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SUMMARY

Protein kinases constitute a large class of signaling molecules frequently targeted in research and clin-

ical uses. However, kinase inhibitors are notoriously non-specific, making it difficult to select an appro-

priate inhibitor for a given kinase. Available data from large-scale kinase inhibitor screens are often

difficult to query. Here, we present KInhibition (https://kinhibition.fredhutch.org), an online portal

that allows users to search publicly available datasets to find selective inhibitors for a chosen kinase

or group of kinases. Compounds are sorted by a KInhibition Selectivity Score, calculated based on

compounds’ activity against the selected kinase(s) versus activity against all other kinases for which

that compound has been profiled. The current version allows users to query four datasets, with a

framework that can easily accommodate additional datasets. KInhibition represents a powerful plat-

form through which researchers from broad areas of biology, chemistry, and pharmacology can easily

interrogate large datasets to help guide their selection of kinase inhibitors.

INTRODUCTION

A fundamental aspect of cell biology is the study of cellular signaling, the process by which cells sense their

surroundings, respond to environmental cues, and transfer information (Downward, 2001). Both clinicians

and researchers rely on the ability to selectively perturb the function of specific signaling molecules, often

by using small molecule inhibitors (Jin et al., 2014). In particular, kinases represent a large class of proteins

that are key mediators of signaling pathways and important targets for research and therapy (Wu et al.,

2015). In the last 10 years alone, there have been more than 1.5 million publications on kinases, and count-

less small-molecule inhibition studies spanning the majority of the >500 kinases in the human kinome (Wu

et al., 2015), underscoring the central role of kinase signaling and inhibition in molecular and cellular

biology.

Despite the enormity of research that has been done on kinase signaling, there remains a confounding

challenge when attempting to selectively inhibit a desired molecule. Mainly due to the high structural sim-

ilarity among kinases, nearly all available small-molecule kinase inhibitors exhibit some promiscuity,

causing undesired ‘‘off-target’’ effects (Anastassiadis et al., 2011; Bain et al., 2007; Davis et al., 2011;

Karaman et al., 2008). Even many compounds described as being ‘‘specific’’ or ‘‘selective’’ have confound-

ing off-target effects, making the selection, use, and analysis of the appropriate kinase inhibitor difficult. A

number of large-scale kinase inhibitor screens have been undertaken in an attempt to quantify these effects

(Anastassiadis et al., 2011; Dranchak et al., 2013; Duong-Ly et al., 2016; Gao et al., 2013; Klaeger et al., 2017;

Koleti et al., 2017), and many of these results are publicly available. However, these data are decentralized

and difficult to query, with results often being spread across multiple data files that must be downloaded

and opened individually. Furthermore, there are multiple methods employed for representing or quanti-

fying ‘‘selectivity’’ (Anastassiadis et al., 2011; Cheng et al., 2010; Davis et al., 2011; Graczyk, 2007; Karaman

et al., 2008; Klaeger et al., 2017; Uitdehaag and Zaman, 2011), which may yield conflicting results. Thus, the

ultimate challenge of identifying the right kinase inhibitor for a biological task remains unresolved. Here we

present KInhibition, a powerful platform tool that allows researchers to search through multiple kinase in-

hibitor screens, visualize the relevant data, and choose the most selective and appropriate kinase inhibitor

for the task at hand. We anticipate that KInhibition will be adopted by the broader research community

equivalent to RNAi target sequence or CRISPR guide RNA selection tools.

RESULTS

The Theory behind KInhibition

KInhibition is a platform tool designed to answer the question ‘‘Which compound should be used to inhibit

a chosen kinase or pathway?’’ The first, but often the most critical, step in answering this question is to
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Figure 1. Using KInhibition

Users first select a kinase or group of kinases that they wish to inhibit, and then select a dataset in which to search for compounds. The table of compounds

updates and sorts compounds based on the calculated KInhibition Selectivity Score. Clicking on a row opens a second table below, which displays off-target

effects of that compound. The Heatmap tab displays the full inhibition profiles across all kinases for the compounds displayed in the first page of the Table of

Results. The table, and consequently the heatmap, can be reordered by clicking on any of the column headers.
locate and format the relevant data from the publicly available kinase inhibitor screens. These datasets may

be initially found in somewhat intractable formats, but nearly all of them can be summarized by a matrix of

drug-target interactions, with rows representing the compounds tested, columns representing the kinases

screened, and entries being that compound’s effect on that kinase. The main requirement for a dataset to

be included in KInhibition is for it to be formatted in this manner, making the addition of future datasets to

this platform a relatively trivial task.

