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Over the past few years, nuclear med-
icine has undergone impressive growth
with the development of positron emission
tomography (PET), especially using 18F-
fluoro-deoxy-glucose (18FDG), and new
approaches in targeted radionuclide ther-
apy. These developments pave the way for
personalized medicine by offering practical
solutions, especially in oncology, neurol-
ogy, and cardiology. Novel radiopharma-
ceuticals targeting relevant biomarkers are
powerful patient selection tools for patients
who may benefit from targeted thera-
pies, and for early therapeutic response
assessment. Moreover, once labeled with
beta- or alpha-emitters, radiopharmaceu-
ticals targeting relevant molecular markers
expressed by different solid tumors, and
hemopathies can be used for radionuclide
therapy. The final objective here is to erad-
icate residual cancer disease by using cyto-
toxic mechanisms complementary to those
of “non-radioactive” therapies. PET imag-
ing and targeted radionuclide therapy then
come together in the context of the thera-
nostic approach to adapt injected activity
for personalized therapy.

18FDG–PET demonstrates the high
accuracy and the clinical benefits of non-
invasive whole-body imaging. It is used in
clinical practice for initial staging and ther-
apy evaluation in several solid tumors and
hemopathies. 18FDG–PET is also applied
outside oncology to explore dementia,
assess myocardial viability, or detect infec-
tious and inflammatory processes. How-
ever, 18FDG is not a specific tracer. For
example, in solid tumor or lymphoma
assessment, 18FDG–PET does not distin-
guish tumors from inflammation, inducing
false positive results, especially after ther-
apies inducing inflammatory or immune
reactions. New radiopharmaceuticals are

needed to better characterize pathologic
processes and to predict and assess
response to therapy (1).

In oncology, the development of
18FDG–PET is ongoing, particularly for
therapy response assessment. Image acqui-
sition and analysis protocols are being fur-
ther standardized to improve diagnostic
accuracy (2). For example, specific crite-
ria have been elaborated to assess lym-
phoma or solid tumor response to ther-
apy (2–4). For tumors with low avidity
for 18FDG, other 18F-labeled compounds
are being proposed (e.g., 18F-choline in
prostate cancer or hepatocellular carci-
noma) (5). In addition, phenotype-specific
tracers are needed for theranostic applica-
tions: 68Ga-labeled somatostatin analogues
improve image quality in neuroendocrine
tumors in comparison to 111In-octreotide
available in clinical practice, with a signif-
icant clinical impact. Several 68Ga-labeled
somatostatin analogues with variable per-
formances have been evaluated (6–8).
These novel imaging radiopharmaceuti-
cals are particularly interesting because
cold- and radio-labeled somatostatin ana-
logues are efficient for therapy of neu-
roendocrine tumors. Numerous peptides,
targeting other receptors, are in develop-
ment. Radiolabeled bombesin analogues
show promise for prostate cancer (9, 10).
Radiolabeled RDG peptides targeting the
αvβ3 integrin have potential in a large spec-
trum of indications in the field of oncology
but also in cardiovascular diseases (11, 12).

Targeted therapies, including mono-
clonal antibodies (MAbs), experience a
considerable growth in cancer manage-
ment. MAbs are also promising vectors for
theranostic approaches, to better identify
patients who will respond and to moni-
tor responses (13). Based on immuno-PET,

treatment strategies could be tailored for
individual patients before administering
expensive and potentially toxic therapies.
Until now, only invasive methods such as
biopsy with immunohistochemistry analy-
sis could identify patients who have the
highest chance of response to antibody-
based therapy. Immuno-PET can offer
a non-invasive solution to quantitatively
assess target expression. For example, anti-
HER2 therapeutic agents are most effective
in patients who have HER2-positive breast
cancer as determined by immunohisto-
chemistry. It has been proven that MAbs
labeled with 68Ga, 64Cu, or 89Zr could non-
invasively identify lesions that are likely to
respond to therapy (14–16). Immuno-PET
is also a powerful innovation to improve
knowledge about the efficacy and in vivo
behavior of MAbs.

Imaging plays an increasing role in the
development of new drugs by pharmaceu-
tical companies: in vivo imaging constitutes
an effective solution for the rapid assess-
ment of drug candidates, which may be
radiolabeled to monitor their pharmaco-
kinetics and biodistribution during pre-
clinical and early clinical phases. Alter-
natively, molecular imaging using radio-
pharmaceuticals, combined with biomark-
ers, gives information about the quanti-
tative variation of molecular targets dur-
ing treatments. Indeed, if 18FDG–PET can
be used (17), radiolabeled tyrosine kinase
inhibitors (TKI) analogues are also devel-
oped to evaluate TKI efficacy in clinical
trials by PET imaging (18).

