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Abstract
Background: Semantic similarity scores for protein pairs are widely applied in functional genomic researches for 
finding functional clusters of proteins, predicting protein functions and protein-protein interactions, and for identifying 
putative disease genes. However, because some proteins, such as those related to diseases, tend to be studied more 
intensively, annotations are likely to be biased, which may affect applications based on semantic similarity measures. 
Thus, it is necessary to evaluate the effects of the bias on semantic similarity scores between proteins and then find a 
method to avoid them.

Results: First, we evaluated 14 commonly used semantic similarity scores for protein pairs and demonstrated that they 
significantly correlated with the numbers of annotation terms for the proteins (also known as the protein annotation 
length). These results suggested that current applications of the semantic similarity scores between proteins might be 
unreliable. Then, to reduce this annotation bias effect, we proposed normalizing the semantic similarity scores 
between proteins using the power transformation of the scores. We provide evidence that this improves performance 
in some applications.

Conclusions: Current semantic similarity measures for protein pairs are highly dependent on protein annotation 
lengths, which are subject to biological research bias. This affects applications that are based on these semantic 
similarity scores, especially in clustering studies that rely on score magnitudes. The normalized scores proposed in this 
paper can reduce the effects of this bias to some extent.

Background
Many scores for measuring semantic similarity (also
termed functional similarity) between proteins have been
proposed, based on the Gene Ontology (GO) terms [1]
used to annotate the proteins. Some semantic similarity
scores for a protein pair [2,3] are calculated by combining
the similarity scores for the term pairs [4-7] describing
the two proteins. Other scores between proteins that do
not use pairwise similarity scores between terms have
also been proposed [8,7,9-12]. Similarity scores for pro-
tein pairs have been widely applied in functional genomic
research [13]. These scores are commonly used to analyze
the correlation between functional similarity and similar-
ities on other aspects, such as amino acid sequence simi-
larity [2,8,14-16], or expression similarity [17-19].
Another type of applications is finding functional clusters

of proteins [7,20-22], or functional modules in physical or
genetic protein-protein interaction networks [23-28].
Similarity scores are also used to predict protein func-
tions [29-35], protein-protein interactions [36-41] and
putative disease genes [42-45].

GO protein annotations are known to be incomplete
[46], and suffer from a large research bias, because cer-
tain proteins, such as those related to diseases, tend to be
studied more intensively [43,47,48]. Such an annotation
bias may affect protein semantic similarity scores. In this
paper, we evaluated 14 common semantic similarity
scores for protein pairs, and demonstrated that the scores
significantly correlated with the numbers of annotation
terms for the proteins (i.e., the annotation length). Thus,
we proposed normalizing the scores based on their power
transformation to reduce annotation bias effects, and we
provide evidence that this improves performance in some
applications.* Correspondence: guoz@ems.hrbmu.edu.cn
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Methods
Gene Ontology (GO)
The GO annotation data for human was downloaded
from the UniProt database http://www.ebi.ac.uk/GOA/
index.html, including versions in November (Nov) 2001,
Nov 2002, Nov 2003, Nov 2004, Nov 2005, Nov 2006, Nov
2007 and August 2008. The GO vocabulary data were
downloaded from the GO website http://www.geneontol-
ogy.org in August 2008. Here, we considered only IS-A
links in GO [5,6], and we mainly present the results based
on the "Biological Process" (BP) sub-ontology. We also
observed that all the semantic similarity scores for pairs
of term groups are dependent on the annotation lengths
when using "Molecular Function" and "Cellular Compo-
nent" (data not shown).

Online Mendelian Inheritance in Man (OMIM) database and 
disease classification
The data for 1996 genes associated with 2192 diseases
were downloaded from the OMIM database [49]ftp://
ftp.ncbi.nih.gov/repository/OMIM in August 2008, of
which 1752 genes were annotated to GO BP terms.
According to Goh et al. [50], the 2192 diseases were clas-
sified into 20 primary disorder classes based on the
affected physiological systems. Diseases with multiple
clinical features were assigned to the "multiple" class, and
disease assigned to "Unclassified" class were not ana-
lyzed.

