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Aging is a biological and multifactorial process characterized by a progressive and
irreversible deterioration of the physiological functions leading to a progressive increase
in morbidity. In the next decades, the world population is expected to reach ten billion, and
globally, elderly people over 80 are projected to triple in 2050. Consequently, it is also
expected an increase in the incidence of age-related pathologies such as cancer, diabetes,
or neurodegenerative disorders. Disturbance of cellular protein homeostasis (proteostasis)
is a hallmark of normal aging that increases cell vulnerability and might be involved in the
etiology of several age-related diseases. This review will focus on the molecular alterations
occurring during normal aging in the most relevant protein quality control systems such as
molecular chaperones, the UPS, and the ALS. Also, alterations in their functional
cooperation will be analyzed. Finally, the role of inflammation, as a synergistic negative
factor of the protein quality control systems during normal aging, will also be addressed. A
better comprehension of the age-dependent modifications affecting the cellular
proteostasis, as well as the knowledge of the mechanisms underlying these alterations,
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might be very helpful to identify relevant risk factors that could be responsible for or
contribute to cell deterioration, a fundamental question still pending in biomedicine.

Keywords: aging, proteasome, autophagy, inflammation, proteostasis, cell stress and aging

INTRODUCTION

Protein Quality Control Systems
Proteostasis is the dynamic regulation of a balanced, functional
proteome, in order to maintain its functionality. In eukaryotic
cells, proteostasis is maintained by different quality control
systems such as molecular chaperones, the UPS, and the ALS.
The correct function and coordination of all of them guarantee
that proteins can be properly synthesized, folded, assembled, sub-
compartmentalized, and finally degraded according to cellular
requirements.

Molecular Chaperones
Molecular chaperones are ubiquitous and highly conserved
proteins. They include an array of different molecular weight
proteins, ranging from ten to more than 100 kDa, distributed in
different cellular compartments (Kampinga et al., 2009;
Ciechanover and Kwon 2017). In particular, the human
chaperome involves 332 genes that can be grouped into nine
functional families: HSP90, HSP70, HSP60, HSP40, small HSPs,
tetratricopeptide repeat-domain-containing, prefoldin, and ER
and mitochondria specific chaperones (see Brehme et al., 2014 for
a detailed review). Molecular chaperones promote efficient de
novo protein folding, prevent aggregation of mis/unfolded
proteins (Hartl et al., 2011; Kim Y.,E. et al., 2013),
disaggregate aggregated proteins (Weibezahn et al., 2005), and
target misfolded proteins for refolding or protein degradation
(Pickart and Cohen, 2004). They bind to substrate proteins
through exposed hydrophobic regions and/or unstructured
polypeptide backbones, two hallmarks of non-native
conformations. For example, HSP70, one of the most
abundant cellular chaperones, participates in de novo protein
folding, post-translational refolding of aggregation-prone
proteins, and the re-solubilization of protein aggregates
(Mayer and Gierasch, 2019). In summary, chaperones have
pivotal roles in proteostasis from protein synthesis to protein
degradation.

The Ubiquitin Proteasome System
The UPS is responsible for the catalysis of the ATP-dependent
degradation of most of the soluble and short-lived poly-
ubiquitinated proteins by the 20S proteasome. The 20S
proteasome is a hollow barrel-shaped structure built of four
rings: two outer α-rings, and two inner β-rings, each one
containing seven subunits (αl to α7 or β1 to β7). The α-rings
control the substrate access to the proteolytic chamber, whereas
the β-rings harbor the constitutive catalytic subunits: β1 (caspase-
like activity), β2 (trypsin-like activity), and β5 (chymotrypsin-like
activity). The 20S proteasome mainly degrades either non-
ubiquitinated misfolded, oxidized or damaged proteins
(Raynes et al., 2016). However, the 20S proteasome (the

proteolytic module) can associate with one or two terminal
regulatory particle/s called 19S, giving rise to the 26S or 30S
proteasome, respectively, which is responsible for the degradation
of soluble and short-lived poly-ubiquitinated proteins
(Rechsteiner and Hill, 2005; Ding and Yin, 2008; Jung and
Grune, 2012). The 19S regulatory particle is terminally
attached to the 20S core and is built of two different
structures: a ring-shaped base and a mobile lid structure. The
ring-shaped base is made up of ten different subunits: the Rpt1-
Rpt6 ring, and Rpn1, Rpn2, Rpn10, and Rpn13), whereas the lid
structure includes nine additional subunits (Rpn3, Rpn5, Rpn6,
Rpn7, Rpn8, Rpn9, Rpn11, Rpn12, and Rpn15), each one with
different functions (Tanaka 2009). For example, the Rpt1-Rpt6
ring has ATPase activity and regulates substrate unfolding and
substrate transfer through the channel. (Collins and Goldberg,
2017). The Rpn10 and Rpn13 possess ubiquitin-binding domains
and functions as receptor for ubiquitinated substrates, whereas
the Rpn11 subunit is a de-ubiquitinating enzyme that removes
poly-ubiquitin chains from target proteins, allowing the release
and re-use of ubiquitin molecules (Finley, 2009). Thus, the 19S
particle can bind poly-ubiquitinated proteins, catalyze protein de-
ubiquitination, unfold the target protein, and promote protein
degradation into the catalytic chamber.

Proteins degraded by the 26S proteasome, need to be
previously tagged with ubiquitin in a process called protein
ubiquitination (Ciechanover and Kwon 2017). This process
involves the binding of ubiquitin to the target protein.
Ubiquitin is a small and conserved protein of 76-amino acid
residue, with seven residues of lysine located at positions 6, 11, 27,
29, 33, 48, and 63. (Komander, 2009), that is mainly bound to
lysine residues on the target protein, although it can also be
attached to other residues such as Ser/Thr (Shimizu et al., 2010)
Cys (Cadwell and Coscoy, 2005), or even to the N-terminus of the
target protein (Breitschopf et al., 1998). First, ubiquitin is
activated by the E1 enzyme (ubiquitin-activating), which
catalyzes the ATP-dependent formation of a thioester bond
between the C-terminal Gly carboxyl group of ubiquitin, and
the Cys residue of the active site of the E1 enzyme. Then,
ubiquitin is transferred to the Cys residue of a member of the
E2 family of enzymes (ubiquitin-conjugating), and finally,
substrate specificity is provided by specific E3 enzymes
(ubiquitin ligase) of the E3 RING or HECT families. In
general, four residues of ubiquitin bound through Lys-48
constitute the stronger degradation signal (Korovila et al.,
2017) (see Figure 1 for a global overview).

