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Abstract

Aims
Actual resuscitation guidelines recommend 10 respirations per minute (rpm) for advanced

pediatric life support. This respiratory rate (RR) is much lower than what is physiological for

children. The aim of this study is to compare changes in ventilation, oxygenation, haemody-

namics and return of spontaneous circulation (ROSC) rates with three RR.

Methods
An experimental model of asphyxial cardiac arrest (CA) in 46 piglets (around 9.5 kg) was

performed. Resuscitation with three different RR (10, 20 and 30 rpm) was carried out. Hae-

modynamics and gasometrical data were obtained at 3, 9, 18 and 24 minutes after begin-

ning of resuscitation. Measurements were compared between the three groups.

Results
No statistical differences were found in ROSC rate between the three RR (37.5%, 46.6%

and 60% in the 10, 20 and 30 rpm group respectively P = 0.51). 20 and 30 rpm groups had

lower PaCO2 values than 10 rpm group at 3 minutes (58 and 55 mmHg vs 75 mmHg P =

0.08). 30 rpm group had higher PaO2 (61 mmHg) at 3 minutes than 20 and 10 rpm groups

(53 and 45 mmHg P = 0.05). No significant differences were found in haemodynamics or tis-

sue perfusion between hyperventilated (PaCO2 <30 mmHg), normoventilated (30–50

mmHg) and hypoventilated (>50 mmHg) animals. PaO2 was significantly higher in hyper-

ventilated (PaO2 153 mmHg) than in normoventilated (79 mmHg) and hypoventilated (47

mmHg) piglets (P<0.001).
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Conclusions
Our study confirms the hypothesis that higher RR achieves better oxygenation and ventila-

tion without affecting haemodynamics. A higher RR is associated but not significantly with

better ROSC rates.

Introduction
Actual resuscitation guidelines are based on international consensus [1,2]. In the last few years,
chest compressions have gained greater relevance than breaths during CPR [3], even to the
point of recommending chest compressions only for bystander adult basic life support [4].
Nevertheless, experimental studies in animal models and clinical studies in children show that
CPR with breaths and chest compressions achieves better oxygenation, ventilation, survival
and neurological outcomes than CPR with chest compressions only [5–7].
This is probably due to the different aetiology of cardiopulmonary arrest and because illness

and pathophysiological responses of paediatric patients often differ from those seen in adults.
Cardiac arrest in children and young adults is usually the end result of an initial respiratory
arrest (secondary to respiratory or neurological conditions), whereas the main cause of cardiac
arrest in adults is cardiogenic due to arrhythmias [2,8–14]. This is why ventilation during CPR
is more important in children than in adults [5–7,15].
International CPR guidelines for advanced life support recommend a chest compression

rate of 100 to 120 compressions per minute (cpm) and 10 respirations per minute (rpm) for
both adults and children [1,2,16]. Normal respiratory rate in children ranges from 40 rpm in
neonates to 20 rpm in the older child [17], so the recommended 10 rpm during CPR is much
lower than what is physiological for them. The theoretical reason for using low respiratory
rates (RR) during CPR is that the pulmonary blood flow obtained from chest compressions is
low, and thus low minute volumes should be sufficient for blood oxygenation and carbon diox-
ide (CO2) clearance [4].
These recommendations are also supported on the belief that hyperventilation during CPR

with low arterial CO2 pressure (PaCO2) can cause cerebralvasoconstriction and compromise
cerebral perfusion. Furthermore, hyperventilation can compromise systemic venous return
and myocardial perfusionwhich, in addition to potential interruptions in chest compressions
while delivering breaths, can contribute to a significant reduction in blood flow delivery to the
tissues. Several studies in adult patients and in animal models find an association between
hyperventilation and decreased coronary perfusion, survival and worse neurological outcomes
[18–23].
On the other hand, other studies in adults and children show that both hyperventilation

and hypoventilation after the return of spontaneous circulation (ROSC) are associated with
higher mortality rates [24–26].
Actual recommendations emphasize the importance of reversing the main cause that led to

cardiac arrest (CA) as soon as possible [2,27]. For instance, in the case of asphyxia, the causes
that lead to CA are severe hypoxia and hypercapnia. In these cases, higher respiratory rates
during CPR would achieve faster normalization of oxygenation and ventilation and, theoreti-
cally, facilitate ROSC.
There are not, to our knowledge, any clinical studies analyzing what the ideal RR during

