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Editorial on the Research Topic

Machine Learning in Action: StrokeDiagnosis andOutcomePrediction

Machine learning—the ability of computers to “learn” to perform a task rather than

being explicitly programmed for the purpose—has seen significant developments in

recent years. Biomedical research is no exception to its far-reaching impact and has

seen more than a ten-fold increase in the number of publications related to machine

learning in the last decade (1). In this Research Topic, we present recent advances

in developing machine learning algorithms in the context of cerebrovascular diseases

to highlight promising approaches that represent various areas of potential clinical

utility in stroke care. The focus is on applications with high clinical value and a solid

technical foundation.

Deployment of machine learning algorithms in the clinic principally involves four

stages of the care workflow: primary prevention, acute-phase treatment, post-diagnosis

prediction, and secondary prevention (2). Primary prevention includes personalized or

stratified patient risk prediction and identification of gaps in care, whereas integration

into acute phase treatment aims to aid physician diagnosis and referrals. Machine

learning algorithms for post-diagnosis and secondary prediction can provide predicted

outcomes that allow the identification of patients who would be responsive to treatment

or require careful monitoring due to a higher risk of recurrent disease. Together,

machine learning algorithms can aid clinical decision-making in each step by providing

recommendations and pointing to possible missed cases for critical conditions. As

suggested by Mainali et al., machine learning algorithms can have particular utility

in alleviating two of the clinical challenges of stroke: the time-sensitive nature of

the acute-phase treatment and the difficulty of predicting outcomes, especially in
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the acute phase. Given these potential benefits, calibrating the

algorithms to prevent excessive alerts and supporting physician

autonomy through careful assessment of human-computer

interaction is key to maximizing adoption (3).

Electronic health records (EHR) are one of the principal

sources of standardized clinical information on a patient and

can serve as a valuable starting point for algorithm development.

The results of Rana et al. are encouraging, demonstrating

that models trained on EHR data outperformed models

trained on a limited number of features clinically associated

with stroke, confirming the benefits of additional information

obtained by data extraction from EHR. Using EHR data,

Darabi et al. compared the performance of multiple machine

learning models in predicting 30-day hospital readmission.

Their models improved upon previous predictive models based

on logistic regression and provided promising results that could

direct targeted intervention for high-risk patients. Notably,

features that their best predictive model indicated as being

key predictors of 30-day readmission agree with results from

independent studies (4, 5) and clinical intuition, underscoring

the interpretability of their model.

Complementation of EHR data with additional modalities

of clinical investigations holds promise in further improving

prediction accuracy. Herein, Lineback et al. employ Natural

Language Processing (NLP) to glean freeform textual data. In

contrast, Rajashekar et al. combines MRI and CT imaging data

to improve prediction models trained solely on EHR data.

Multimodal approaches can require more sophisticated models

to extract information from various data types but more closely

approximate decision-making by physicians and better integrate

multifaceted information collected via clinical investigations

and examinations.

Imaging is a rich source of information. Imaging has

critical clinical relevance in neurology and a high affinity

for sophisticated deep learning models, such as convolutional

neural networks. Indeed, many of the recent advances in

machine learning in healthcare have centered on image

analysis, including the use of retinal images for cardiometabolic

disease prediction (6–9) and analysis of histopathological slides

(10–15). Models focus on cerebrovascular disease, however,

have been comparatively scant. McLouth et al. validate the

performance of a commercially available deep learning software

in assessing intracranial hemorrhage and large vessel occlusion

using CT images. Implementing analysis software within the

imaging workflow can provide venues where machine learning

algorithms can seamlessly integrate into clinical decision-

making. Furthermore, incorporating features from MRI scans,

such as in the study by Xiao et al. predicting hypoperfusion

in ischemic stroke patients, could define a clinically relevant

threshold that directs decision-making in a facile manner.

Integration of images in machine learning algorithms provides

several benefits, including higher accuracy of diagnosis and

improved objectivity compared to physical examinations. Given

that imaging is routinely performed for stroke patients and is

uniquely capable of providing functionally relevant anatomical

information, image analysis models are promising candidates for

clinical deployment in stroke care.

Machine learning can be an invaluable asset, especially

in cases where diagnosis requires extensive examination or

training or when the diagnosis is based on subtle features

and are thus inherently prone to misdiagnosis. The algorithms

described by Kim et al. to identify acute central dizziness and

by Lin et al. to identify mild stroke patients at risk of disability

exemplify the possibilities—supporting physicians in making

challenging clinical decisions. Both models closely approximate

or outperform existing risk scores without requiring extensive

neurological examinations, allowing more patients to be

screened and thus reducing the chances of a deteriorating patient

escaping notice.

While machine learning holds promises, several challenges

persist in implementing these technologies in healthcare.