In addition to the degradation of soluble cytosolic proteins, the
UPS is also involved in the degradation of unfolded or misfolded
proteins synthesized into the ER. It is estimated that around one-
third of the total cellular proteins, secreted and transmembrane
proteins, are synthesized and folded inside the ER (Braakman
and Hebert, 2013). These proteins are especially dependent on
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ER-specific chaperones that facilitate proper folding,
modifications, and release from the ER (Ulrich et al., 2011;
Gidalevitz et al., 2013). For example, GRP (glucose-regulated
protein) 78 interacts with the unfolded nascent proteins,
contributing to the translocation into the ER (Kleizen and
Braakman, 2004). The oxidoreductase enzymes such as PDI,
ERp57 or ERp44, catalyze the formation of disulfide bonds
between cysteine residues during the folding of many proteins,
providing structural stability and promoting the assembly of
multi-protein complexes (Bulleid, 2012; Oka and Bulleid,
2013). If the folding capacity of the ER is reduced, proteins
tend to accumulate producing a situation called ER stress. Under
this challenge, cells up-regulate the expression of chaperones as
part of a more complex compartment-specific stress response
called the UPR. The UPR is initiated by three ER-resident

membrane proteins: IRE1α, PERK, and ATF6α. Briefly, UPR
activation results in i) the transcriptional up-regulation of genes
coding for chaperones; ii) the attenuation of protein translation;
and iii) the increase in the proteasomal and/or autophagy
degradation of unfolded/misfolded proteins, through the
ERAD (Fujita et al., 2007; Frakes and Dillin, 2017). Due to
spatial separation between substrates and degradation systems,
ERAD requires retrograde transport through the translocon of
unfolded/misfolded proteins from the ER back to the cytosol
(Meusser et al., 2005). In this case, substrates are targeted by
specific ubiquitin ligases (E3 enzymes) such as the complex
HRD1/HRD3 (Hampton et al., 1996; Kaneko and Nomura,
2003). In the end, this coordinate response has two major
outcomes: proteostasis restoration or apoptotic cellular death
(Gavilán et al., 2009b).

FIGURE 1 | Schematic representation of the cellular biology of proteins. mRNA translation produces nascent proteins that are assisted during folding by
chaperones. Native proteins perform their cellular functions and are subject to cellular turnover (A). Also, unfolded, misfolded, oxidative damage, modified, or
unnecessary proteins are targeted for degradation by the 26S or 30S proteasome [19S-20S or 19S-20S-19S, respectively: (B)]. Previous to proteasome degradation
proteins need to be ubiquitinated by three enzymatic reactions catalyzed by the E1 (ubiquitin-activating), E2 ubiquitin-conjugating) and E3 (ubiquitin-ligase),
respectively (C). UR. Ubiquitin receptor; DUBs. Deubiquitinating enzymes. β1, β2, and β5. Catalytic subunits.
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The Autophagy-Lysosomal System
The ALS includes three different types of autophagic
degradation, all of them ultimately depending on functional
lysosomes, but each one acting through different molecular
mechanisms (see Galluzzi et al., 2017 for an exhaustive
review). Briefly, microautophagy is characterized by the
direct capture of cytoplasmic fractions that are taken up by
lysosomal membrane invaginations for their degradation
(Mizushima et al., 2008). The mechanisms regulating
microautophagy in mammalian cells are still poorly known
(Mijaljica et al., 2011). CMA is involved in the selective
degradation of specific soluble proteins by the lysosomes
(Kaushik and Cuervo 2008). It involves neither vesicle
formation nor membrane invaginations and participates in
the degradation of cytosolic proteins containing the KFERQ
sequence motif. The CMA-targeting motif is recognized in the
cytosol by a chaperone complex including HSc70, HIP, HOP,
BAG1, and HSP40, which assists protein translocation into
the lysosomal lumen for their degradation in a LAMP2-
dependent manner (Cuervo et al., 2014). Finally,
macroautophagy (referred to here as autophagy) represents
the most relevant form of autophagy (He and Klionsky 2009;
Mizushima et al., 2008). Autophagy plays a protective role in
various types of stressful contexts such as starvation, protein
aggregation, and renewal of damaged or obsolete organelles. It
involves the autophagosome formation, a double-membrane
vesicle originated by elongation of a de novo formed
membrane; the sequestration of cargo inside the
autophagosome, such as cellular organelles, long-lived
proteins and/or aggregated proteins; the seals of the
autophagosome; and the transport by the microtubule
system, to finally fuse with late lysosomes or endosomes,
for cargo degradation, forming autolysosomes. (Ding and
Yin, 2008) (Figure 2). The sources of autophagosome

membrane in mammal cells are still under debate, and
different cellular organelles such as ER, Golgi,
mitochondria, or cell membrane, have been found to
contribute as membrane donor for autophagosome
formation depending on autophagy induction condition
(see Wei et al., 2018 for more detailed information). In the
last years, different selective forms of autophagic degradation
have emerged such as mitophagy, pexophagy, nucleophagy,
reticulophagy, ribophagy, aggrephagy, lipophagy,
proteaphagy or lysophagy (Galluzzi et al., 2017). Regulation
of autophagy is complex, and it has been extensively
investigated. The initiation, nucleation, and elongation
phases are specifically regulated by different proteins,
cellular pathways, and ATGs (see Carlsson and Simonsen,
2015 for a detailed review).

FUNCTIONAL COOPERATION BETWEEN
THE PROTEIN QUALITY CONTROL
SYSTEMS
Despite molecular mechanisms underlying the interplay
between the UPS and autophagy are incompletely
understood, there is solid evidence showing functional
cooperation between the two major proteolytic systems
under stress situations that are mediated by different
cellular pathways (Korolchuk et al., 2010). This functional
crosstalk allows the integration of many signals to provide a
tailored cellular response to each specific cellular challenge
(Figure 3). In addition to the functional cooperation of
proteolytic systems, evidence also indicates a functional
regulation between essential players of cellular proteostasis
that cooperate with the two proteolytic systems such as
chaperones, UPR, and ERAD.

FIGURE 2 | Stages of the autophagy lysosomal pathway. From initiation to resolution the most relevant markers are shown. Two potential sources of
autophagosome membranes, but not the only ones, are indicated: ER (endoplasmic reticulum) or Golgi.
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Autophagy Compensation for Proteasome
Dysfunction
A general overview of available data indicates that proteasome
impairment gives rise to autophagy activation. This functional
cooperation has been demonstrated both in vitro and in vivo
by different experimental approaches, such as
pharmacological or genetic inhibition of the proteasome.
However, the cellular pathways involved in this functional
crosstalk are very complex and not well understood. A general
overview of the pharmacological and genetic interventions is
detailed.