CPR is for children. The obvious difficulties in carrying out randomized clinical trials during
CPRmake it difficult to offer high quality scientific evidence [2]. For this reason, paediatric
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recommendations are based on studies with low quality scientific evidence, studies in adults
and studies in non-asphyxial CA paediatric animal models [28]. This is why paediatric experi-
mental animal models to assess the effect of ventilation during CPR are so important [6,7].
The hypothesis of the present study is that a RR of 10 rpm during CPR can be insufficient

for smaller children, since the younger the child the higher RR is needed for adequate ventila-
tion [17,29]. Thus, higher RR during CPR would achieve better oxygenation and ventilation
without negatively affecting haemodynamics and improve ROSC rates.

Materials andMethods
We conducted a randomized controlled experimental clinical trial in 46 Maryland piglets that
were genetically identical. The study was approved by the GregorioMarañón General Univer-
sity Hospital Ethics Committee for Animal Research (4-2/2012) and was carried out by quali-
fied staff. International guidelines for ethical conduct in the care and use of experimental
animals were applied throughout the study.
Animals were brought from a Community of Madrid authorised farm and housed for 24

hours before the experiment and were fasted overnight (with free access to water). Piglets were
pre-medicated with intramuscular ketamine (15 mg/kg) and atropine (0.02 mg/kg) before
obtaining a peripheral venous access. After starting continuous cardio-respiratory monitoring,
a single dose of iv propofol (5 mg/kg), fentanyl (5 mcg/kg) and atracurium (0.5 mg/kg) were
administered for orotracheal intubation, followed by a continuous intravenous perfusion of
propofol (10 mg/kg/h), fentanyl (10 mcg/kg/h) and atracurium (2 mg/kg/h).
Piglets were mechanically ventilated (Servo 900C1 Ventilator, Siemens-Elema, Solna, Swe-

den) with the initial following settings: tidal volume 10 ml/kg, 20 bpm, PEEP 4 mmHg, FiO2
45%. Settings were adjusted to obtain an end-tidal CO2 (etCO2) between 30–40 mmHg and an
arterial CO2 pressure between 35 and 45 mmHg.
Continuous monitoring of the following parameters were registered: electrocardiogram

(ECG), transcutaneous oxygen saturation (HeartStart XL+1, Philips Medical Systems, Ando-
ver, Massachusetts, USA), cerebral blood flow by means of a flowmeter placed on the carotid
artery (HDQ1.5FSB, Transonic Systems Inc., Ithaca, New York, USA), skin blood perfusion on
the abdomen (BLF21A Laser Doppler Perfusion Monitor1, Transonic Systems Inc., Ithaca,
New York, USA), regional oxygen saturation (rSO2) of cerebral and splanchnic regions (sen-
sors in cranial midline and right flank, respectively) using near infrared spectroscopy (NIRS)
(INVOS1 Cerebral OxymeterMonitor, Somanetics, Troy, Minnesota, USA). Ventilating vol-
umes and pressures, FiO2 and etCO2 were registered by means of a spirometer connected to an
S51 monitor (DatexOhmeda,Madison,Wisconsin, USA). Cannulation of femoral arterial and
venous accesses was ultrasound-guided.A three-lumen 5F catheter was used for continuous
central venous pressure (CVP) monitoring, blood sample extraction and drug infusion. A 4F
PiCCO1catheter (PiCCO1, PulsionMedical System, Munich, Germany) for monitoring arte-
rial pressure and cardiac output byfemoral artery thermodilutionmethod was placed in the
contralateral femoral artery. Blood gas analyses were processed in a GEM Premier 3001 gas
analyzer (Instrumentation Laboratory, Lexington, Kentucky, USA).
After a 30-minute stabilization period, baseline data were collected and arterial and venous

blood gases were drawn to assess adequate ventilation and oxygenation.
Asphyxial cardiac arrest was induced by disconnecting the piglets from the ventilator for 10

