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Abstract

BACKGROUND AND OBIJECTIVES Recent models of Alzheimer's Disease (AD) suggest the
nucleus basalis of Meynert (NbM) as the origin of structural degeneration followed by the
entorhinal cortex (EC). However, the functional properties of NoM and EC regarding amyloid-3

and hyperphosphorylated tau remain unclear.

METHODS We analyzed resting-state (rs)fMRI data with CSF assays from the Alzheimer's

Disease Neuroimaging Initiative (ADNI, n=71) at baseline and two years later.

RESULTS At baseline, local activity, as quantified by fractional amplitude of low-frequency
fluctuations (fALFF), differentiated between normal and abnormal CSF groups in the NbM but
not EC. Further, NbM activity linearly decreased as a function of CSF ratio, resembling the
disease status. Finally, NbM activity predicted the annual percentage signal change in EC, but

not the reverse, independent from CSF ratio.

DISCUSSION Our findings give novel insights into the pathogenesis of AD by showing that local
activity in NbM is affected by proteinopathology and predicts functional degeneration within

the EC.
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Introduction

The basal forebrain’s nucleus basalis of Meynert (NbM) has recently been suggested as the
origin of structural degeneration in Alzheimer’s disease (AD) followed by the entorhinal cortex
(EC) and other cortical brain regions 2. For instance, grey matter loss was more prominent in
the NbM compared to the EC in cognitively healthy humans with an abnormal CSF biomarker
of amyloid-B (AB) and hyperphosphorylated Tau (pTau). Moreover, the NbM’s baseline volume
predicted the longitudinal structural degeneration in the EC, further suggesting a trans-synaptic
spread of AB starting in the NbM %2, This observation in humans is in line with animal work and
adds a crucial upstream link to the subsequent spread from EC to other medial temporal lobe
structures, including the hippocampus, and more distal neocortical brain regions such as the
posterior parietal cortex 37 Importantly, evidence in favor of such a pathological staging
model is mainly limited to anatomical studies, and, therefore, the functional properties of both

the NbM and EC during the disease progression of AD in humans remain unclear.

Since functional brain changes in AD often precede structural degeneration ", we investigated
the functional properties of the NbM and EC, including their functional connectivity. To this
end, we used data from the Alzheimer’s Disease Neuroimaging Initiative (ADNI) and performed
a longitudinal region of interest (ROI) analysis over 2 years, focusing on regional and
interregional resting-state functional MRI (rsfMRI) properties. In detail, we analyzed (a) the
fractional amplitude of low-frequency fluctuations (fALFF) to quantify spontaneous neuronal
activity %2, (b) regional homogeneity (ReHo) reflecting the synchronicity of neural activity
between a voxel and its neighboring voxels 13, and finally (c) the functional connectivity
between NbM and EC. While all three measures may help to gain new insights into AD
progression, we initially focused on fALFF given its established role *47®, and report ReHo and

functional connectivity analyses in the supplementary material.
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In the first step, baseline signals and longitudinal functional changes were compared based on
harmonized CSF assays of AB and pTau in NbM and EC. Subsequently, we investigated
functional changes in disease progression using the CSF markers. Finally, we tested the
competing models NoM—>EC vs. EC>NbM on a functional level. Our main hypothesis was that
functional signals in the NbM predict functional change in EC, which would provide further
evidence supporting the pathological staging model originating from NbM to EC. From a more
general perspective, we aimed to provide new insights into the underlying functional properties

of AD, which may contribute to further developing markers and treatment strategies.

Methods

ADNI data

Data used in the preparation of this article were obtained from the Alzheimer’s Disease
Neuroimaging Initiative (ADNI) database (adni.loni.usc.edu). ADNI was launched in 2003 as a
public-private partnership, led by Principal Investigator Michael W. Weiner, MD, to test
whether serial magnetic resonance imaging (MRI), positron emission tomography (PET), other
biological markers, and clinical and neuropsychological assessment can be combined to
characterize the progression of mild cognitive impairment (MCl) and early Alzheimer’s disease

(AD).