Pharmacological Approaches
Different compounds are available to block proteasome activity
such as MG132, lactacystin, bortezomib, or epoxomicin.
Pharmacological inhibition of proteasome with the irreversible
proteasome inhibitor lactacystin in rat hippocampus, up-
regulated the expression of several ATG, the SQSTM1/p62
(referred to here as p62), and increased autophagic activity
through activation of the IGF1-AKT-GSK-3β pathway
(Gavilán et al., 2015). A similar effect was described in mouse
brain, heart, kidney, and liver using the reversible proteasome
inhibitor MG132 or bortezomib, a selective and potent inhibitor

of the proteasome with broad anti-tumor activities in many
malignancies (Zheng et al., 2011). Other works have shown
that MG132 induced autophagy activation in several cell lines
through different cell signaling pathways. For example, in MDA-
MB-231 human breast epithelial cells, by activating the p38
MAPK/ERK-GSK-3β pathway (Choi et al., 2012), in human
breast cancer epithelial cells MCF7, through activation of the
AKT-GSK-3β pathway (Gavilán et al., 2013) or in macrophages,
epithelial and endothelial cells, by modulating the mitochondrial/
AMPK signaling axis (Jiang et al., 2015). Treatment with
bortezomib, induced protective autophagy in pancreatic and
colorectal cancer cells through AMPK-ULK1 signaling (Min
et al., 2014), and in melanoma cells, by both ER and
mitochondrial-dependent pathways (Selimovic et al., 2013).
Similarly, treatment with MG132 or bortezomib in human
colon cancer cells produced ER-stress and UPR dependent
autophagy activation. Autophagy was abolished by IRE1α
knockdown, or by treatment with the JNK inhibitor SP600125
(Ding et al., 2007), but was independent of XBP-1 signaling (Ding
et al., 2007; Rui et al., 2015). Finally, proteasome inhibition with
bortezomib in human prostate cancer cells, and immortalized
mouse embryonic fibroblasts promoted autophagy activation and
upregulated expression of ATG5 and ATG7, which depended on

FIGURE 3 |Molecular pathways, proteins, and mechanisms involved in the functional cooperation between the two major proteolytic systems. Arrows indicate the
functional cooperation from proteasome to autophagy (green) and from autophagy to proteasome (purple).
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phosphorylation of eIF2α, a downstream element of the PERK
arm of the UPR (Zhu et al., 2010).

Genetic Approaches
Different targets and strategies have been used to induce
proteasomal dysfunction. Elimination of the proteasome
activator REGγ in mice produced protective autophagy
activation against high-fat diet-induced liver steatosis,
mediated by SIRT-1-dependent deacetylation of ATG5 and
ATG7 (Dong et al., 2013). Knockdown of the proteasome
subunit β2 in mice cardiomyocytes, induced autophagy
activation, and increased mTOR expression and ER stress
(Kyrychenko et al., 2014). Conditional knock-out mice of the
ATPase subunit of the 19S particle Rpt2, increased protective
autophagy by activation of the Keap1-Nrf2 pathway in a
p62 phosphorylation-dependent manner, in both mouse liver
and brain cortical neurons (Kageyama et al., 2014; Ugun-Klusek
et al., 2017). However, genetic ablation of Rpt2 in mouse
cardiomyocytes also activated autophagy but through the
PPP3/calcineurin-TFEB-p62 pathway (Pan et al., 2020).
Knockdown of proteasomal catalytic subunits in human
prostate cancer cells and immortalized mouse embryonic
fibroblasts promoted autophagy activation and upregulated
expression of ATG5 and ATG7 (Zhu et al., 2010). Finally,
knockdown of the proteasomal ubiquitin receptors
Rpn10 and Rpn13 resulted in autophagy activation and
ATF4-p62-dependent clearance of ubiquitinated proteins
(Demishtein et al., 2017).

Thus, pharmacological, and genetic data provide solid
evidence indicating a robust compensation of autophagy
under proteasome dysfunction. Although the mechanisms
connecting both proteolytic systems are complex, it is
relevant to highlight the role of specific proteins acting as
mechanical linkers between both proteolytic systems. They
include p62, HDAC6, NBR1, NDP52, OPTN, vcp/p97, Alfy,
and BAG proteins (Rogov et al., 2014; Cecarini et al., 2016). For
example, the BAG1 and BAG3 proteins participate in protein
delivery to the proteasome or the autophagy, respectively
(Gamerdinger et al., 2009; Gavilán et al., 2013; Stürner and
Behl, 2017). Under normal conditions, most of the
polyubiquitinated proteins are degraded by the proteasome in
an HSc/HSP70-BAG1 dependent manner (Luders et al., 2000;
Demand et al., 2001). But under proteotoxic stress, proteins can
accumulate and aggregate leading to increased autophagic
activity (Stürner and Behl, 2017). In this case, BAG3, acting
in concert with the multi-adapter protein p62, facilitates
autophagic degradation (Behl 2016). The p62 protein can
bind simultaneously to ubiquitinated proteins, through its
UBA domain, to LC3-II, by its LIR domain (Katsuragi et al.,
2015) and, to the co-chaperones HSc/HSP70. Thus, p62 would
play a pivotal role in the molecular crosstalk between both
proteolytic systems, integrating the signals coming from
different cellular pathways (Myeku and Figueiredo-Pereira,
2011; Liu et al., 2016; Danieli and Martens, 2018; Aragonès
et al., 2020).

Proteasome Compensation for Autophagy
Dysfunction
There is also evidence indicating that autophagy and CMA
dysfunction leads to proteasome compensation. For example, in
cultured human colon cancer cells, autophagy disruption by RNA
interference of ATG genes up-regulated transcriptional expression of
proteasomal subunits, including the catalytic β5 subunit, as well as
proteasomal activities (Wang et al., 2013). Similarly, in the liver from
mice with defective CMA, generated by genetic ablation of LAMP-
2A, basal proteostasis was compensated by proteasomal activity due
to increased content of the 19S regulatory particle (Schneider et al.,
2015). However, there are also data indicating the lack of proteasome
compensation for autophagy dysfunction. For example, in
fibroblasts from autophagy-deficient mice (Atg5−/−), it was not
observed any modifications in the three proteasomal activities
(Kaushik et al., 2008), as well as in neurons from mice lacking
Atg7 (Komatsu et al., 2006), or in the liver from conditional
knockout mice of Atg7, where neither proteasomal proteins nor
proteasomal trypsin-like activity was modified (Komatsu et al.,
2005). Moreover, autophagy inhibition increased proteasome
substrates, due to the accumulation of the adaptor protein p62,
which inhibited the delivery of ubiquitinated proteins to the
proteasome (Korolchuk et al., 2009). Thus, proteasomal
compensation from autophagy dysfunction might be organ-
dependent.

Compensation Between
Chaperone-Mediated Autophagy and
Autophagy
Compensation between the different types of autophagy has also
been observed. For example, the decline of CMA by reduction of
LAMP-2A expression resulted in the activation of autophagy in
cultured mouse fibroblasts (Massey et al., 2006), PC12 cells
(Vogiatzi et al., 2008), and mice liver (Schneider et al., 2015).
However, in other works CMA down-regulation, produced an
accumulation of autophagic vacuoles in HeLa cells (González-
Polo et al., 2005), Similarly, dysfunction of CMA in LAMP-2
deficient mice was accompanied by an accumulation of
autophagic vacuoles in many tissues, and the impairment of
autophagic degradation of long-lived proteins in hepatocytes,
suggesting autophagy dysfunction, instead of autophagy
compensation (Tanaka et al., 2000). Moreover, a reduction in
the proteolytic capacity of lysosomes from LAMP-2 deficient
hepatocytes produced autophagy dysfunction, suggesting that
LAMP-2 would be somehow necessary for a proper autophagy
activity (Eskelinen et al., 2002). Finally, genetic, and
pharmacological CMA blockage was not compensated by
autophagy activity in neurons (Bourdenx et al., 2021), in
mouse embryonic fibroblasts (Eskelinen et al., 2004), or 661W
cells (Rodríguez-Muela et al., 2013).

