000 cycles and 45,000 cycles. The investigation showed a significant decrease in bending strength
after 15,000 cycles for one material only, whereas a large strength decrease occurred for the other
materials after 30,000–45,000 cycles. The experiments [54] showed a high decrease in bending strength
of all the tested materials after 5000 cycles of thermal loads (temperature range: 4–60 ◦C, exposure
time: 60 s). A decrease in strength ranged from 31% to 41%, whereas the strength achieved between
5000 and 20,000 cycles remained at a similar level. Micro-cracks between filler particles and the
matrix did not occur in materials after 5000 cycles [54]. No significant influence of thermal loads on
the bending strength of materials was recorded [55] (temperature range: 5–60 ◦C, number of cycles:
100,000, exposure time: 15 s). The authors claim that the maximum temperature was relatively low
(max. 55 ◦C) and did not significantly degrade the material [56]. On the other hand, a temperature of
60 ◦C could have contributed to the initiation of secondary polymerization, and consequently to the
improvement of mechanical properties [57]. To sum up, the above-mentioned research results cannot
give a satisfactory answer to the question of the impact of thermal cycles on the functional properties
of PMCCs, and do not allow for drawing general conclusions. In light of the findings reported in the
literature, the impact of thermal cycles of inherent parameters and numbers on each material should
be determined independently.

In our research, the decrease in strength was dependent on the type of material and strength
test. The bending strengths in the TFS test after 104 TC for the Z550, Ex-nano (G) and Ex-flow (G)
decreased by 16.57%, 55.38% and 60.48%, respectively; whereas the tensile strengths in the BFS test
were 4.32%, 43.47% and 28.62%, respectively. The degree of degradation of strength properties is
varied. The mechanism of destruction is possibly also different, because PMCCs under the influence of
hydro-thermal shocks underwent thermal and hydrolytic degradation, which was also confirmed [58].
Thermal degradation usually manifests itself in the formation and propagation of micro cracks in the
material [54,59], which often occurs at the composite phase boundary [26,60]. Micro cracks due to
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the varied temperature field are favored by significant differences in thermal expansion of composite
components. Micro cracks facilitate the formation and propagation of macro cracks in the specimen,
which is also confirmed by the σ-ε characteristics in Figure 5. The Ex-nano (G) specimens not subjected
to thermal shock show elastic-plastic properties, and are destroyed at a higher value of stress and
deformation (deflection) than the specimens after thermocycling. On the other hand, after thermal
shocks, macro damage is initiated at lower values of stress and deformation; destruction of all of the
specimens after TC was catastrophic, without a breaking down phase. The impact of the viscoelastic
behavior of the polymer phase after TC was also very limited.
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Figure 5. Comparison of σ-ε characteristics obtained in the TFS test: (a) Ex-nano (G), (b) Ex-nano (G)
after 104 thermocycles.

Hydrolytic degradation may have a significant impact on the deterioration of strength properties
of the studied polymer–ceramic composites in comparison with similar resin-based composites.
This problem has been described in several papers [20,22,61,62]. It was shown that the resistance of
PMCCs to cracking increases during the initial stages of exposure in humid environments, but that
during the following stages of such exposure, ∆Kth (threshold value of fracture toughness Kc)
significantly decreases, which can partly explain our research results. The degradation of the composite
is more related to damage at the phase boundary than to hydrolytic degradation of the matrix [16].
In the nanocomposites investigated in our research, the key factor may be the damage of the so-called
interphase. The interphase is a kind of zone connecting composite phases, where the forces between
the matrix and reinforcement are redistributed. The range of mutual interaction between the matrix
and reinforcement differs and depends on the forces of chemical bonds or only weak friction forces
between phases. The interface in PMCCs is usually 2–9 nm thick [63]. The quality of the interphase
can be indirectly evaluated in microscopic observations of fractured surfaces. It was found that the
remaining resin layer on the surface of filler particles suggests that the crack propagated not at the filler
particle border, but in the resin phase [16]. Such a manner of destruction can be explained by residual
stresses created in photopolymerization of resin composites and acting in the interphase. These stresses
cause a deviation of progressive crack from the interphase, which indirectly proves a good quality
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of the interphase. Microscopic observations of fractured surfaces in the experimental composite
investigated in our research (Figure 1) do not confirm that resin layers remained on the filler particles.
Hydro-thermal fatigue seems to adversely affect the interphase of the experimental composites,
whereas the degradation of the interphase in the Z550 material was limited. While producing the Z550
composite, the complicated process of silanization of filler particles, which turned out to be effective,
is probably applied. During curing, silane-coated particles chemically combine with the polymer
matrix to form the interphase [64]. The effect of silanization seems to last much longer in the case of
nearly spherical filler particles, and such a filler was used in the Z550 composite.

The elastic modulus of the Z550 material significantly increased after thermocycling (Table 3),
which could mean that the maximum temperature of the thermal cycle, set as 55 ◦C, could cause
phase transitions leading to increased stiffness. The glass transition temperature (Tg) of the Filtek
Z250 (one of the early generations of the Z550 composite, the microhybrid material, produced by
the same manufacturer; components of the resin matrix are similar to those in the Z550 material) in
humid environments is ~ 45 ◦C; Bis-GMA (one of the main components of the composite’s resin matrix)
is ~ 37 ◦C; and the wet structures that absorb moisture are ~ 22 ◦C and 38.7 ◦C, respectively [65].
Therefore, it is possible that secondary polymerization due to thermal treatment increased the stiffness
of the Z550 composite structure. The question is why the strength of the Z550 did not increase like the
elastic modulus. Belzowski explains that the values of elasticity coefficients represent the average state
of the material structure with load history, and the remaining strength depends on damage causing
the largest local weakness [66]. Therefore, these two quantities are not mutually representative as
descriptors of fatigue degradation.

4. Conclusions

Within the limits of the study, it can be stated that the process of hydrothermal fatigue degradation
of LC PMCCs varies, so it is necessary to test all newly designed materials. It was indicated that the
experimental composites, i.e., Ex-nano (G) and Ex-flow (G), are less durable than the commercial
composite Z550 due to hydro-thermal fatigue. Deterioration of strength due to thermocycling of
experimental composites was higher than a commercial one. It seems that the high initial strength
of PMCCs does not always contribute to resistance to hydrothermal fatigue. On the other hand,
thermocycles cause higher changes in elastic modulus in the case of the commercial composite
compared with experimental materials. It should also be highlighted that values of elastic modulus
were higher for the Ex-nano (G) and the Ex-flow (G) than the Z550 material.

Most phenomenological hypotheses on accumulation of fatigue damage described in the literature
are based on an evaluation of the decrease of elastic modulus. In view of our findings, it should be
stated that a degree of damage in the investigated PMCCs should not be evaluated in line with a
methodology using the elastic modulus as a descriptor. To evaluate a hydro-thermal fatigue of the
tested polymer–ceramic composites, it seems that the strain work to fracture can be used.
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