First, technical limitations can stem from the type and

quality of the datasets available. EHR data can often be

poorly standardized and sparse, posing problems in model

generalizability. Investigators such as Rana et al. and Darabi

et al. have only used administrative data from EHR with

additional clinical variables such as NIHSS. By contrast, mining

the free text in the patient chart (such as provider note, triage

notes, discharge note, etc.) pose significant challenges. The free

text is written by multiple clinicians, often with successive

clinicians copying and pasting the written comments by the

previous clinicians (16) in addition to auto-generated text that

populate the patient chart. In addition, the tabular nature of

clinical data extracted from EHR can often pose a difficulty

even for advanced deep learning modalities, which often fail

to surpass performances on simpler tree-based architectures

(17). However, performance can be improved by extensive

regularization (18). Sophisticated machine learning algorithms

have had better success when applied to image datasets;

however, even these complex deep learning algorithms can

suffer from confounding factors, partially due to variation

amongst institutions. Indeed, a recent study demonstrated

that deep neural nets trained to predict SARS-CoV2 infection

from X-ray images tend to select confounding “shortcuts” over

signals in generating predictions (19). Attributes of datasets

can limit the accuracy and generalizability of models, especially

for external cohorts with different demographics and dataset

characteristics. The development of standardized data protocols

can aid the implementation of machine learning models that

are more accurate and generalizable across multiple institutions.

In addition to curating better datasets, models can also be

adjusted for better generalizability; fine-tuning of pre-trained

algorithms via transfer learning using site-specific data achieved

superior results for external cohorts (20), and continuous

domain adaptation has been explored to tackle temporal drifts

in data (21, 22). It is essential to take all possible precautions
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to ensure that the machine learning algorithms provide reliable,

relevant, and interpretable results free from systemic biases.

To achieve that, care must be taken to minimize confounding

variations in the datasets that might affect generalizability

and ensure fine-tuning approaches are integrated to allow the

models to more closely approximate results for the underlying

patient distribution.

Secondly, more complicated machine learning models can

often be challenging to interpret, hindering the translation from

prognosis to patient management. High-performing “black box”

models lacking interpretability are of limited use in the clinic

as they do little to inform physicians of actionable points. In

particular, identifying modifiable risk factors is essential in the

primary and secondary prevention of cerebrovascular events.

To this end, Cui et al. used feature importance metrics to rank

specific features mainly associated with predictive capability in

each machine learning model. Analyses of feature importance

could prove helpful in guiding intervention, especially if a

factor is consistently listed as important across multiple models.

For image analysis models, localization maps generated by

methods such as Grad-CAM (23) could provide a limited level

of interpretability. Separating interpretation from the prediction

modeling to provide more flexibility is a strategy that has been

getting more traction in recent years. Still, the usefulness of

the algorithms can be diminished by confounding “shortcuts,”

as mentioned earlier. Since model depth is generally associated

with better predictive capability, efforts must be made to create

models that predict and inform. Desirable models should also

consider workflow disruption or the possibility of causing “alert

fatigue” before planning for implementation. Designing and

training models so that interpretable features can be gleaned

from model parameters and incorporating feedback from

healthcare providers can improve the interpretability of models.

In this respect, theoretical advances in model architecture

and interpretation, combined with enhancing training data

robustness, could prove fruitful.

Finally, ethical considerations must not be ignored. Model

predictions can often be influenced by the socioeconomic, racial,

and gender composition of the training datasets, the awareness

of which is necessary to mitigate potential biases in models. For

example, machine learning models were found to consistently

underdiagnose patients in disadvantaged populations across

three large chest X-ray datasets, especially where a patient

was a member of more than one underserved group (24).

The precedent of undertreatment in disadvantaged populations

can further exacerbate biases by making it less likely for

the algorithm to recommend treatment for members of the

underprivileged sub-group of the population if similar patients

were not provided treatment in the past. The performance of

machine learning models must thus be thoroughly evaluated

in different cohorts to assess the presence of systematic bias,

which must be rectified before deployment. Further, while it

is often possible to impute information that a patient declined

to provide (e.g., smoking, HIV status, etc.), doing so can

have ethical implications (25). Implementing machine learning

algorithms in the clinic should proceed with special care to avoid

unwittingly perpetuating health care inequalities in the training

cohort. Finally, it is essential to reflect that algorithms are and

will continue to be part of our medical system, including our

medical education system. Thus, as a two-way street, we have

to consider how such recommendations influence physicians’

decisions and how this decision-making process potentially

shifts with continued interaction.

In conclusion, recent developments in machine learning

present ample opportunities for automated models that guide

clinical decision-making and improve patient outcomes. The

studies included herein represent selections of advances

employing machine learning in various contexts in

stroke care in our collective efforts to promote improved

patient health through effective prevention, diagnosis,

and intervention.
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