A unified data format allows us to address the more nuanced issue of how to quantify the ‘‘selectivity’’ of a

given inhibitor. Although there have been many proposed metrics for selectivity (Anastassiadis et al., 2011;

Cheng et al., 2010; Graczyk, 2007; Klaeger et al., 2017; Uitdehaag and Zaman, 2011), very few are compu-

tationally robust enough to apply across datasets. We developed a ‘‘KInhibition Selectivity Score,’’ which

quantifies the selectivity of a compound based on its on-target inhibition (‘‘inhibition score’’) and its off-

target effects (‘‘inhibition penalty’’). The inhibition score is simply the inhibition of the selected kinase,

or a geometric mean if multiple kinases are chosen. The inhibition penalty is further divided into two

sub-penalties. The first quantifies the broad inhibition activity of a compound, and will therefore best ac-

count for the extreme case in which a compound inhibits nearly every kinase tested, but to a small degree

(e.g., 10% of control) compared with the intended target. The second sub-penalty specifically quantifies

off-target effects that are close in magnitude to the inhibition of the intended target. This accounts for

the other extreme case, in which a compound inhibits only a few (e.g., 2–10) off-target kinases, but with

a magnitude comparable to or greater than the intended target. Both these extremes represent distinct

types of off-target effects that must be considered when choosing the appropriate kinase inhibitor for

an experiment.

The KInhibition Selectivity Score has numerous advantages that give the user the most relevant information

and the most control over the decision of which compound to use. First, it is designed to work with percent-

of-control data, rather than binding coefficients (Ki) or IC50 values, like previously reported partition indices
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Dataset Compounds

Tested

Compound + Dose

Combinations

Kinases

Screened

Pairwise

Coverage

Reference

Reaction Biologya 178 178 300 98.9% Anastassiadis et al., 2011

HMS LINCS 121 134 471 88.5% Koleti et al., 2017

GSK PKIS 367 734 224 99.9% Dranchak et al., 2013

EMD Millipore 128 255 234 100% Gao et al., 2013

Table 1. Informational Summary of Datasets Currently Included in KInhibition
aAn updated version of the Reaction Biology dataset will be included in this portal as soon as it is publicly available. Currently,

the updated version contains 385 compounds, 427 compound + dose combinations, 298 kinases screened, and 99.5% pair-

wise coverage.
or entropy-based scores (Uitdehaag and Zaman, 2011). This allows it to be used for screens performed even

at a single dose, treating additional doses as separate compounds or entries in the matrix. Second, this

score quantifies selectivity for a user-defined set of up to 10 ‘‘on-target’’ kinases, rather than simply basing

all calculations on the most inhibited kinase for each compound. Third, as previously mentioned, this score

accounts for both the number and the magnitude of off-target effects better than previous scores (such as

the Gini coefficient), allowing researchers to select the inhibitor most suited to their needs. Finally, this

scoring metric does not rely on any hard-coded values, arbitrary thresholds, or data binning, giving it an

advantage over S(x) scores or Ambit scores (Cheng et al., 2010).

Using KInhibition

The KInhibition app is run entirely in-browser and does not require the user to upload or download any data

or files. It can be found at https://kinhibition.fredhutch.org/. Upon loading the app webpage, users select a

kinase or a group of kinases they wish to inhibit (Figure 1). Kinase names are standardized across all data-

sets, as described toward the bottom of the ‘‘Datasets’’ tab. After selecting the kinase(s), the ‘‘Table of Re-

sults’’ tab will automatically update to list the inhibitors in the first available dataset, sorted based on their