Since rsfMRI was not acquired in all ADNI cohorts, here data were combined from ADNI-GO,
ADNI-2 (ADNI-GO/2) and ADNI 3, downloaded from the Image and Data Archive (IDA) platform
run by the Laboratory of Neuro Imaging (LONI) (https://ida.loni.usc.edu). Specifically, we only
selected data from participants with CSF biomarkers, and two rsfMRI scans acquired with a
delay of two years with the same MR scanner and head coil to ensure within-subject

comparability.
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Image acquisition

Participants were scanned at multiple sites equipped with 3-Tesla MRI scanners according to
unified ADNI monitoring protocols /. To ensure maximum compatibility between the
measurements, we followed ADNI's recommendations and included only the basic rsfMRI
version but not advanced version of ADNI 3 since it is not compatible with ADNI-GO/2.
Moreover, all participants here were examined with the same scanner and head coil for both
timepoints, T1 and T2 (https://adni.loni.usc.edu/methods/mri-tool/mri-analysis/). Further, we
only included MRI data with excellent, good, or fair quality. For further information on image

acquisition, see the supplementary material and http://adni.loni.usc.edu.

Data preprocessing

Considering their specific scanning parameters such as TR, slice order, and volume number, all
data were preprocessed with the Data Processing Assistant for Resting-State fMRI Advanced
(DPARSFA, http://rfmri.org/dpabi) toolbox version 5 (release 5.2_210501), which is based on
the Statistical Parametric Mapping toolbox (SPM 12, https://www.fil.ion.ucl.ac.uk/spm/) for
MATLAB®. It started with the removal of the first ten volumes and subsequently included the
following steps a) slice time correction; b) spatial realignment; c) T1 co-registration to the mean
functional image; d) CSF, gray and white matter tissue segmentation, and spatial normalization
using diffeomorphic anatomical registration using exponential lie algebra (DARTEL) *& for T1
images; e) regression of nuisance variables; f) normalization to MNI space and resampling to
an isotropic voxel size of 3 mm of the functional images using the parameters estimated by

DARTEL (see supplementary material for a detailed description).

To reduce the influence of excessive head motion, participants exhibiting more than 3.0 mm of
maximum movement and a 3.0-degree rotation angle were discarded. Further, images were

visually inspected after co-registration, segmentation, and normalization to guarantee high
5
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95  quality. This included a specific focus on signal loss and artifacts in our regions of interest (NbM,
96 EC) by overlaying a ROl mask in standardized space; especially, the EC represents a region that
97  might often be affected by artifacts 1°. For a detailed description of the preprocessing steps,
98  excluded participants, ROI definition, and rsfMRI analyses for fALFF, ReHo, and the functional

99  connectivity, see supplementary material.

100  CSF biomarker

101  AD neuropathology includes the accumulation of AP resulting in plagues and pTau leading to
102 neurofibrillary tangles 2%?1. To better understand how both relate to functional degeneration
103 in NbM and EC, we followed previous studies *? and used ADNI’s CSF samples, produced with
104 afully automated Elecsys® protocol of AR and pTau from the first measurement (T1). For each
105  participant, we extracted A 1-42 and pTaul81 values. Since the protocols by Elecsys® are still
106  under development, the results are restricted to a specific technical limit (>1700 pg/mL). Higher
107  values were provided by extrapolation of the calibration curve for research purposes only but
108 not diagnostics. Further information on CSF draws and analyses can be found at

109  http://adni.loni.usc.edu.

110  Here, we analyzed both proteins by using a previously established ratio of pTau / AB, which is
111  known to highly concord with PET measures and clinical diagnoses 23%°. Based on these findings,
112 the standardized and cross-validated cut-off of 0.028 was used to divide the participants into
113 anabnormal (pTau/AB >0.028) and a normal (pTau / AR < 0.028) CSF group 232>, Importantly,
114 no participant classified with AD had a normal CSF ratio, but a few (n=10) participants classified
115  with MCI did, which indicates an unclear etiology. Nevertheless, we included them based on

116  biological instead of a syndromal grouping 2°.
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117  Neuropsychological assessment and clinical diagnosis

118  All participants underwent a comprehensive neuropsychological test battery. Here, T1 scores
119  are used, including validated memory (MEM) and executive function (EF), based on a
120  confirmatory factor analysis 2?8, Memory scores include the AD Assessment Scale, Logical
121 Memory test, Mini-Mental-State Examination (MMSE), Rey Auditory Verbal Learning Test
122 (RAVLT). EF scores are based on the Category Fluency, Digit Span Backwards, Digit Symbol
123 Substitution, Trails A and B, and the Clock Drawing tests 27?8, We were also interested in the
124 Montreal-Cognitive-Assessment (MoCA), Sum of Boxes in the Clinical Dementia Rating Scale
125  (CDRSB) and the Alzheimer's Disease Assessment Scale Cognitive (ADAS-Cog 13) to get a deeper

126  understanding of the participants’ cognitive profiles (see below).