Similarity scores for term pairs
Many semantic similarity scores for two proteins are
based on combinations of the similarity scores for term
pairs between two groups of protein annotation terms.
We evaluated four semantic similarity scores for term
pairs based on the information contents: Resnik score [6],
Lin score [5], Relevance score (RS) [4] and Jiang score [7].
The information content of a term c was defined as IC(c)
= -log(p(c)), where p(c) is the number of gene products
annotated to the term and its descendants, divided by the
number of all gene products annotated to the GO BP
ontology. Let P(m, n) represent the set of common ances-
tor terms of m and n, then the four scores between terms
m and n were calculated as:

Similarity scores for protein pairs based on pairwise 
similarity scores between term groups
In some methods, the similarity scores for term pairs
describing two proteins are combined to calculate the
semantic similarity scores of the two proteins. Here, two
combination methods were evaluated: the arithmetic
average (AVG) of the pairwise semantic similarity scores
between two groups of GO terms describing the two pro-
teins [2] and the best-match average (BMA) approach [3].

A1 and A2 were the groups of annotation terms for pro-
teins P1 and P2, and #P1 and #P2 were the number of terms
included in A1 and A2. Then the two combined scores
between the two proteins were defined as:

where ,

.

In total, eight semantic similarity measures for protein
pairs were evaluated, using the four semantic similarity
scores for term pairs (Resnik, Lin, RS and Jiang) com-
bined with the AVG and BMA methods (see Table 1).

Similarity scores for protein pairs based on groupwise 
similarity scores between term groups
We also evaluated six protein semantic similarity scores
that do not use pairwise similarity scores between two
term groups. These similarity scores are briefly described
as below (please see details in the original papers).

(1) The TO (Term Overlap) score [9] simply counts the
number of overlapped terms for two proteins P1 and P2 as
follows:

where GA1 and GA2 include the terms directly anno-
tated with proteins P1 and P2 and all their ancestral terms,
respectively. #(GA1  GA2) is the number of the over-
lapped terms between GA1 and GA2.
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(3) The Dice score [12] is defined as:

(4) The Kappa score [11] is defined as:

where  and  represent the observed and

random co-occurrence of GO annotation terms for the

two proteins, respectively.
(5) The Graph Information Content (GIC) score [8] is

defined as:

(6) The Vector Space Model (VSM) score [10] is
defined as follow:

where n is the number of all the GO BP terms and

 is the information content of term k if it is

annotated with protein P1 (P2) while  is 0 if the

term k is not an annotation of the protein P1 (P2).
In total, we evaluated 14 semantic similarity scores for

protein pairs (see Table 1). We note that some other
semantic similarity scores for protein pairs [13,51] were
not evaluated in this paper. For example, the score pro-
posed by Wang et al. [22], which weights the IS-A and
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Table 1: Summary of 14 semantic similarity scores for protein pairs.

Measure Description Range

Similarity scores for term pairs

Resnik [6] Information content of the most informative common ancestor of two terms ≥ 0

Lin [5] Normalized Resnik similarity score by assessing how close two terms are to their 
most informative common ancestor

[0, 1)

RS [4] Weighted Lin similarity score by using the probability of annotations of the most 
informative common ancestor

[0,1)

Jiang [7] Based on the difference between two terms and their most informative common 
ancestor in information content

(0,1]

Similarity scores for protein pairs based on pairwise similarity scores between term groups

AVG [2] The average of the similarity scores for all pairs of terms between two groups of 
protein annotations

Same with those for the corresponding 
similarity scores for term pairs

BMA [3] The score of the best-matching pairs between two groups of protein annotations

Similarity scores for protein pairs based on groupwise similarity scores between term groups

TO [9] The number of terms shared by the annotations for two proteins ≥ 1

NTO [9] Dividing TO by the minimum of the annotation lengths of two proteins (0,1]

Dice [12] Dividing TO by the average of annotation lengths of two proteins (0,1]

Kappa [11] A chance-corrected measure of co-occurrence between two groups of protein 
annotations

[0, 1]

GIC [8] Jaccard index weighted by the information content of each GO term [0, 1]

VSM [10] Cosine similarity weighted by the information content of each GO term [0, 1]
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PART-OF links of GO, was not analyzed, because we con-
sidered only IS-A links in this study.