KInhibition Selectivity Score for the chosen kinase(s). A set of radio buttons will also appear to allow the user

to choose between all the datasets that include their chosen kinase(s). The data from each dataset are kept

separate and must be searched one at a time, as each screen is done using different experimental condi-

tions, kinase panels, and compound doses, and thus results may not be comparable enough to simply

merge the datasets. Details about each dataset can be found in the Datasets tab (Table 1). The Table of

Results can be searched using the search box in the top right, can display more or fewer compounds

per page using the drop-down menu in the top left, and can be sorted based on the values in any of the

columns by clicking on the column header. Furthermore, clicking on any row generates a new table below

this one, which lists the significant off-targets of that compound. ‘‘Significant off-targets’’ are defined as

kinases inhibited at least half the amount of the chosen kinase (or half of the geometric mean for multiple

chosen kinases).

Finally, after exploring the Table of Results, users can click on the ‘‘Heatmap’’ tab to load a heatmap of the

inhibition profiles for the compounds displayed in the Table of Results. The compounds included in the

heatmap will mirror those in the first page of the Table of Results, including any changes to the number

or order of compounds in this table. Inhibition is represented as a color spectrum from black (no inhibition)

to yellow (moderate inhibition) to red (maximal inhibition) (Figure S1). Users can mouse over the heatmap

to view the details of any individual point, or click and drag to selectively zoom in on a portion (double-click-

ing zooms out to the full heatmap). This heatmap, along with all the previously mentioned tables, can be

downloaded using buttons below each element.

DISCUSSION

Kinases remain one of the few classes of biomolecules whose function (as opposed to simply concentration

or abundance) can be easily detected, quantified, and perturbed. Kinases therefore sit at a critical intersec-

tion between basic research and clinical applications, making data on kinase inhibitors a lucrative asset in

both academia and life science industries. With the above functionality, KInhibition fills a much needed role

in modern cell biology by allowing researchers to make data-driven decisions regarding kinase inhibitors.

By following the aforementioned steps, researchers can easily find and choose the most selective and
iScience 8, 49–53, October 26, 2018 51

https://kinhibition.fredhutch.org/


appropriate compound for their particular target or pathway. Due to the robust and careful design of the

app, this platform can be easily updated and expanded to include additional datasets and information as

they become available. We therefore expect this portal to see broad use and adoption akin to other selec-

tion tools.

Limitations of This Study

The KInhibition platform, and the associated KInhibition Selectivity Score were designed to best leverage

the currently available data. However, it should be noted that the KInhibition Selectivity Score and all other

metrics listed in this tool are based only on a single dose of the compound used. The efficacy, selectivity,

and off-target effects of a given compound depend heavily on the concentration used in the actual exper-

iment, as well as on the biological context in which the compound is applied. Thus, the information pre-

sented in the Table of Results (i.e., Percent Inhibition) may not directly translate to a cellular or in vivo

context. Therefore, the goal of this portal, and the datasets included in it, is to obtain a qualitative assess-

ment of selectivity, using the quantitative metrics presented as data-driven guidelines for decision making

in the context of past experience and other pharmacologic properties of the compounds in question (i.e.,

solubility, bioavailability, and metabolism).

METHODS

All methods can be found in the accompanying Transparent Methods supplemental file.

DATA AND SOFTWARE AVAILABILITY

The app portal can be accessed at https://kinhibition.fredhutch.org. The source code and all other files can

be found at the Github repository listed in the Key Resources Table.

SUPPLEMENTAL INFORMATION

Supplemental Information includes Transparent Methods and one figure and can be found with this article

online at https://doi.org/10.1016/j.isci.2018.09.009.
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SUPPLEMENTAL FIGURES: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure S1. Heatmaps showing the inhibition profiles of all the compounds in each dataset, related to Table 1. 
Rows represent the compounds tested, columns represent the kinases screened. White boxes denote missing data. A, 
Reaction Biology dataset; B, HMS LINCS dataset; C, GSK PKIS dataset; D, EMD Millipore dataset. 
 
TEST PROCEDURES AND VIGNETTE: 
Finding a selective inhibitor of EGFR and ErbB family kinases, related to Figure 1.  