minutes after receiving an additional bolus of atracurium (0.5 mg/kg), and cardiac arrest was
defined as a mean arterial pressure (MAP) under 25mmHg, as has been describedpreviously
[6,7,30,31]. Data including monitoring parameters and blood gases were registered after 10
minutes of asphyxia, before starting resuscitation. Time to cardiac arrest was also registered. At
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this point, animals were randomized into one of the three therapeutic groups (10, 20 or 30
rpm) and advanced resuscitation was initiated: the animal was connected to the ventilator
(with the same parameters as before the disconnection, except for an FiO2 of 100% and the
allotted breath rate) and chest compressions were delivered at a metronome-tailored rate of
100 cpm. Pulse and ECGwere assessed at 3 minute intervals, and the provider delivering chest
compressions was swapped to avoid fatigue. Adrenaline (Epinephrine)(0.02 mg/kg each dose)
was administered every 3 minutes and sodium bicarbonate (1 mEq/kg each dose) at 9 and 18
minutes of CPR. Animals were defibrillated (4 J/kg) if a shockable rhythm was identified;
adrenaline and amiodarone (5 mg/kg) were administered after the third defibrillation [28].
The following data were collected at baseline and every 3 minutes after the initiation of

CPR: Heart rate and rhythm, systolic arterial pressure (SAP), diastolic arterial pressure (DAP),
mean arterial pressure (MAP), transcutaneous oxygen saturation, cerebral and splanchnic tis-
sue oxygenation indexes, cerebral blood flow, skin blood perfusion, temperature, inspiratory
and expiratory tidal volume, etCO2 and FiO2. Arterial and venous blood gases were drawn at
baseline 3, 9, 18 and 24 minutes.
Resuscitation was discontinued upon ROSC or after 24 minutes of CPR. Animals achieving

ROSC were later sacrificedby means of propofol and potassium chloride overdose.
Statistical package SPSS 21.0 (IBM SPSS Statistics, Chicago, Michigan, USA) was used for

statistical analysis. Variables did not follow a normal distribution according to the Kolmogo-
rov-Smirnov test. Continuous variables are expressed as medians and interquartile range
(IQR), and categorical variables as absolute percentages. Mood´s median test, Kruskal-Wallis
test and chi-squared (χ2) (or Fisher test if sample size was smaller than 20 or if any value was
smaller than 5) were used, respectively, to compare continuous and categorical variables. Inci-
dence of hyper- (PaCO2< 30 mmHg) and hypoventilation (PaCO2> 50 mmHg) in the differ-
ent therapeutic groups was compared. Spearman´s Rho test was used to assess correlation
between continuous variables. Statistical significancewas defined as P<0.05.

Results
We studied 46 piglets between 1 and 2 months of age weighing between 9 and 11 kg. They were
randomized into three groups according to the breath rate during resuscitation: Group 1) 10
rpm (15 piglets); Group 2) 20 rpm (16 piglets); Group 3) 30 rpm (15 piglets). Main baseline
characteristics of the 3 groups are described in S1 Table. There were no differences in the time
to cardiac arrest: 7.0 (6.5–8) minutes in group 1; 7.1 (6–7.8) minutes in group 2 and 7.0 (6.5–
8.4) minutes in group 3, (P = 0.85). Table 1 shows the main characteristics of the 3 groups
before starting CPR. Forty-two piglets (91.3%) had non-shockable rhythms 10 minutes after
cardiac arrest, with no significant differences between groups: 14 (93.3%), 15 (93.8%) and 13
(86.7%), respectively (P = 0.74).
ROSC was achieved in 22 piglets (47.8%) after CPR. The percentage of ROSC was higher in

the 30 rpm group (60%), than in the 10 rpm (37.5%) and 20 rpm (46.6%) groups, but differ-
ences were not statistically significant (P = 0.51).
Figs 1–5 shows the evolution of pH, PaO2 and PaCO2 throughout the experiment. Fig 1

shows how pH increased over the course of CPR in all the groups. PaCO2 decreased over the first
9 minutes of CPR in all groups. The greater difference is observedat 3 minutes of CPR: 55
mmHg (30 rpm group), 58 mmHg (20 rpm) and 75 mmHg (10 rpm), P = 0.08. Fig 2 shows how
PaCO2 remained stable thereafter in groups 2 and 3 whereas it continued to rise in group 1 (10
rpm). Such a differencewas most significant at 24 minutes after CPR (P = 0.06). Group 3 had the
highest percentage of hyperventilated piglets (PaCO2<30 mmHg) at 9 minutes of CPR and the
lowest percentage of hypoventilated patients at 24 minutes of CPR, as shown in Table 2.
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PaO2 increased significantly over the first 9 minutes of CPR and then dropped modestly in
all groups. After 3 minutes of CPR, PaO2 was higher in group 3 than in groups 2 and 1 (61
mmHg, 53 mmHg and 45 mmHg, respectively); P = 0.05. There were no other significant dif-
ferences between groups over the course of the study (Fig 3).
We compared MAP, carotid blood flow, cerebral SO2 and PaO2 between hyperventilated