Random experiments
Using randomly selected pairs of term groups, we evalu-
ated the increase in protein semantic similarity score that
resulted from only the increased annotation length,
regardless of other biological factors. First, we randomly
selected 10,000 pairs of term groups with the same sizes
(corresponding to the annotation lengths of proteins)
ranging from 1 to 10, since only 1.5% of proteins had
more than 10 annotations in GO BP ontology. Then,
using each of the 14 semantic similarity scores described
above, we calculated the semantic similarity scores for
random term group pairs, and analyzed whether these
scores increased as the group size increased using the
Spearman rank correlation coefficient [52].

Normalization based on power transformation
As demonstrated in the Results section, a similarity score
for two groups of terms is dependent on the lengths of
the term groups. To reduce the effect of the lengths on
the scores, we took two steps to make the scores for pairs
of term groups with given length combinations follow the
standard normal distribution.

Firstly, we applied the commonly used power transfor-

mation approach to transform the scores to achieve nor-

mality [53,54]. Suppose SS(TG1, TG2) is the score for

term groups TG1 with length L1 and TG2 with length L2,

we power-transformed it to TSS(TG1, TG2) =

. Here, the power  was esti-

mated as follow [53,54]:

where MSS is the median of the random SS(TG1, TG2)
distribution which was estimated by the similarity scores
for 10,000 pairs of random term groups (with lengths L1
and L2). Tq and T1-q are the lower and upper qth quantiles

of this distribution ( ). By the one-sam-

ple Kolmogorov-Smirnov test for distribution goodness-
of-fit [55], at the significance level of 0.1, we tested
whether the power-transformed scores for pairs of term
groups with given length combinations fit normal distri-
butions.

Secondly, we normalized the above power-transformed
scores to make them fit the standard normal distribution
as follow:

In the above normalization formula, MTSS and STDTSS
are the median and standard deviation of the power-
transformed scores respectively. Here, we used the
median rather than the mean in the normalization for-
mula because it might be more appropriate for measuring
the location parameter of a distribution when the distri-
bution might be skewed [56-58]. As shown in the Results
section, most of the normalized scores for pairs of term
groups with given length combinations follow normal
distributions. In this situation, the means and the medi-
ans are equal.

Sequence similarity scores for protein pairs
Amino acid sequence data for human proteins was down-
loaded from UniProt ftp://ftp.uniprot.org in August 2008.
The sequence similarity between two proteins was mea-
sured by the ln(bit score), and calculated by the NCBI
"blastall" program [2]. Sequence similarity scores were
obtained for a total of 499,878 protein pairs with GO BP
annotations.

Clustering algorithm and enrichment analysis
Suppose the original and normalized similarity scores for
two proteins (P1 and P2 ) annotated with two groups of
terms are SS(P1, P2) and NSS(P1, P2) respectively, we
firstly transformed both SS(P1, P2) and NSS(P1, P2) to the
range [0, 1] by the Min-Max normalization method
[59,60] as follows

where MaxSS and MinSS are the maximum and mini-
mum values of the original similarity scores for all protein
pairs from a protein set (e.g., a set of proteins encoded by
a set of disease genes). MaxNSS and MinNSS are the maxi-
mum and minimum values of the normalized similarity
scores for all these protein pairs.