127  Furthermore, we included participants’ T1 diagnosis made by the ADNI Clinical Core: cognitive
128  normal (CN) (CDR=0, MMSE=24-30), mild cognitive impairment (MCl) (CDR=0.5, MMSE=24-30),
129  and Alzheimer’s disease (AD) (CDR=0.5-1, MMSE=20-26). These classifications represent widely
130  used cognitive and functional measures in clinical trials 2°73%. Further information regarding

131  diagnostic is available at http://adni.loni.usc.edu.

132 Participants

133  We included rsfMRI data from ADNI-GO/2 and ADNI 3 — but, importantly, only those that also
134  offered a subject's CSF draw (see below) temporally related to a rsfMRI acquisition (e.g., a
135  participant's screening MRI and baseline lumbar punction measurement). This measurement
136  served as T1 measurement in the analyses. To maximize the number of subjects, the second
137  measurement was selected after an interval of 1.5 years £12 months (T2) *. Further details on
138 inclusion and exclusion criteria for participating in ADNI are available under
139  http://adni.loni.usc.edu. In total, 153 participants for ADNI-GO/2 and 141 for ADNI 3 (only basic

140  rsfMRI version) fulfilled our inclusion criteria. However, a large proportion had to be excluded
7
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141  mainly based on fMRI data quality (see supplementary material). Thus, data from n=71
142  participants were analyzed, which could be further subdivided into those with normal CSF

143 (nCSF, n=37) and abnormal CSF (aCSF, n=34) values (Table 1).

144 Table 1 gives an overview of the participants' demographics, as well as information on APOE4
145  genotype and harmonized CSF assay, and Table 2 shows the neuropsychological test results at

146  baseline (T1).

147  Ethics

148  Each center collecting data for ADNI provided an IRB (Institutional Review Board) approval and
149  meets ADNI's requirements. Informed consent was obtained from all ADNI participants (for
150  more information at http://adni.loni.usc.edu). The analyses presented here were approved by
151  the local Ethics Committee of the University of Libeck and carried out after ADNI's

152  recommendations including the approval of the manuscript before submitting to a journal.

153  Data availability statement

154  All data are freely available upon request from the Image and Data Archive (IDA) run by the

155  Laboratory of Neuro Imaging (LONI) (https://ida.loni.usc.edu).

156  Statistical analyses

157  Mixed ANCOVA

158  Mixed ANCOVAs were carried out for all measures separately (i.e., fALFF, ReHo) to compare
159  baseline signals and the annual percentage signal change (APSC, see below) between regions
160  (NbM and EC as a within-subject factor) and CSF groups (normal and abnormal as a between-
161  subject factor). Covariates such as age, gender, education, ADNI cohort, and scanner
162  manufacturer were included to adjust for different scan protocols and other potential scanner-

163  related differences. All 2x2 (region x CSF group) mixed ANCOVAs were carried out in IBM SPSS
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164  statistics version 25 (SPSS) with type Il sums of squares, and within-subject effects were

165  interpreted without covariates 32

166  Linear regression of disease status based on CSF marker

167  To better understand the relationship between disease status and functional MRI properties,
168  CSF ratios (see section CSF biomarker) and functional MRI signals were considered in a linear
169  regression model in SPSS. The functional MRI signal served as dependent variable, and CSF ratio
170  as independent variable. The regression was run with the z-scored data. Subsequently, the
171  dependent overlapping correlations of NbM vs EC with CSF ratio were compared using cocor

172 33,34_

173  Robust regression

174 To minimize the influence of outliers, especially in the APSC, robust regression models were
175  carried out in MATLAB® R2020b with fitlm using the bisquare weight function with the default
176  tuning constant. The same covariates as for the mixed ANCOVA were included in the model.
177  Finally, the predictive models (NoM—>EC and EC->NbM) were tested for each CSF group
178  (normal and abnormal) and each functional property (fALFF and ReHo). The data was z-scored

179  before entering the analysis to ensure comparability of the APSC and baseline signal.