To begin, navigate to https://kinhibition.fredhutch.org in a modern desktop browser (while mobile browsers may 
load the page, some functionality may be lost). Chrome, Firefox, and Safari have all been tested for compatibility. On 
loading, the sidebar on the left will have two entry fields, “Kinase(s) of Interest” and “Dataset”, as well as brief instructions 
for use. The first step is to select a kinase or group of kinases to inhibit. In this vignette, we will search for inhibitors of 
EGFR and other ErbB family members. Click on the kinase selection field (labeled with the placeholder text “Select 
Kinase(s) of interest…”). This will open another drop-down menu with all of the kinases profiled in the chosen dataset. 
Select “EGFR” by either scrolling down to find it, or by typing the first few letters into the field to filter the results, then 
clicking on “EGFR” in the drop-down menu. Note that you must click the option even if you have typed the entire name 
into the field in order for the tool to register your selection. Once EGFR is selected, the Table of Results to the right will 
automatically populate with the top ten selective inhibitors from the first available dataset (in this case, “Reaction 
Biology”), initially sorted by KInhibition Selectivity Score (KISS). Additionally, a set of radio buttons will appear to allow you 
to select any dataset that includes the selected kinase(s) (descriptions of each dataset can be found by navigating to the 
“Datasets” tab). For now, let us keep “Reaction Biology” selected. If it has changed, click on the “Reaction Biology” button.  
 In the Table of Results, we see that the top result is “EGFR Inhibitor”, with a KISS of 98.72, followed by PD 
174265 with a KISS of 88.37. To the right side of the table, we notice that PD 174265 has one off-target effect that is 
greater than half of its inhibition of EGFR, while EGFR inhibitor has none. Note that you may need to scroll to the right to 
see the whole table, depending on the size of your browser window. To check this off target effect, click on the second 
row of the Table of Results. This will open a second table below the “Table of Results” that displays the off-target results 
of the selected compound (you may need to scroll down to see this table). Here, we see that PD 174265 also has 
significant inhibition on ErbB2 that is considered “off-target” and is lowering its KISS. To get a better idea of the full 
inhibition profiles of these compounds, click on the “Heatmap” tab towards the top of the screen. Note that the heatmap 
may take a few seconds to load, and may require scrolling to the right to see the entire image. From this heatmap, we can 
see that EGFR Inhibitor is, indeed, highly selective for EGFR at 0.5 µM. The white tiles represent areas of missing data, 
so we can see that EGFR Inhibitor was not profiled for 6 kinases in this dataset. If we hover over these tiles, a pop-up 
window reveals that these kinases are (from left to right) EPHA6, MYO3B, PRKACG, STK38, TLK2, and ULK3. 
 From the heatmap, we can see that Lapatinib (row 3) also has high inhibition of EGFR, but also inhibits two other 
kinases. Hovering the mouse over these bright red tiles reveals that these are ErbB2 and ErbB4. To modify our search to 



include these as on-target inhibitions, first navigate back to the “Table of Results” tab. Now, click on the “Kinase(s) of 
Interest” field on the left again and, without removing EGFR, add “ERBB2” and “ERBB4” the same way as before (either 
by scrolling to find them, or typing the first few characters, then clicking on the desired kinase). With these selected, we 
see that Lapatinib is now the top result with a KISS of 96.31. Use the drop-down menu to the top-left of the table to 
change “Show 10 entries” to “Show 20 entries”. Towards the bottom of this table, we see that “EGFR Inhibitor” now has a 
KISS of 10.58 due to its low inhibition of ErbB2 and ErbB4. If we desire an inhibitor that has higher inhibition of ErbB4 
specifically, we can click on the column name “ERBB4 % Inhibition” twice to reorder the compounds based on their 
inhibition of ErbB4. The top result, Bosutinib, does not appear very selective (KISS = 27.42). However, the second result 
is a compound named “EGFR/ErbB2/ErbB4 Inhibitor” (KISS = 87.50). Once again, we can click on this row to generate a 
table of the 7 notable off-target effects. 
 To get a well-rounded view of which inhibitor to use, it is a good idea to search multiple datasets. With the same 
group of kinases selected (EGFR, ERBB2, ERBB4), click on the “HMS LINCS” button under the “Datasets” header on the 
left. When the table loads, we see that, in this dataset, Lapatinib (10µM) has a KISS of 88.37. Clicking on the second row 
to display the off-target effects of Lapatinib (10µM) shows that this dataset also includes many mutant forms of EGFR that 
are significantly inhibited by Lapatinib. Since these are counted as off-targets, they will lower the KISS. If we wish to get a 
better idea of Lapatinib’s score, we can add each of these mutant forms to our “Kinase(s) of Interest). If we wish to search 
for a particular subset of compounds, we can type “AZ” in the search field to the top right of the table to restrict the 
compounds displayed to only those with “AZ” in their names. After doing this, clicking on the “Heatmap” tab will display a 
heatmap of only these compounds. Finally, all of these outputs (Table of Results, off-target effect table, and heatmap) can 
be downloaded by clicking on the buttons below each object. 
 