Nuclear medicine is also advancing can-
cer therapy. Clear examples are the treat-
ment of non-Hodgkin’s lymphoma by anti-
CD20 or CD22 MAbs labeled with yttrium-
90 (19, 20) and of neuroendocrine tumors
by somatostatin analogues labeled with
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yttrium-90 or lutetium-177 (21, 22). How-
ever, many other tumors must be addressed
and promising results have been reported
in prostate cancer and colorectal carcinoma
(23, 24). These treatments are generally not
curative. More efficient radiopharmaceu-
ticals and more toxic radionuclides, such
as alpha-emitters, as well as combination
therapy or multiple injection protocols, sel-
dom studied yet in the field of targeted
radionuclide therapy, should be developed
with the objective of killing the last tumor
cell, which is most probably a cancer stem
cell (25). Efficacy of alpha-therapy has been
recently shown in a pre-clinical model of
multiple myeloma using anti-syndecan 1
MAbs labeled with the alpha-emitter 213Bi
(26). Fractionated radioimmunotherapy
with 90Y-clivatuzumab and low-dose gem-
citabine demonstrated activity in advanced
pancreatic cancer in a phase I clinical trial
(27). Pre-targeting using bispecific anti-
bodies and radiolabeled bivalent hapten-
peptides showed promising results in CEA-
positive tumors (28, 29). Predictive patient
dosimetry can be obtained using a test
dose to adapt injected therapeutic activ-
ity to each patient pharmacokinetics and
biodistribution (30).

The development of new radiopharma-
ceuticals requires radionuclides with phys-
ical half-lives that match the vector bio-
logical half-lives. For imaging purposes,
short half-life PET emitters such as 68Ga
and 18F are well suited for labeling drugs
with fast distribution kinetics. The short
half-life reduces exposure and allows for
pharmacological studies of receptor occu-
pancy, for instance. For other vectors that
reach their target more slowly, such as
antibodies, radionuclides with longer half-
lives are needed (64Cu, 44/44mSc, 89Zr)
(31). In addition, couples of β+/β− iso-
topes (e.g., 64Cu and 67Cu) are of partic-
ular interest for PET/therapy radiophar-
maceuticals. For therapeutic purposes, the
penetration path-length of the radioac-
tive emission should match the size of
the targeted tumor. Yttrium-90, with its
long-range beta− emission, is better suited
to bulky diseases. However, promising
results have been observed using 90Y-
radioimmunotherapy in the consolidation
setting in responding lymphoma patients
(partial or complete responders) after
induction therapy (32). Radionuclide such
as 131I, 177Lu, or 67Cu with shorter-range

beta− emissions should be more favor-
able in the minimal residual disease set-
ting. Alpha particle emitters offer the the-
oretical possibility to kill isolated tumor
cells and microscopic clusters of tumor
cells because of the short tracks of alpha
particles (25). For alpha-emitters, 213Bi is
available through a 225Ac/213Bi generator.
Its short half-life (46 min) and cost are
potential limitations. Despite its complex
chemistry, 211At may be a better candi-
date for alpha-therapy due to its longer
half-life (7.2 h) and other radionuclides
with complex radioactive decay schemes
are proposed (212Pb, 225Ac, 227Th) (33).

In the decades to come, we anticipate
that new radiopharmaceuticals targeting
specific biomarkers will be developed for
early diagnosis and prognostic prediction,
and to adapt therapies to each patient in
oncology, as briefly described above, but
also in other domains, such as neurology
or cardiology. We believe that PET repre-
sents a promising tool for molecular diag-
nosis, providing non-invasive whole-body
cartography of biomarkers, complemen-
tary to biological testing. Moreover, we
believe that targeted radionuclide therapy
will develop, especially in multimodality
strategies.

The goal of Nuclear Medicine is to be
a forum for publication of pre-clinical
and clinical findings that assess the role
of new and existing radiopharmaceuti-
cals in the molecular characterization of
disease before and after treatment, with
the ultimate goal of personalized patient
management. This section is also open
to contributions in the fields of radio-
pharmaceutical discovery, new radionu-
clide therapy procedures that use innov-
ative radionuclides or radiopharmaceuti-
cals, multimodality strategies and original
methods of image analysis, quantification,
and dosimetric evaluation.
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