180  Moderation analyses of independent samples

181  Moderation analyses were carried out in SPSS using the PROCESS macro * for fALFF and ReHo
182  investigating whether CSF group assignment moderates the spread (NoM—>EC vs. EC>NbM)
183  of functional degeneration. Here, CSF group was used as a dichotomous moderator variable.
184  For the construction of products mean-centering was applied, and the heteroscedasticity

185  consistent standard error HC3 (Davidson-MacKinnon) was applied.

186
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187  Annual percentage signal change (APSC)
188  The following formula *3® was used to assess longitudinal APSC in fALFF and ReHo. It accounts
189  for the days between both measurements and minimizes the influence of differences between

190  both measurements within a subject.

(Change baseline (T2-T1) signal))x( 365

191  APSC= ) x 100

Baseline signal Interscan interval in days

192

193  Results

194  CSF grouping strategy and neuropsychological assessments

195  Based on the CSF grouping strategy, we investigated how aCSF and nCSF groups performed in
196  neuropsychological tests. For each test, one-way fixed effect ANOVAs were carried out with
197  CSF group as factor and age, gender, and education as covariates. As expected, the nCSF group

198 s less affected by cognitive impairment than the aCSF group (see Table 2).

199  Lower fALFF values at baseline in aCSF vs. nCSF in NbM but not EC

200  Baseline fALFF values were compared in NoM and EC further subdivided into CSF groups using
201  a 2x2 mixed ANCOVA. We found a main effect of CSF group (F(1,63)=7.943, p=0.006, partial
202  n?=0.112, Fig. 1B), that was driven by lower fALFF values in participants with abnormal CSF, and
203  asignificant region x CSF group interaction (F(1,63)=4.623, p=0.035, partial n?=0.068 , Fig. 1B),
204  that was driven by a more pronounced fALFF reduction in the NoM. Post hoc analyses showed
205  that a significant difference in fALFF between nCSF vs aCSF was only observed in NbM
206 (t(69)=3.141, p=0.002) but not EC (t(69)=1.856, p=0.068). There was no main effect of region

207 (F(1,69)=2.643, p=0.109, partial n?=0.037, Fig. 1B).

10
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208  Annual percentage signal change in fALFF does not differentiate between CSF groups
209  orregions

210  We used a 2x2 mixed ANCOVA to investigate whether the longitudinal indices of APSC in fALFF
211 of the NbM and EC differentiated between CSF normal vs. abnormal groups. There was no
212 significant main effect of CSF group (F(1,63)=2.077, p=0.154, partial n?=0.032, Fig. 1C), or
213 region (F(1,69)=0.499, p=0.482, partial n’=0.007, Fig. 1C), and no significant group x region

214  interaction (F(1,63)=0.367, p=0.547, partial n?=0.006, Fig. 1C) in APSC fALFF.

215  NbM's fALFF relates to CSF ratio

216  Inanext step, we used linear regressions on fALFF values from NbM and EC, respectively, with
217  CSF ratio as independent variable. It revealed a significant linear effect in the NbM (R?=0.120,
218  F(1, 69)=9.437, p=0.003, Fig. 2A) but not EC (R?>=0.031, F(1, 69)=2.206, p=0.142, Fig. 2B). A
219  direct comparison of both correlations (NbM vs EC, one-tailed, which was justified by our a
220  priori hypotheses) revealed a significant difference that was driven by a more negative

221  correlation in NbM compared to EC (z=-1,94; p=0.0262; 95% Cl: -0.3429 to 0.0015).

222 Baseline signal in NbM predicts annual percentage signal change in fALFF of EC

223 Tofurther address the temporal changes in AD progression, we examined whether the baseline
224  signal in one region predicts the APSC in the other region. Here, in a first step, we used robust
225  regression modeling for both competing models separately for nCSF vs. aCSF. They revealed no
226  significant effect for NoM—=>EC in aCSF (R*=0.263, F(7, 26)=1.33, p=0.277, Fig. 3A, Table S1), and
227  no significant effect for NoM—=>EC in nCSF (R?=0.296, F(7, 29)=1.74, p=0.138, Fig. 3B, Table S1).
228  Similarly, there was no significant effect for EC=2>NbM in aCSF (R®=0.137, F(7, 26)=0.587,
229  p=0.76, Fig. 3D, Table S1), and no significant effect for EC>NbM in nCSF (R®>=0.175, F(7,

230  29)=0.88, p=0.534, Fig. 3E, Table S1).