TRANSPARENT METHODS: 
 
KEY RESOURCES TABLE 

REAGENT or RESOURCE SOURCE IDENTIFIER 
Deposited Data 

App script This paper https://github.com/FredHutch/KInhibition-public 
(app.R) 

Reaction Biology Formatted 
Dataset 

(Anastassiadis et 
al., 2011) 

https://github.com/FredHutch/KInhibition-public 
(rbio_old_dataset.csv) 

HMS LINCS Formatted Dataset (Koleti et al., 
2017) 

https://github.com/FredHutch/KInhibition-public 
(LINCS_dataset.csv) 

GSK PKIS Formatted Dataset (Dranchak et al., 
2013) 

https://github.com/FredHutch/KInhibition-public 
(PKIS_dataset.csv) 

EMD Millipore Formatted 
Dataset (Gao et al., 2013) https://github.com/FredHutch/KInhibition-public 

(EMD_dataset.csv) 
Software and Algorithms 

R 3.3.0 (R Core Team, 
2016) https://www.r-project.org/ 

Shiny (Chang et al., 
2017) https://cran.r-project.org/package=shiny 

Shiny Semantic (Stachura, 2018) https://cran.r-project.org/package=shiny.semantic 
DT: ‘DataTables’ Wrapper (Xie, 2018) https://cran.r-project.org/package=DT 

dplyr (Wickham et al., 
2017) https://cran.r-project.org/package=dplyr 

reshape2 (Wickham, 2007) http://www.jstatsoft.org/v21/i12/ 
ggplot2 (Wickham, 2009) http://ggplot2.org 
webshot (Chang, 2017) https://cran.r-project.org/package=webshot 

HTMLwidgets (Vaidyanathan et 
al., 2018) https://cran.r-project.org/package=htmlwidgets 

plotly (Sievert et al., 
2017) https://cran.r-project.org/package=plotly 

 
CONTACT FOR REAGENT AND RESOURCE SHARING 
Further information and requests for resources should be directed to and will be fulfilled by the Lead Contact, Taran Gujral 
(tgujral@fredhutch.org). 
 
METHOD DETAILS 
Calculating the KInhibition Selectivity Score 



The KInhibition Selectivity Score, 𝐾𝐼𝑆𝑆, quantifies the selectivity of a given compound screened at a specific dose 
against a large panel of kinases. The data from such screens is treated as an 𝑚	×	𝑛 drug-target interaction matrix, where 
𝑚 is the number of compounds (with different doses of the same compound being treated as separate compounds for this 
purpose) and 𝑛 is the number of kinases screened. All entries in this matrix fall in the range [0, 100] and represent the 
inhibition of the kinase by that compound. This is “percent of control” data, with 0 being no inhibition (activity of the kinase 
equal to or greater than the control), and 100 being complete inhibition (no detected kinase activity in the presence of that 
compound). 

Before computing the score, each row in the drug-target interaction matrix is scaled so that the maximum of every 
row is exactly 100. This decouples compounds’ selectivity from their efficacy to avoid unnecessarily penalizing 
compounds that are highly selective, but display low absolute inhibition at the dose tested. Efficacy at the tested dose can 
still be determined in the final results table, which displays the unscaled inhibition values. 