On the contrary, in fibroblasts from autophagy-deficient mice
(Atg5−/−) (Kaushik et al., 2008), as well as in retinal cells subjected
to autophagy inhibition both in vivo and in vitro CMA was
activated (Rodríguez-Muela et al., 2013).
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Chaperones, Unfolded Protein Response,
and Endoplasmic Reticulum-Associated
Degradation Crosstalk
Functional cooperation between other members of the protein
quality control systems, in addition to proteolytic systems, has
been also shown.

As stated before, chaperones are associated with protein
folding but also participate in protein degradation by both
the proteasome and autophagy. Different processes such as
the previously mentioned CMA, or chaperone-assisted
selective autophagy of aggregated proteins represent two
examples of functional cooperation between chaperones and
autophagy (Kaushik and Cuervo, 2012). Similarly, chaperones
also deliver misfolded proteins for degradation by the UPS, a
mechanism called chaperone-assisted proteasomal degradation
(Esser et al., 2004; Kettern et al., 2010), where the role of the co-
chaperone and ubiquitin ligase CHIP in sorting proteins to
refolding or to proteasomal degradation is of central importance
(McDonough and Patterson, 2003). As mentioned above,
chaperones such as BAG1 and BAG3 participate in protein
delivery to the proteasome or the autophagy, respectively,
placing chaperones in the middle of the crosstalk between
the two cellular protein degradation systems (Park and
Cuervo, 2013). However, cooperation of chaperones with
proteasomal degradation occurs with cytoplasmic but not
with nuclear proteasomal degradation (Samant et al., 2018).

Chaperones have also been shown to regulate the UPR activity in
different manners. It is well established that the most abundant ER
chaperone GRP78 inhibits UPR activation by binding to the three
sensor proteins (Hetz and Papa., 2018). Moreover, the activity of
IRE1α is regulated through the binding to IRE1α of several
chaperones such as GRP78, PDIA6, and ERdj4, or HSP47,
promoting repression or activation of this sensor protein,
respectively (Eletto et al., 2014; Amin-Wetzel et al., 2017;
Sepulveda et al., 2018). Also, PDIA5 selectively regulates ATF6α
activation (Higa et al., 2014), and Erp57, by controlling the
oxidative state of PDI, has been found to regulate PERK activity
(Kranz et al., 2017). Thus, different cellular chaperones, working
independently or together, can specifically regulate the three sensor
proteins involved in UPR activation. Reciprocally, UPR activation in
response to different stimuli, such as proteasome inhibition, gives rise
to transcriptional upregulation of several ER-chaperones as well as
ERAD markers to rescue or degrade misfolded proteins, respectively
(Paz Gavilán et al., 2006; Walter and Ron, 2011; Sun et al., 2015).

Finally, ERAD might also regulate UPR. In this sense
proteasomal degradation of IRE1α is promoted by SEL1L-HRD1
ERAD components, indicating that IRE1α is an ERAD substrate.
Depletion of SEL1L or HRD1 in several cell types, increased the
amount of IRE1α protein, without affecting transcriptional
induction. Importantly, the interaction between IRE1α and SEL1L
in the basal condition is dependent on chaperones GRP78 and OS9
(Sun et al., 2015). On the contrary, IRE1α-XBP1 transcriptionally
upregulates the expression of SEL1L and HRD1, indicating a
bidirectional control between ERAD and UPR.

Altogether, these data indicate that protein quality control
systems are functionally interconnected to re-establish

proteostasis under proteotoxic stress. Moreover, the molecular
versatility observed between the different protein quality control
systems, as well as in the different cellular pathways mediating
their functional cooperation, suggests that functional cooperation
seems to be a cell type-specific process.

AGE-RELATED ALTERATIONS IN THE
PROTEIN QUALITY CONTROL SYSTEMS

The progressive decline in the buffering capacity of the proteostasis
network represents one of the molecular hallmarks of aging
(López-Otin et al., 2013). However, the biological reasons why
the proteostasis network deteriorates during aging are complex and
not well understood. A progressive decrease in the activity and
efficacy of the protein quality control systems, as well as in the
mechanisms mediating the functional cooperation between them,
could be the cause of these dysfunctions.

Molecular Chaperones
A general fact of molecular chaperones during aging is a progressive
decline in their amount and/or activity, leading to a lower capacity to
cope with cellular stress. A growing body of evidence has
demonstrated that many cytosolic and ER chaperones, such as
HSP70, HSc70, GRP78, PDI, calnexin, calreticulin, ERp55,
ERp57, ERp72, Ero1-like protein alpha, and the family of the
ATP-dependent cytosolic chaperones, down-regulate their
expression in different cells and tissues, as well as in different
organisms including humans (Table 1). However, for some other
molecular chaperones, the basal transcriptional expression remains
stable in aged cells (Erickson et al., 2006; Paz Gavilán et al., 2006;
Brehme et al., 2014; Crum et al., 2015), or even increases (Lee at al.,
1999; Brehme et al., 2014; Crum et al., 2015).

The decline in the expression of molecular chaperones during
aging might reduce the protein folding capacity, increasing the
number of unfolded/misfolded proteins in aged cells. For example,
the accumulation of ubiquitinated proteins in the aged rat
hippocampus following proteasome inhibition was higher in those
animals that displayed the lower GRP78 up-regulation (Paz Gavilán
et al., 2006). Similarly, in aged human postmortem samples,
GRP78 co-localized more frequently with the enzyme tyrosine
hydroxylase (healthy dopaminergic neurons), but not with
α-synuclein positive neurons (neurodegenerating neurons). By
contrast, α-synuclein positive neurons co-localized more frequently
with caspase12 (Alladi et al., 2010). Also, inhibition of HSP70 in
primary olfactory bulb cultures increased proteotoxicity induced by
proteasome inhibition (Crum et al., 2015). However, in lymphoblasts
from human centenarians up-regulation of HSP70 in response to heat
shock was similar to that observed in young donors, and higher than
in aged (non-centenarians) donors (Ambra et al., 2004). These data
suggest a correlation of the level of expression of the molecular
chaperones with the life span of differentiated cells.

On the other hand, the age-dependent decrease in the content of
ER chaperones might affect specifically ERAD activity. In this sense,
basal expression of the protein vcp/97, a component of ERAD that
participates in the ATP-dependent extraction of misfolded proteins
from ER for cytosolic proteasomal degradation, is increased in aged
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rats, suggesting augmentation of basal ER-stress (Pintado et al.,
2017). In summary, considering the many cellular functions in
which chaperones are involved, an adequate level of cellular
chaperones is of crucial importance to get cellular healthy aging,
in order to limit the decrease in tissue and cellular function.