11
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231 In a second step, we analyzed both groups together by including CSF group in the two
232 competing regression models. Importantly, we observed a statistically significant effect for the
233 model NbM—=EC (R?=0.235, F(8, 62)=2.39, p=0.026, Fig. 3C, Table S1), with NbM as a significant
234 predictor of EC’s APSC (r=-0.3751, t(62)=-3.1445, p=0.003, confidence interval (Cl): -0.6136 to
235  0.1366). The other regression model EC>NbM did not show a significant effect (R*= 0.0884,
236 F(8, 62)= 0.751, p= 0.646, Fig. 3F, Table S1). Replacing CSF as dichotomous predictor by the
237  continuous CSF ratio did not change the results (i.e. significant effects for the model NoM—>EC,

238  p=0.021, but not EC> NbM, p=0.466).

239  CSF group does not moderate the relationship of NoM and EC in fALFF

240  Finally, we performed two moderation analyses. The first model included baseline fALFF NbM
241  as independent variable, fALFF EC APSC as dependent variable and CSF group as moderator.
242  The model was statistically significant (R*=0.2215, F(9,61)=3.4009, p=0.0019), with a significant
243 direct effect of NoM—2>EC (t(61)=-3.4420, p=0.001), but, no significant moderator effect

244 (t(61)=0.4095, p=0.6836), which is in line with the robust regression analysis.

245  The second model included baseline fALFF EC as independent variable, fALFF NbM APSC as
246  dependent variable and CSF group as moderator. The model was not statistically significant
247  (R*=0.0965, F(9,61)=0.7857, p=0.6303), which, again, is in line with the robust regression

248  analysis.

249  The results for ReHo and functional connectivity can be found in the supplementary material.

250 Discussion

251  We investigated the functional properties of the human NbM and EC in relation to the disease
252 progression of AD based on longitudinal rsfMRI data and CSF markers of AB and pTau. With a

253  focus on fALFF, our data provide evidence that spontaneous local brain activity in the NbM, but

12


https://doi.org/10.1101/2023.03.28.534523
http://creativecommons.org/licenses/by-nc/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.03.28.534523; this version posted March 28, 2023. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY-NC 4.0 International license.

254  not EC, is reduced with CSF ratio, and, importantly, it predicts the annual percentage signal
255  change in the interconnected EC independently from proteinopathology. As such, our findings
256  extend previous anatomical studies in humans and animals by providing novel physiological
257  insights into the pathological staging model of AD suggesting the NbM as origin for

258  subsequently affected brain regions possibly via a trans-synaptic mechanism.

259  Local spontaneous brain activity, as quantified by fALFF, was reduced in the NbM at baseline in
260  the abnormal CSF group (Fig. 1B), and there was a linear reduction in fALFF activity with CSF-
261  ratio (Fig. 2A). Importantly, both relationships were only observed in the NoM but not in the EC
262 (Fig. 2B), which further underlines that the NbM is specifically vulnerable to AD progression. In
263  fact, pTau and AP are two proteins that have been associated with AD 3’ and the NbM is
264 particularly vulnerable to the early accumulation of pTau 3% and AB deposition 1. This may
265  be due to the fact that cholinergic basal forebrain neurons have rather large axons and arbors
266  reachinginto the entire central nervous system with high metabolic demands for maintenance,
267  reparation, and transportation 2. At the same time, simply due to their sizes, they are more

268  vulnerable to toxins %3, which may further promote disease progression.

269  The pathological staging model suggests a structural degeneration originating in the NbM
270  followed by the EC, which adds a crucial upstream link to Alzheimer's degeneration *. Our
271  functional data support such a view by showing that the NbM's baseline fALFF signal predicted
272  the APSC in the EC (Figure 3C) but not the reverse (Figure 3F). Interestingly, this effect was
273  independent of CSF status, which was further supported by the absence of a moderating effect
274 of CSF. While this is compatible with a specific spread from NbM to EC, it also indicates that the
275  putative functional consequences, namely changes in neural activation, are unrelated to pTau
276  and APB. This apparently differs from anatomical changes from NbM to EC that were more