The following calculations are computed row-wise on the scaled drug-target matrix, so that each compound has 
an assigned selectivity score based solely on the properties of that compound, independent of the other compounds 
(rows) in the matrix. The non-missing elements of each row, 𝑧. … 𝑧0, can be partitioned into on-target effects, 𝑥. … 𝑥2, and 
off-target effects, 𝑦. … 𝑦042. First, the Inhibition Score, 𝐼𝑆, is computed from the 𝑘 chosen on-target inhibitions 𝑥. … 𝑥2 as a 
geometric mean: 

𝐼𝑆 = 	 𝑥7

2

78.

9

 

We used a geometric mean to best represent compounds that inhibit only some of the chosen on-target kinases, as a 
geometric mean is always less than or equal to an arithmetic mean. This value thus lies in the interval of the scaled data: 

0	 ≤ 𝐼𝑆	 ≤ 100 

 The Inhibition Penalty, 𝐼𝑃, is then computed in two parts. The first part, 𝐼𝑃., is computed as an arithmetic mean of 
the off-target effects 𝑦. … 𝑦042: 

𝐼𝑃. = 	
1

𝑛 − 𝑘
𝑦7

042

78.

 

This portion of the penalty represents the baseline inhibition across all of the off-target kinases, which is useful for 
penalizing compounds with extremely broad activity. However, it poorly accounts for compounds that have a small 
number (i.e. <10) of very large (near 100% inhibition) off-target effects compared to the on-target effects. To better 
capture this aspect, 𝐼𝑃= is computed as a ratio of normalized variances between the off-target effects 𝑦. … 𝑦042 and the 
total effects 𝑧. … 𝑧0 as follows. First, the variances are computed as 

𝑠?= = 	
1

𝑛 − 𝑘 − 1
(𝑦7 − 𝑦)

042

78.

 

𝑠B= = 	
1

𝑛 − 1
(𝑧7 − 𝑧)

0

78.

 

where 𝑦 = .
042

𝑦7042
78.  and 𝑧 = .

0
𝑧70

78.  are the arithmetic means of the off-target and total inhibitions, respectively. 
When 𝑘 ≪ 𝑛, we expect these variances to be approximately equal for all but the most selective compounds, whose total 
variances will instead be explained largely by the difference between the on- and off-target effects. An approximate lower 
bound for the off-target variance can be computed using a modified version of the von Szokefalvi Nagy Inequality: 

𝑠DE= = 	
max 𝑦7 =

2𝑛
 

The variances can then be centered using this lower bound in order to shift 𝐼𝑃= to have a minimum closer to 0, and 𝐼𝑃= is 
calculated as the ratio between the two shifted variances:  

𝐼𝑃= = 	
𝑠?= − 𝑠DE=

𝑠B= − 𝑠DE=
 

While the modifications to the lower bound (namely, using 𝑛 rather than 𝑛 − 𝑘 in the denominator) mean that 𝐼𝑃= can fall 
outside the interval of [0, 1], in practice this only occurs for the most selective compounds, and then only by a very small 
margin. We then combine the two penalties in an empirically determined manner: 

𝐼𝑃 = 	
𝐼𝑃. + 100 𝐼𝑃= K

2
 



With the rare exception mentioned above, both terms in the numerator of this equation lie in the interval [0, 100], and 
therefore their arithmetic mean 𝐼𝑃 does as well. Finally, 𝐾𝐼𝑆𝑆 is calculated as a different between 𝐼𝑆 and 𝐼𝑃 

𝐾𝐼𝑆𝑆 = 𝐼𝑆 − 𝐼𝑃 

Based on the bounds mentioned above, 𝐾𝐼𝑆𝑆 generally lies in the interval [−100, 100], with 100 representing near perfect 
selectivity (i.e. only on-target inhibition), and −100 representing the opposite (i.e. only off-target inhibition). 
 
QUANTIFICATION AND STATISTICAL ANALYSIS 
All software development, calculations, and analyses were carried out using R 3.3.0 (https://www.r-project.org/). All 
packages used can be found in the Key Resources Table. 
 
DATA SOFTWARE AND AVAILABILITY 
The app portal can be accessed at https://kinhibition.fredhutch.org. The source code and all other files can be found at the 
Github repository listed in the Key Resources Table. 
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