Then, we calculated the distance between two proteins
as D(P1, P2) = 1-MM(P1, P2) based on the original score.
Similarly, based on the normalized score, the distance
was calculated as ND(P1, P2) = 1-NM(P1, P2). Both D(P1,
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P2) and ND(P1, P2) take values ranging from 0 to 1 and
satisfy three main properties of distance metrics [61]: (i)
symmetry, D(P1, P2) = D(P2, P1) (ND(P1, P2) = ND(P2, P1));
(ii) non-negative, D(P1, P2) ≥ 0 (ND(P1, P2) ≥ 0); (iii) trian-
gle inequality, D(P1, P3) ≤ D(P1, P2)+D(P2, P3) (ND(P1, P3)
≤ ND(P1, P2)+ND(P2, P3)). Using D(P1, P2) and ND(P1, P2)
respectively, we clustered disease genes by the complete
linkage clustering algorithm [62].

To evaluate the clustering results, using the hypergeo-
metric distribution model [63,64], we calculated the
probability p of detecting at least the observed number of
genes related to a disease category proposed by Goh et al.
[50] in a cluster of disease genes by random chance. The p
values were corrected by the false discovery rate (FDR) by
the Benjamini-Hochberg (BH) procedure [65]. With FDR
of 1%, we found the disease categories enriched in a clus-
ter of disease genes found by the clustering algorithm.

Results
The dependence of the semantic similarity scores on 
annotation lengths
From 2001 to 2008, the average number of GO BP terms
annotated with disease genes increased from 2.6 to 5.1, as
shown in Figure 1(A). In contrast, the average annotation
length of "non-disease" genes increased slightly from 1.7
to 2.1 (Figure 1(B)). These results indicated that disease
genes tend to be studied more extensively, and are biased
to have more annotations.

As shown in Figure 2, for each of the 14 protein seman-
tic similarity scores analyzed, the median score for 10,000
random pairs of term groups increased significantly as

the annotation lengths (the group sizes) increased (Spear-
man r ≥ 0.99, p < 1E-07). Based on the Resnik [6], Lin [5],
RS [4] and Jiang [7] semantic similarity scores for term
pairs, all four AVG combined scores for protein pairs
were relatively stable when the annotation length was
greater than three, especially for the Jiang(AVG). In con-
trast, the combined scores based on Resnik(BMA),
Lin(BMA) and RS(BMA) increased rapidly with the
annotation length. We evaluated six other semantic simi-
larity scores for protein pairs, which do not use pairwise
similarity scores between terms. As shown in Figure 2,
the TO score was linearly dependent on the annotation
length, while other scores increased slightly but signifi-
cantly as the annotation length increased (Spearman r =
1, p < 1E-09). Notably, as shown in Figure 2, as the anno-
tation lengths increased, the standard deviation of TO
scores increased but it decreased for other similarity
scores, which could be explained statistically. For exam-
ple, because TO scores follow the hypergeometric proba-
bility model [63,64], we can derive that its standard
deviation increases with the annotation lengths.

Applications of the normalized scores
As shown in Table 2, based on each of the 14 similarity
measures for term groups, most of the original scores
(SS(TG1, TG2)) for pairs of term groups with given length
combinations did not fit normal distributions (p ≥ 0.1,
one-sample Kolmogorov-Smirnov test). For nine similar-
ity measures, namely the Resnik(AVG), Resnik(BMA),
Lin(AVG), Lin(BMA), RS(AVG), RS(BMA), Jiang(AVG),
Dice and Kappa scores, over 80% of the power-trans-
formed scores for pairs of term groups with given length
combinations followed normal distributions. Then, these
power-transformed scores were normalized to the stan-
dard normal distribution. Thus, for these nine similarity
measures, the normalization method based on the power
transformation is largely suitable for comparing scores
for pairs of term groups with different length combina-
tions. However, based on each of the other five similarity
measures, less than 60% of the power-transformed scores
fitted normal distributions. We also analyzed another five
simple transformation methods and the results (see Table
2) showed that all these simple transformation methods
performed worse than the power-transformation method

using the estimated .
Then, for two types of applications, by comparing the

results based on the original scores and their correspond-
ing normalized scores, we showed that the bias affects
certain analysis more than others. One type of applica-
tions based on semantic similarity scores for protein pairs
study the correlation between functional similarity and
similarities on other aspects [2,8,14-19]. Based on the
normalized RS(BMA) score (the corresponding 