277  pronounced in subjects with abnormal CSF . From a physiological point of view, a trans-
13
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278  synaptic spread of proteins between anatomically interconnected brain regions is possible and
279  has been shown in several animal studies. For instance, aggregates of tau can propagate from
280  the ECto otherlimbic regions, including the dentate gyrus and hippocampal CA fields, followed
281 by neocortical brain regions including the parietal cortex >=>#4. In vitro, this can be enhanced by
282  neural activity ®, which might help to explain why CSF status did not moderate the relationship
283  between NbM activity and longitudinal changes in EC activity in our study. While this needs to
284  be further investigated using larger and independent samples, our study is the first to show in
285  vivo in humans that a neural signal in NbM can serve as a predictive marker for functional

286  changes in the anatomically interconnected EC across healthy controls, MCls and AD patients.

287  Although fALFF is a prominent marker of spontaneous local brain activity %2, only a limited
288  number of studies used fALFF to investigate AD. Importantly, previous work did not specifically
289  focus on the NbM and EC but other, typically larger brain regions. It showed, for instance,
290 decreased fALFF signals in the bilateral middle frontal and left precuneus in participants with
291  positive A 4. In preclinical AD, increases and decreases in fALFF were reported in the right
292  inferior frontal gyrus *%, and in prodromal AD lower fALFF signals could be shown in the
293  bilateral precuneus, right middle frontal gyrus, right precentral gyrus, and postcentral gyrus.
294  Finally, in AD fALFF was increased in the right fusiform gyrus, medial temporal lobe and inferior
295  temporal gyrus, but decreased in the bilateral precuneus, left posterior cingulate cortex, left
296  cuneus and superior occipital gyrus #°. These partly divergent effects of fALFF associated with
297  AD might be explained by compensatory effects to maintain an adequate level of cognitive

4 and could be a functional hallmark of neural aging % that needs further

298  performance
299  attention. Furthermore, since no significant effects in ReHo and functional connectivity

300 between were detected (see supplementary material), fALFF seems to be a particularly

14
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301 sensitive marker. Together, fALFF is highly sensitive to changes in neural activity associated with

302 ADevenin rather small brain regions and therefore offers a useful marker in future studies.

303  Our analyses specifically focused on the functional properties of the human NbM and EC but
304 nootherinterconnected brain regions that, according to the pathological staging model, follow
305 the EC. These may include the parahippocampal cortex and hippocampal structures, as well as
306 the parietal cortex 344 Along these lines, we included functional signals averaged from both
307 hemispheres, which simplified our analyses, but it neglected possible lateralization effects 4748
308 Second, ADNI is a large multicenter study offering a rich and unique dataset. However, our
309 rsfMRI data come from different MR scanners, possibly leading to a bias in image quality and
310 extracted signal. Therefore, we only included high-quality data that were based on comparable
311  protocols and within-subject measurements from the same scanner. We also employed
312  appropriate covariates in our statistical models, and differences in scanning parameters (e.g.
313  slice order or number of volumes) were accounted for by during preprocessing °°°. Further,
314  our main findings are based on analyses including a measure of APSC, which is robust against

315  within-subject variability, e.g., because of the MR scanner.

316  Functional activity in the human basal forebrain decreased with proteinopathology and

317  predicted the functional decrease within the interconnected EC independent from CSF status.
318  Assuch, our findings extend the pathological staging model of AD by giving novel insights into
319 the functional properties of the underlying brain regions. From a more general perspective,
320  fALFF appears to be a suitable marker to further investigate functional brain changes

321  associated with the progression of AD.

322
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Tables

Table 1. Participants' demographics and information on APOE4 genotype and harmonized CSF

assays

n (total)=71

ADNI-GO/2 (n=44) / 3
(n=27)

CN (n=32) / MCI (n=28) /
AD(n=11)

Manufacturer

Philips (n=52) / Siemens
(n=11) / GE (n=8)

Age

Female (n=44) / Male
(n=27)

Education (in years)
Interscan interval

In months

In days

APOE 4 (0/1/2)

AB

pTau

Normal CSF Abnormal CSF
37 34

17/20 27/7

27/10/0 5/18/11
24/8/5 28/3/3

70.51 (6.23) 72.71(7.18)
22/15 22/12

16.59 (2.44) 15.91 (2.25)
22.03 (5.0) 18.74 (6.9)

685.35 (151.15)
28/8/1 5/21/8
1430.64 (521.3)

18.42 (4.83) 40.81 (17.76)

587.76 (210.43)