The reasons leading to chaperome down-regulation are currently
unknown. In this sense, age-related alterations in general
transcriptional expression and translational efficiency have been
described in mice (Lee et al., 2000), rats (Wood et al., 2013), and
humans (Lu et al., 2004). Thus, future studies focused on age-related
modifications in epigenomic mechanisms, such as transcription
factor binding, histone marks, heterochromatin formation, and
DNA methylation could shed light on the age-related
modifications in the mechanisms regulating gene expression

(Booth and Brunet, 2016). Moreover, another possibility to
explore would be if aggregated proteins in aged cells might catch
molecular chaperones, a situation that might contribute to the
collapse of proteostasis in aged cells (Yu et al., 2014).

The Ubiquitin Proteasome System
It is well documented that proteasome activity decreases during
normal aging leading to oxidized and/or poly-ubiquitinated
protein accumulation. This fact has been described by many
groups in many tissues such as the spinal cord, cerebral cortex,
kidney, lung (Keller et al., 2000a), hippocampus (Keller et al.,
2000a; Gavilán et al., 2009b) liver (Conconi et al., 1996; Keller
et al., 2000a) heart (Keller et al., 2000a; Bulteau et al., 2002)
epidermis (Bulteau et al., 2000; Petropoulos et al., 2000),

TABLE 1 | Representative molecular chaperones affected by aging in different tissues and organisms.

HSP70 Rat
Mononuclear cells Deguchi et al. (1988)

Fibroblasts Fargnoli et al. (1990)
Hepatocytes Heydari et al. (1994)

Heart Nitta et al. (1994)
Human

Mononuclear cells Singh et al. (2006)

GRP78 Rat
Hippocampus Paz Gavilan et al. (2006), Gavilán et al. (2009b)
Nigral neurons Salganik et al. (2015)

Mouse
Cerebellum Hussain and Ramaiah, (2007)

Cortex
Kidney
Spleen
Heart
Lung
Liver Rabek et al. (2003), Erickson et al. (2006), Nuss et al. (2008)

PDI Rat
Hippocampus Paz Gavilan et al. (2006), Gavilán et al. (2009b)

Mouse
Cortex Naidoo et al. (2008)
Liver Rabek et al. (2003), Nuss et al. (2008)

Monkey
Chondrocytes Tan et al. (2020)

Calnexin Rat
Hippocampus Paz Gavilan et al. (2006)

Mouse
Liver Erickson et al. (2006)

Monkey
Chondrocytes Tan et al. (2020)

Calreticulin Mouse
Liver Rabek et al. (2003)

ERp55 Mouse
ERp57 Liver Erickson et al. (2006)
ERp72

Ero1α Monkey
Chondrocytes Tan et al. (2020)

HSc70 Rat
Olfactory bulb Crum et al. (2015)

ATP-dependent cytosolic chaperones Human
Brain Brehme et al. (2014)
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lymphocytes (Carrard et al., 2003), muscle (Bardag-Gorce et al.,
1999; Radák et al., 2002; Husom et al., 2004; Ferrington et al.,
2005), Achilles tendon (Radák et al., 2002), and fibroblasts
(Merker et al., 2000), indicating that the gradual decline in the
proteasomal activity is a hallmark of aging. However, it should be
also noted that Giannini et al., 2013, demonstrated that purified
26S proteasomes from aged rat brain and cerebellum, displayed
lower activity than proteasomes from young animals, when using
fluorogenic peptides, but exhibited no changes, or even slightly
increased activity when a more physiological substrate was used
(poly-Ub-model substrate).

The exact mechanisms accounting for the age-dependent
decrease in the proteasome activity remain still elusive. For
example, structural alterations of the proteasome, as well as
reduced expression of proteasome subunits have been
described (Lee et al., 1999; Bulteau et al., 2002; Chondrogianni
et al., 2003; Gavilán et al., 2009a; Baraibar et al., 2012). On the
other hand, the age-related increase in reactive oxygen species,
mostly due to mitochondrial dysfunction and dysregulation of
anti-oxidant repair mechanisms (Squier, 2001; Rottenberg and
Hoke, 2017; Scialo et al., 2017), can also affect proteasome activity
by oxidative damage. Every single alpha and beta subunits, as well
as regulatory 19S subunits, can be modified by oxidation
(Korovila et al., 2017; Lefaki et al., 2017). Irreversible oxidative
modifications such as the formation of 4-hydroxynonenal-
protein adducts in specific proteasome subunits (Keller et al.,
2000b; Petropoulos et al., 2000; Bulteau et al., 2001; Ferrington
and Kapphahn, 2004; Wang et al., 2010), or the formation of
protein carbonyls in the regulatory subunit S6 ATPase (Rpt5) of
the 26S proteasome (Ishii et al., 2005), reduced proteasomal
activity. Similarly, the reversible oxidative modification
S-glutathionylation has been found in the Rpn2 regulatory
subunit of the 26S proteasome, leading to reduced
proteasomal degradation of substrates (Zmijewski et al., 2009).
But S-glutathionylation of the 20S proteasome has also been
proposed to act as a regulatory mechanism to remove oxidized
proteins under oxidative stress, by inducing gate opening and
enhancing proteasomal activity (Silva et al., 2012). In addition to
these oxidative-induced modifications, oxidative stress can also
promote other proteasomal modifications such as poly ADP-
ribosylation, S-nitrosylation, phosphorylation, or ubiquitination,
all of them decreasing proteasomal activity (Kors et al., 2019).

Another relevant role of oxidative stress on proteasome
structure and function is the differential susceptibility to
oxidative stress displayed by the 20S and the 26S proteasomes.
For example, exposure of human hematopoietic K562 cells, yeast,
or bovine lens epithelial cells, to several oxidants affected
differently the proteolytic activity of the 20S and the 26S
proteasomes. Whereas degradation of oxidized proteins by the
20S proteasome was not affected, or even increased, degradation
of ubiquitinated proteins by the 26S proteasome was severely
reduced or inhibited, suggesting that the 20S proteasome is much
more resistant to oxidative stress (Shang and Taylor, 1995;
Reinheckel et al., 1998, Reinheckel et al., 2000; Wang et al., 2010).