(PaCO2<30 mmHg), normoventilated (30–50 mmHg) and hypoventilated (> 50 mmHg) ani-
mals. PaO2 was significantly higher in hyperventilated (PaO2 153 mmHg) than in normoventi-
lated (79 mmHg) and hypoventilated (47 mmHg) piglets, but no significant differences were
found in MAP, carotid blood flow or cerebral SO2 (Table 3).
There was a moderate correlation between PaO2 and pH (r = 0.514, P<0.001) as well as a

moderate inverse correlation between PaO2 and PaCO2 (r = -0.694, P<0.001). A moderate cor-
relation was also found betweenMAP and carotid blood flow (r = 0.468, P<0.001) (Table 4).
Fig 4 shows that group number 3 (30 rpm) had significantly lower values of etCO2 than the

other groups at 3 and at 9 minutes of CPR. Fig 5 shows a significant increase in MAP after 3
minutes of CPR followed by a progressive drop thereafter. MAP in the 10 rpm group was lower
than in the other two groups at 3 minutes (P = 0.06) and 9 minutes (P = 0.01) of CPR. Diastolic
arterial pressure (DAP) was higher in the 20 rpm group at 9 minutes of CPR than in the other
groups. The rest of parameters did not show any statistically significant differences (S2 Table).

Discussion
Our study is, to our knowledge, the first to analyze the effect of different RR during CPR on
oxygenation, ventilation, haemodynamics, tissue perfusion and ROSC in a paediatric animal
model of asphyxial cardiac arrest.
The results from this study offer some valuable information:

Table 1. Comparison betweenmain variables at baseline (10minutes after remove piglets from ventilator).

Variable 10 rpmmedian (IQR) 20 rpmmedian (IQR) 30 rpmmedian (IQR) P

SAP (mmHg) 20 (6–23) 19 (12–32) 22 (12.5–33) 0.34

DAP (mmHg) 13 (9.5–35.5) 10 (8.5–14) 11 (7.7–13.7) 0.21

MAP (mmHg) 12 (6–14.5) 12 (10–15.5) 16 (10.5–21.5) 0.50

CVP (mmHg) 12 (7–14) 10 (8–12) 9 (6–10) 0.25

t-SatO2 (%) 33 (15–48) 38 (23–51.5) 15.5 (15–47.2) 0.09

Cerebral rSO2 (%) 29.5 (18–34.7) 38 (23–51.5) 15.5 (15–47.2) 0.52

Splanchnic rSO2 (%) 0 (0–1.2) 0 (0–2) 0 (0–6.7) 0.81

Carotid blood flow(lpm) 1.2 (1–1.5) 1.6 (1.3–1.9) 1.2 (1–1.5) 0.07

Temperature (°C) 37.1 (36.4–37.4) 37.1 (36.2–38.4) 36.9 (36.3–37.7) 0.92

ArterialpH 7.14 (7.08–7.22) 7.09 (7.04–7.16) 7.13 (7.09–7.18) 0.44

PaCO2 (mmHg) 78 (70–90) 88 (74.7–97.5) 85 (75–97) 0.63

PaO2 (mmHg) 14 (11–16) 14.5 (7.2–17.7) 10 (8–17) 0.63

HCO3 (mEq/L) 20.3 (19.5–22.9) 20.1 (18–21.3) 22 (19.6–22.9) 0.25

SaO2 (%) 9 (5–12) 9 (3–11) 5 (4–11) 0.28

Lactic acid (mmol/L) 5.3 (5–7) 6.3 (5.3–7.2) 5.6 (4.4–6.1) 0.43

SvO2 (%) 7 (4–12) 7 (3–11) 8 (5–10) 0.94

rpm: respiration per minute; IQR: interquartilerange; FC: cardiac frequency; bpm: beats per minute; SAP: systolic arterypressure; DAP: diastolic artery

pressure; MAP: mean arterypressure; CVP: central venous pressure; t-SatO2: transcutaneous oxygen saturation; rSO2: regional oxygen saturation; lpm:

litres per minute; Vt: tidal volume; FiO2: inspired oxygen fraction; PaCO2: arterialCO2 pressure; PaO2: arterialO2 pressure; HCO3: bicarbonate; SaO2:

arterialO2 saturation; SvO2: venous O2 saturation.