637.22 (187.1)

Test-x%/t

¥2=0.127, p=0.722
¥2=8.420, p=0.004**

¥2=28.335, p<0.001***

¥2=2.959, p=0.228

t=-1.376 p=0.173

¥2=0.207, p=0.649

t=1.222, p=0.226

t=2.294 p=0.025*
t=2.227, p=0.030*
\2=27.224, p<0.001***
t=8.670, p <0.001***

t=-7.114, p<0.001***
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511 Table 2. Neuropsychological test results at baseline, compared by CSF normal vs. abnormal

Neuropsychological CSF groups (mean (SD)) F- value P- value
testing Normal Abnormal
MEM score 0.88 (0.6) -0.08 (0.97) F(1,66)= 23.4 <0.001*
EF score 1.02 (0.76) -0.16 (1.1) F(1,66)=23.8 <0.001*
MMSE 29.08 (1.12) 25.82 (3.50) F(1,66)=23.35 | <0.001*
ADAS-Cog 13 9.8 (4.8) 22.89(14.26) F(1,66)= 26.82 | <0.001*
CDRSB 0.3 (0.55) 2.63 (2.36) F(1,66)=34.72 | <0.001*
MoCA 25.89 (2.34) 20.91 (5.72) F(1,66)=22.5 <0.001*
Clock drawing 4.76 (0.55) 4.03 (1.22) F(1,66)= 8.73 0.004*
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516

517

518

519

520

521

522
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524

525
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526  Table captions

527  Table 1. Participants' demographics and information on APOE4 genotype and harmonized CSF
528  assays

529 Information of the final sample from ADNI-GO/2 and ADNI-3 grouped by CSF. Means and
530 standard deviation (SD) are represented and the respective t-test or chi-square test to
531 investigate possible group differences. Baseline clinical diagnosis: CN=cognitive normal;
532  MCl=mild cognitive impairment; AD=Alzheimer’s Disease. Age and education were assessed in
533  years. APOE4 status: no allel / 1 allel / 2 allels. AB=amyloid-f3 in pg/ml as concentration of the
534  amyloid- B 1-42 peptide. pTau=in pg/ml as CSF concentration of hyperphosphorylated tau.
535  *p<0.05, **p<0.01, ***p<0.001

536

537  Table 2. Neuropsychological test results at baseline, compared by CSF normal vs. abnormal
538 The mean values with standard deviation (SD) of normal vs. abnormal CSF groups. The
539  abnormal CSF group reflected worse performance in all neuropsychological tests. MEM:
540 memory function score; EF: executive function score; MMSE: Mini-Mental State Examination;
541  ADAS-Cog 13: Alzheimer's Disease Assessment Scale- Cognition Subscale, 13 tasks; CDRSB:
542  Clinical Dementia Rating Scale; MoCA: Montreal-Cognitive-Assessment; Clock drawing: clock
543  drawing test

544  *significant after Bonferroni correction p < 0.05/n (n = 7 tests).
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550  Figure captions

551  Figure 1. Region of interests, baseline signal and annual percentage signal change for fALFF
552  measures. A) ROIs of NbM (red) and EC (blue) on a coronal slice of a T1-weighted standard brain
553  template. Violin plots representing B) the baseline signals at time point 1 (T1) and the signals
554  at the follow-up measurement (T2). C) shows the annual percentage signal change (APSC) in
555  both regions. The horizontal lines represent medians and dotted lines interquartile ranges.
556  *p<0.01.

557

558  Figure 2. Linear regression for z-scored fALFF signal at baseline in A) NbM and B) EC against the
559  z-scored CSF ratio. For the sake of visualization, the diagnosis groups are plotted in different
560 colors and shapes (blue circle for CN, red square for MCl and green rhombus for AD). A
561  significant linear regression was observed only in the NoM (A) but not EC (B), indicating a region
562  specific decrease in functional activity and proteinopathology.

563

564  Figure 3. Adjusted for covariates response plot for the robust regression models in fALFF A) —
565  C) predictive spread in NoM—>EC and D) — F) predictive spread in EC2>NbM. On the x-axis z-
566  scores for the baseline signal in the respective region, on the y-axis the z-scored annual
567  percentage signal change (APSC). There was a significant spread in C) NoM—>EC with CSF

568 included in the model. There was no predictive spread in EC>NbM. *p<0.05.
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