However, other work in mouse embryonic fibroblasts
indicated that under oxidative stress, the 26S proteasome can
degrade both oxidized and ubiquitinated proteins, and seemed to

be equally resistant to oxidative stress than the 20S proteasome
(Haratake et al., 2016). Also, oxidative stress promotes the
dissociation of the proteasome from the 26S holoenzymes to
free 20S proteasome and the regulatory particle 19S, increasing
the 20S/26S ratio (Wang et al., 2010; Grune et al., 2011; Livnat-
Levanon et al., 2014; Haratake et al., 2016;Wang et al., 2017). This
process is conserved from yeast to human and is mediated, at least
in part, by the protein Ecm29 (extracellular mutants 29) (Wang
et al., 2010; Haratake et al., 2016; Wang et al., 2017). Considering
that oxidatively damaged proteins are mostly degraded by the 20S
proteasome, the oxidative-induced increase in the 20S/26S ratio
might represent a cellular adaptation to acute oxidative stress
(Davies 2001; Grune et al., 2003; Pickering et al., 2010). However,
under chronic oxidative stress, as occurring during normal aging,
sustained dissociation of the 26S proteasome might favor the
accumulation of ubiquitinated proteins due to both reductions of
the 26S proteasome, and reduced activity of the oxidized 20S
proteasome (Ferrington et al., 2005). In this line, transcriptional
up-regulation of several constitutive proteasome subunits has
been found in aged rat muscle cells, in parallel with a reduction in
the content of the proteasome activating proteins, PA28 and 19S
(Ferrington et al., 2005). Also, the aged rat hippocampus
increased the content of proteasome subunits, but decreased
proteasomal activity, leading to the accumulation of
ubiquitinated proteins (Paz Gavilán et al., 2006; Gavilán et al.,
2009b). All these data could be compatible with a reduction in the
amount of the 26S proteasome in aged cells induced by chronic
oxidative stress and/or chronic inflammation (see below).
However, other possibilities cannot be ruled out.

In summary, the mechanisms accounting for the age-
dependent decrease in the proteasome activity seem to be
heterogeneous and probably cell-type specific. The reduction
in the number of cellular proteasomes, together with the
oxidative damages of specific proteasome subunits could
account for most of the age-dependent proteasomal
dysfunctions occurring in aged cells. Moreover, proteasomal
dysfunction and decreased chaperones activity have synergistic
negative effects on the risk of protein accumulation. In turn,
accumulated proteins might be prone to form proteins aggregates
that cannot be degraded by the proteasome, but might physically
block it, leading to a toxic vicious circle especially for post-mitotic
cells such as neurons andmuscles cells (Gregori et al., 1997; Bence
et al., 2001; Grune et al., 2004; Oddo, 2008; Tseng et al., 2008;
Höhn et al., 2011).

The Autophagy-Lysosomal System
Age-related dysfunctions in both autophagy and CMA have also
been extensively documented in several tissues such as the liver,
brain, and heart (Cuervo and Dice, 2000; Bergamini et al., 2004;
Martinez-Vicente et al., 2005; Taneike et al., 2010). The factors
accounting for the age-related autophagy dysfunctions in aged cells
are also heterogeneous. For example, a reduced formation of
autophagic vacuoles, in addition to the delay of fusion of
autophagic vacuoles with lysosomes was observed in aged mouse
hepatocytes (Terman, 1995). Similarly, in aged mouse retina
autophagosome formation, as well as reduction of the LC3 flux,
and p62 accumulation was observed (Rodríguez-Muela et al., 2013).
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Transcriptional down-regulation of many autophagy genes
has been extensively documented in the aged human brain
(Lipinski et al., 2010), muscle from aged Fischer 344 rats
(Wohlgemuth et al., 2010), aged mouse retina (Rodríguez-
Muela et al., 2013), and the hippocampus from aged Wistar
rats (Gavilán et al., 2015). Additionally, reduced expression of
proteins such as ATG5, ATG12, and Beclin-1 has also been
observed in different old tissues (Rodríguez-Muela et al., 2013;
Gavilán et al., 2015; Ott et al., 2016). Moreover, epigenetic factors
have also been found to regulate autophagy (Füllgrabe et al., 2014;
Lapierre et al., 2015; Baek and Kim 2017). For example,
autophagy activation was associated with reduced acetylation
of H4K16 (Füllgrabe et al., 2013), or increased H3R17
dimethylation (Shin et al., 2016), whereas H3K9 methylation
by the histone methyltransferase G9a repressed the expression of
LC3B, p62, and other autophagy-related genes (Artal-Martinez
de Narvajas et al., 2013). Importantly, hypermethylation in the
promoter regions of both the LC3 and ATG5 genes has been
observed in macrophages from aged mice, leading to
transcriptional downregulation (Khalil et al., 2016).

Finally, as mentioned before, the three arms of the UPR
participates in autophagy activation (Kroemer et al., 2010),
and basal activity of both UPR and autophagy decreased in
aged rats (Paz Gavilán et al., 2006; Naidoo et al., 2008;
Gavilán et al, 2009b; Gavilán et al., 2015). For example, the
transcription factor sXBP1, a downstream marker of the IRE1α
pathway, enhanced autophagy activity by transcriptional
upregulation of Beclin-1 in endothelial cells and macrophages
(Margariti et al., 2013; Tian et al., 2015), and levels of sXBP1 are
decreased in aged rats (Naidoo et al., 2008; Gavilán et al., 2009b).

On the other hand, CMA activity is also decreased in different
aged tissues such as the liver, heart, lung, or kidney (Dice, 1982;
Cuervo and Dice, 2000; Kiffin et al., 2007; Schneider et al., 2015).
In this case, modifications in the lipids of the lysosomal
membrane, as well as in the membrane dynamic, and the
amount and stability of the LAMP-2A protein at the
lysosomal membrane, might be factors contributing to the
age-dependent decline of CMA (Kaushik et al., 2006; Kiffin
et al., 2007; Zhang and Cuervo, 2008; Rodriguez-Navarro
et al., 2012). However, up-regulation of CMA in aged mouse
retina has also been observed (Rodríguez-Muela et al., 2013).

Paradoxically, oxidative stress activates autophagy (Scherz-
Shouval and Elazar, 2007; Lee et al., 2012) and CMA (Kiffin et al.,
2004), probably as a homeostatic response to different acute
stressors. However, during aging and under pathological
oxidative stress, where oxidative stress became a chronic
situation, autophagy activity is blocked as well as the nuclear
translocation of TFEB, leading to mitochondrial fission and
cellular death (Gavilán et al., 2015; Santin et al., 2016). One
potential explanation for these opposed scenarios might be that
sustained activation of autophagy could lead to autophagy
exhaustion, eventually producing suppression of autophagy
(Ho et al., 2016).

In summary, the age-related malfunction of protein quality
control systems favors the accumulation of oxidized and/or poly-
ubiquitinated proteins and increases cell vulnerability. This
aspect is especially relevant in non-dividing cells such as

neurons as it has been recently demonstrated (Bourdenx et al.,
2021).