doi:10.1371/journal.pone.0162185.t001
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In the first place, haemodynamic, respiratory and tissue perfusion parameters improve during
the first 9 minutes of CPR but then progressively deteriorate despite delivering good-quality
CPR. ROSCwas achievedmostly in the first 10 to 12 minutes of CPR. Only one piglet achieved
ROSC after 12 minutes of CPR. This fact has also been observed in clinical studies [32,33] and
other paediatric experimental animal models [7,30,31,34], which highlights the importance of
accurately performing high quality resuscitation during the first minutes of CPR.
Secondly, piglets that were ventilated at a higher respiratory rate had lower PaCO2 over the

course of CPR. EtCO2 was also lower in 30 rpm group (Fig 4) but etCO2 reflects not only venti-
lation but pulmonary blood flow. The percentage of hyperventilated piglets was higher in the
30 rpm group whereas the percentage of hypoventilated animals was higher in the 10 rpm
group.However, hyperventilation risk with 30 rpm is lower than hypoventilation with 10 rpm.
Some clinical studies in children show that both hyper- as well as hypoventilation during the
first hour after ROSC are associated with higher mortality rates [25], but there are no clinical
studies analyzing ventilation and mortality during CPR.

Fig 1. Arterial pH values during resuscitation.

doi:10.1371/journal.pone.0162185.g001
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Animals in the 30 rpm group had a tendency to better oxygenation values during the first
10 minutes of CPR, which is the period of time in which ROSC is mainly achieved. This differ-
ence in oxygenation did not achieve statistical significance, but it may be relevant in clinical
practice as the most frequent cause of cardiac arrest in children is asphyxia and thus hypoxia
[2,5,8–15,34].
On the other hand, hyperventilated piglets with PaCO2<30 mmHg had significantly higher

values of PaO2 with no differences in MAP, carotid blood flow or cerebral SO2 than the rest of
piglets. Furthermore, there was a direct correlation betweenmore ventilation (higher pH and
lower PaCO2) and better oxygenation (PaO2). This is an important fact, as it suggests that, in
asphyxial cardiac arrest, a higher RR results in more ventilation and better oxygenation as it
improves gas exchange.
In the fourth place, performingCPR with higher RR than what international guidelines rec-

ommend, but which are more similar to normal and physiologic RR for paediatric patients, did
not affect haemodynamic parameters at all during CPR.Moreover, piglets with higher RR had

Fig 2. ArterialPCO2 values (mmHg) during resuscitation.

doi:10.1371/journal.pone.0162185.g002
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slightly higherMAP than those ventilated with 10 rpm. This fact supports previous results
from this same animal model showing that CPR with ventilation as opposed to chest compres-
sions only does not negatively affect haemodynamics during CPR [6,7]. AlthoughMAP
dependsmore on compressions quality than on RR, higher RR achieve better systemic and

Fig 3. ArterialPO2 values (mmHg) during resuscitation.

doi:10.1371/journal.pone.0162185.g003

Table 2. Hyper (PaCO2< 30mmHg) and hypoventilated (PaCO2> 50mmHg) piglets between the 3 groups along the hole resuscitation.

Time HyperventilatedN/total HypoventilatedN/total

10 rpm 20 rpm 30 rpm P 10 rpm 20 rpm 30 rpm P

3 minutes 0/15 0/15 0/14 1 12/15 10/15 8/14 0.41

9 minutes 0/10 1/11 3/7 0.03 3/10 4/11 3/7 0.86

18 minutes 0/9 1/10 0/6 0.45 4/9 5/10 1/6 0.39

24 minutes 0/9 0/9 0/5 1 8/9 5/9 1/5 0.03

PaCO2: arterialCO2 pressure; rpm: respirations per minute.

doi:10.1371/journal.pone.0162185.t002
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probably coronary ventilation and oxygenation improving haemodynamics at some point, but
studies analyzing this specific effect are required.