Functional Cooperation
The protein quality control systems form a functionally
interdependent network that cooperates to maintain and
restore cellular proteostasis under different stress situations.
A relevant issue still not deeply analyzed is to evaluate the effect
of aging on the functional cooperation between the protein
quality control systems. The available data indicate that
proteasomal inhibition was efficiently compensated by
autophagy activation and resolution in young rat
hippocampus, but not in aged animals, leading to
proteostasis restoration in young, but protein aggregation
and neurodegeneration in old animals (Gavilán et al., 2009b;
Gavilán et al., 2015). Also, autophagy compensation in response
to CMA dysfunction, observed in the liver from youngmice, was
lost in old mice (Schneider et al., 2015). Similarly, proteasome
inhibition produced the canonical activation of the UPR as well
as ERAD induction in young rats, but partial UPR activation
(only the PERK pathway) and not ERAD induction in aged
animals (Gavilán et al., 2009b; Pintado et al., 2017). Thus, aging
seems to harm the functional cooperation between proteolytic
pathways, suggesting that compensation might be effective in
acute, but not in chronic stress situations such as aging. Indeed,
proteasomal degradation in CMA-impaired cells was similar to
control cells, but when blockage of CMA was sustained for more
than 4 months, proteasomal degradation decreased, due to a
reduction in proteasome activities, and to changes in the subunit
composition of the 26S proteasome (Massey et al., 2006).
Moreover, 26S proteasome dysfunction in Rpt2 knock-out
mice was compensated by increased autophagy in 3 weeks
old mice, but this compensation was lost in animals
subjected to long-term 26S proteasome dysfunction (6 weeks
old mice), due to impairs of the Keap1-Nrf2 pathway (Ugun-
Klusek et al., 2017). By contrast, other work found in the retina
of old animals that CMA was upregulated in response to
autophagy dysfunction (Rodríguez-Muela et al., 2013),
suggesting that age-related deterioration of the functional
compensation between the different protein quality control
systems might be cell-type specific. Finally, an important
question that remains to be answered is to know the
molecular mechanisms underlying the age-dependent decline
in functional cooperation. Current data indicate that defective
signaling of the IGF1-AKT-GSK-3β-β-catenin pathway could
account for the decrease in autophagy compensation in rat
hippocampus in response to proteasome inhibition (Gavilán
et al., 2015). And disrupted signaling of TFEB might be involved
in defective compensation of autophagy in response to CMA
dysfunction in liver mouse (Schneider et al., 2015).

In summary, these data support the idea that proteolytic
systems form an intricate network that compensates each
other to restore proteostasis. Age-dependent alterations of this
functional crosstalk might compromise cellular viability. Since
many different cellular pathways can modulate the functional
cooperation between the protein quality control systems, future
works using different cell types and stressors will be necessary, to
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better understand how aging is affecting functional cooperation.
Because proteostasis alteration is also characteristic of some age-
dependent pathological disorders, the identification of prevalent
factors contributing to the disruption of the functional
cooperation between proteolytic systems will become a major
challenge for biomedicine and geroscience for the coming years.

INFLAMMATION

Aging is also characterized by the presence of a low-grade chronic
inflammation status called inflammaging (Franceschi et al., 2000).
For example, the level of the pro-inflammatory cytokines IL-1β, IL-6,
TNF-α, and C-reactive protein, are increased in aged organisms
(Gavilán et al., 2007; Minciullo et al., 2012; Barrientos et al., 2015;
Scheinert et al., 2015). Moreover, activated microglial cells (Gavilán
et al., 2007), macrophages infiltration (Wolfe et al., 2018), as well as
alterations in T cells and macrophages function (Vaughan and
Peters, 1974; Sheng et al., 1998; Conde and Streit, 2006; Norden
and Godbout, 2013), are characteristic of aging. Thus, aged cells are
exposed to a chronic inflammatory environment that could affect
their homeostatic response.

Inflammation and the Protein Quality
Control Systems
A growing body of evidence indicates a complex and bidirectional
association between protein quality control systems and
inflammation. For example, Th1 or Th2 cytokines stimulated or
inhibited autophagy, respectively (Wu et al., 2016). Also, TNF-α
modulated proteasome and autophagy function in human skeletal
muscle cells (Keller et al., 2011), and in synovial fibroblasts from
rheumatoid arthritis (Connor et al., 2012). LPS-induced
neuroinflammation produced ER-stress, altered proteasome and
autophagy activity, and down-regulated ERAD markers (Liu
X.,D. et al., 2012; Pintado et al., 2017). Moreover, up-regulation
of ERAD markers induced by proteasome inhibition was abolished
by LPS-induced inflammation (Pintado et al., 2017). Also, UPR
activation has been found to increase the production of
inflammatory cytokines. The three arms of the UPR: IRE1α-
TRAF2, PERK-eIF2α, PERK-GSK-3, and ATF6-CREBH can
activate the transcription factor NFκ-B, which has a pivotal role
in the onset of inflammation (Salminen et al., 2009; Vallabhapurapu
and Karin, 2009 ). For example, NF-κB activation and TNF-α
synthesis, induced by ER stress, were impaired in IRE1α
knockdown mouse embryonic fibroblasts (Hu et al., 2006). Also,
activation of Toll-like receptors in macrophages induced specifically
the IRE1α-XBP1 pathway and cytokine production (Martinon et al.,
2010). However, activation of Toll-like receptors suppressed CHOP
expression despite PERK activation (Woo et al., 2012). Moreover,
recent work demonstrates that XBP-1 silencing in macrophages
inhibited the production of IL-1β, TNF-α, and IL-6 induced by
TREM-1 activation, and reciprocally, TREM-1 activation-induced
UPR in primary macrophages (Dong et al., 2021).

On the other hand, cytokines such as α-interferon, γ-interferon,
or TNFα promote the replacement of the catalytic subunits of the
20S proteasome (β1, β2, and β5), by the inducible subunits β1i, β2i,

and β5i (Gaczynska et al., 1993; Aki et al., 1994; Rivett et al., 2001;
Gavilán et al., 2012; Jimenez-Guardeño et al., 2019). These subunits
associate with the proteasome activator PA28 complex (also named
11S), forming a proteasome isoform called immunoproteasome
(Chondrogianni and Gonos, 2007; Gavilán et al., 2012). The
immunoproteasome is constitutively expressed in immune cells
and compared with the 20S proteasome has different proteolytic
activities. Among other functions, the immunoproteasome
participates in antigen presentation (Yang et al., 1995; Strehl
et al., 2005; Chapiro et al., 2006), γ-interferon-mediated
microglial activation (Moritz et al., 2017), cytokine production by
microglial cells (Wagner et al., 2017), or themaintenance, expansion,
and regulation of T-cell population (Zaiss et al., 2008; Muchamuel
et al., 2009; Moebius et al., 2010).

However, in addition to providing peptides for antigen
presentation, and other immune functions, the
immunoproteasome degrades nascent oxidant damaged
proteins, also known as DRiPs (Seifert et al., 2010; Opitz et al.,
2011), increases the cellular proportion of hydrophobic peptides
(Gaczynska et al., 1996; Cascio et al., 2001; Chapiro et al., 2006 ;
Paz Gavilán et al., 2006; Gavilán et al., 2009a), and regulates
autophagy (Pintado et al., 2017; Karim et al., 2020). Thus, the
immunoproteasome plays an important general role in the
maintenance of cellular proteostasis under acute inflammation.

On the contrary, the protein quality control systems can also
regulate the inflammatory response. For example, selective
inhibition of the immunoproteasome subunit β5i blocked the
production of interferon-γ and IL-2 by T cells, and interleukin-23
by activated monocytes (Muchamuel et al., 2009). Moreover, the
recently described proteasome-associated autoinflammatory
syndromes, such as Nakajo-Nishimura syndrome (Arima et al.,
2011), lipodystrophy (Kitamura et al., 2011), or chronic atypical
neutrophilic dermatosis (Liu Y. et al., 2012), are caused by
inherited and/or de novo loss-of-function mutations affecting
both constitutive and immunoproteasome subunits (α7, β2, β7,
β1i, β2i, β5i) (Sarrabay et al., 2020), or chaperone proteins
(POMP, PAC2) (Brehm and Krüger, 2015; Poli et al., 2018; de
Jesus et al., 2019). Finally, autophagy disruption is related to
increased ER stress and the production of pro-inflammatory
molecules (Ghosh et al., 2016).

In summary, these data indicate that inflammation and
proteostasis are two processes mutually influenced. This
functional relationship might be useful to fine-adjust the activity
of both cellular processes to acute stress situations. However, chronic
activation of inflammationmight negatively affect the protein quality
control systems avoiding proteostasis restoration.

Inflammation and Proteostasis in Aged
Cells
Because aging is associated with a low grade of chronic
inflammation, the modulation exerted by inflammation on
cellular proteostasis might be particularly relevant in aged cells.
For example, the immunoproteasome, which is not expressed in
cells from young animals, is expressed in rat and human aged cells
from several tissues (Ferrington et al., 2005; Mishto et al., 2006;
Gavilán et al., 2007; Gavilán et al., 2009a; Wagner et al., 2017).
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Moreover, proteasome turnover is regulated by neuroinflammation.
Whereas in young rats, irreversibly damaged proteasomes were
replaced with constitutive proteasomes, in aged rats they were
replaced with immunoproteasomes (Gavilán et al., 2012). Also,
the content of small hydrophobic peptides, mostly produced by the
immunoproteasome (Gaczynska et al., 1996; Cascio et al., 2001;
Chapiro et al., 2006 ; Gavilán et al., 2009a), increased in the aged rat
hippocampus. And, it has been also shown that inflammation
increased the production of DRiPs, which are preferentially
degraded by the immunoproteasome (Seifert et al., 2010). All
these data indicate that chronic inflammation provides a cellular
environment prone to protein aggregation (Pintado et al., 2012;
Gavilán et al., 2015; Pintado et al., 2017).

Most of the age-related alterations observed in cellular proteostasis
are often reproduced in young animals following LPS injection. For
example, LPS induced the expression of the immunoproteasome and
decreased proteasomal activity leading to the accumulation of
polyubiquitinated proteins in pyramidal neurons (Pintado et al.,
2012). Also, LPS increased the content of hydrophobic peptides
(Gavilán et al., 2009a), induced autophagic activation, activated
the UPR, and decreased the expression of ERAD markers
(Pintado et al., 2017). Finally, the combination of inflammation
and proteasome inhibition in young rat hippocampus reduced the
UPR activation and the expression of ERAD markers (Pintado et al.,

2017) and produced a similar degree of neurodegeneration to that
observed in aged animals subjected only to proteasome inhibition
(Gavilán et al., 2009b; Pintado et al., 2012).

All these data indicate that inflammation and proteostasis
alteration should be considered as synergistic negative factors that
might increase cell vulnerability in aging. This is especially relevant
in the context of some age-related pathologies such as obesity,
hypertension, diabetes, and neurodegenerative disorders, all of
them characterized by oxidative stress and inflammation.
However, having in mind the complexity in the reciprocal
influences between inflammation and the different protein quality
control systems, as well as the cell specificity of these interactions,
further studies in the context of aging will be necessary to better
understand the synergistic negative effects of these two processes.

CONCLUSION

The progressive and irreversible disruption of physiological
functions, as a consequence of age-dependent systemic
dysregulation, produces aging cell and whole-organism
deterioration. Aging is a multifactorial process and here, I have
reviewed how cellular proteostasis and inflammation become altered
during aging (Figure 4). For example, chronic systemic diseases,

FIGURE 4 | Representation of the age-related alterations in cellular proteostasis and inflammation and their potential synergistic negative effects. Many different
situations occurring all along the life can be involved in dysfunctional proteostasis and/or chronic inflammation. These two processes can be modulating each other
leading to a vicious circle. Dysfunctional proteostasis leads to protein accumulation that can potentiate or sustains chronic inflammation. In turn, chronic inflammation
potentiates dysfunctional proteostasis.
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recurrent infections, or metabolic disorders, might be factors
promoting chronic inflammation throughout life, which in turn
represent a hallmark of neurodegenerative disorders such as
Alzheimer’s and Parkinson’s diseases. Inflammation and
proteostasis regulate each other. This reciprocal regulation might
be useful during acute stress situations to control the homeostatic
response. However, during chronic inflammation and/or chronic
proteostasis alteration, these two stressful situations might be
reciprocally potentiated, increasing cell vulnerability.

Even though aging is a progressive and irreversible process,
modulation of inflammation and oxidative stress might result in
a slowdown of the cellular proteostasis affectation. Therefore, a
healthy lifestyle is pivotal to reach successful aging. Promising
preventive strategies such as healthy nutrition, and mainly,
regular physical activity should be incorporated into our daily
lifestyle, to prevent most of the age-related pathologies. For
example, caloric restriction, without malnutrition, is the most
powerful non-genetic intervention for extending longevity and
healthspan in multiple animal models (Fontana et al., 2010). It
has been found that caloric restriction reduced cellular
senescence and mitochondrial dysfunction, as well as
activated autophagy and promoted DNA repair (Fontana
et al., 2018). Also, caloric restriction reversed the abnormal
patterns of cell communication, and the excessive
proinflammatory ligand-receptor interplay, observed during
aging (Ma et al., 2020). In addition to caloric restriction,
another promising dietary strategy for reducing oxidative
damage and inflammation is intermittent fasting (Longo and
Mattson, 2014).

On the other hand, the regular practice of a physical activity
is one of the most promising anti-aging strategies (Rebelo-
Marques, et al., 2018). It is widely accepted that physical
activity has positive effects on the aging immune system.
Physical activity has anti-inflammatory properties (Gleeson
et al., 2011), ameliorates metabolic health in older people
(Pedersen, 2006), reduces inflammaging and
immunosenescence (Weyh et al., 2020), and induces
autophagy by modulating the IGF-1/AKT/mTOR, and AKT/
FOXO3A signaling pathways (Kim Y.,A. et al., 2013; Luo et al.,
2013), among other benefits. Moreover, epidemiological studies
have found that physical inactivity is associated with systemic
low-grade inflammation (Parsons et al., 2017).

Although aging is an irreversible process, it can be modulated.
Strategies combining diet and physical activity will allow us to
reduce, at the molecular level, the most harmful effects of aging
leading to disability and frailty.
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