Fig 4. End-tidal CO2 values during resuscitation.

doi:10.1371/journal.pone.0162185.g004

Table 3. Variables comparison betweenventilation status.

Variable Hyperventilated (PaCO2< 30 mmHg)
median (IQR)

Normoventilated (PaCO2 30–50mmHg)
median (IQR)

Hypoventilated (PaCO2>50 mmHg)
median (IQR)

P

MAP (mmHg) 19 (11.5–26.5) 20 (13–15.5) 20 (12–29) 0.91

Cerebral rSO2(%) 15 (14–15) 22 (15–34) 30 (15–55) 0.14

Carotid blood flow
(lpm)

15.5 (10–15.5) 7 (1.2–13.2) 6 (1–13) 0.32

PaO2 (mmHg) 153 (103–190.5) 79 (58–96) 47 (40.2–60.7) <0.001

PaCO2: arterialCO2 pressure; IQR: interquartilerange; MAP: mean arterypressure; rSO2: regional oxygen saturation; lpm: litres per minute; PaO2: arterial

O2 pressure.

doi:10.1371/journal.pone.0162185.t003
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Table 4. Correlation between gasometrical values andMAP, carotid blood flow and cerebral rSO2.

Variables PaO2 PaCO2 pH

r P r P r P

PaO2 (mmHg) * - 0.694 (< 0.001) 0.514 (< 0.001)

PaCO2 (mmHg) - 0.694 (< 0.001) * - 0.762 (< 0.001)

pH 0.514 (< 0.001) - 0.762 (< 0.001) *

MAP (mmHg) 0.039 (0.69) - 0.06 (0.95) - 0.225 (0.02)

Carotid blood flow(lpm) 0.022 (0.86) - 0.081 (0.52) - 0.029 (0.82)

Cerebral rSO2 (%) - 0.134 (0.32) 0.287 (0.03) - 0.227 (0.09)

MAP: mean arterypressure; rSO2: regional oxygen saturation; PaO2: arterialO2 pressure. PaCO2: arterial

CO2 pressure; lpm: litres per minute.

doi:10.1371/journal.pone.0162185.t004

Fig 5. Mean arterypressure values during resuscitation.

doi:10.1371/journal.pone.0162185.g005
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Finally, animals receiving higher RR show a tendency (although not statistically significant)
towards greater ROSC rates than the other groups. Nevertheless, studies with a bigger sample
size are required in order to assess the influence of RR on ROSC.
Our study has several limitations. In the first place, even though our asphyxial paediatric

cardiac arrest model has been validated and is very similar to what happens in human paediat-
ric patients, results from experimental animal studies must be interpreted with caution. In the
second place, sample size is probably insufficient to find statistically significant differences in
ROSC, ventilation and oxygenation. Nevertheless, it offers some important information for
further experimental animal models with a bigger sample size in order to analyze the influence
of RR during CPR on ROSC.
In the third place, differences in oxygenation and MAPmay be due not only to RR, but to

the quality of manual chest compressions. Depth of chest compressions was not measured, but
they were always performed by the same medical team, swapping the member providing chest
compressions every 3 minutes to guarantee good-quality compressions. Frequency of chest
compressions was tailored with a metronome.
Finally, our study analyzes the influence of RR during advanced CPR, where the patient is

already intubated and chest compressions do not need to be interrupted to deliver breaths.
Thus, our results cannot be fully extrapolated to non-intubated patients receiving basic life
support.

Conclusions
According to our model of asphyxial cardiac arrest, oxygenation, ventilation and global haemo-
dynamics improve during the first 9 minutes of CPR, which is also when the highest percentage
of ROSC is achieved. Nevertheless, all these parameters worsen beyond that point in time. Our
study confirms the hypothesis that higher RR achieve better oxygenation and ventilation with-
out affecting haemodynamics, carotid blood flow or cerebral oxygenation. Even though there
was a positive tendency, we cannot conclude that a higher RR is associated with better ROSC
rates.
Our results provide a basis for further experimental and clinical studies to assess the effect

of higher-than-recommended RR during CPR in children.

Supporting Information
S1 Table. Comparisonbetweenmain variables just before remove piglets from ventilator.
(DOCX)

S2 Table. Comparisonbetweenmain variables during resuscitation.
(DOCX)
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