l L L1 2
,

l L L1 2
,

Figure 1 Changes of the gene annotation lengths in GO BP ontol-
ogy. The bar plots represent the percentages of disease and non-dis-
ease genes with different annotation lengths, while the solid-square 
lines represent the average annotation lengths in various versions of 
GO.
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distribution for this measure was shown in Figure 3), we
analyzed the correlation between protein semantic simi-
larity scores and their amino acid sequence similarity
scores (ln(bit score)). As shown in Figure 4, the correla-
tion was significant (p < 2.20E-16), supporting the model
that proteins with similar sequences tend to be function-
ally similar [2,14]. Based on the RS(BMA) scores, similar
results were observed, because of significant correlation
between the ranks of the RS(BMA) scores and the nor-
malized RS(BMA) scores for protein pairs (Spearman r =
0.88, p < 2.20E-16).

Another type of applications is clustering of function-
ally similar proteins [7,20-22] or finding functional mod-
ules in physical or genetic protein-protein interaction
networks [23-28]. Using the RS(BMA) and the normal-
ized RS(BMA) distance, we applied a hierarchy clustering
algorithm to cluster the disease genes into 21 categories,
and compared the results with the categories determined
by Goh et al. [50]. As evaluated by the hypergenomic dis-

tribution test, using FDR of 1%, 16 clusters based on the
normalized distance were enriched with disease genes
with the same or similar phenotypes while only 6 clusters
were enriched based on the original distance. To analyze
more clearly the effect of annotation length on the cluster
results, we clustered only the genes determined to the
"Hematological" and "Immunological" categories. As
shown in Figure 5(A), based on the normalized RS(BMA)
distance, 73.5% of "Hematological" genes (red) were clus-
tered into one group (p = 7.3E-13), while 78.4% of "Immu-
nological" genes (blue) were in another (p = 3.96E-13). In
contrast, as shown in Figure 5(B), when clustering these
two classes of disease genes into two groups based on the
RS(BMA) distance, no group was significantly enriched
with a class of disease genes (p > 0.10). As shown in Fig-
ure 6, after normalization, the ranks of some disease gene
pairs with different annotation lengths changed, improv-
ing the clustering results based on the normalized
RS(BMA) distance. In general, based on the normalized

Figure 2 Semantic similarity scores for pairs of term groups increase as the annotation lengths increase. For each of the 14 semantic similarity 
measures, the solid circles represent the median score of 10,000 random pairs of term groups annotated with the same number of GO BP terms. The 
error bars represent the standard variation of the scores (because the similarity scores were positive, we reduced the negative part of error bars). r and 
p are the Spearman correlation coefficient and the corresponding significance between the median of the scores and the annotation lengths. To make 
the 14 plots more informative, according to the ranges of the scores (see Table 1), we classify the plots into three groups, in each of which the plots 
have the same y-axis scale.
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RS(BMA) scores, our results suggested that disease genes
related to the same or similar diseases tend to work
together in the same disease-related functional gene
modules [50,66-78].

Discussion
In this paper, we found that most semantic similarity
scores for protein pairs increased as protein annotation
lengths increased. Because protein annotations are likely
to be subject to biological research bias, most applica-

tions based on current semantic similarity scores for pro-
tein pairs will be biased. Without the annotation bias, one
could argue that over-annotated proteins might be more
likely to be similar than under-annotated proteins, when
considering only shared functions, and disregarding dif-
ferences. However, currently, most semantic similarity
scores for protein pairs evaluate the overall functional

Table 2: The performance of different data transformation methods*.

Measure Estimated λ** λ = 1 Inverse (λ = -1) Cube-root (λ = 1/3) Square-root (λ = 1/2) Square (λ = 2) Log

Resnik(AVG) 0.878 0 -*** 0.645 0.370 0 -

Lin(AVG) 0.890 0 - 0.659 0.474 0 -

RS(AVG) 0.925 0 - 0.632 0.355 0 -

Jiang(AVG) 0.812 0 0.081 0 0 0 0.002

Resnik(BMA) 0.938 0.661 - 0.025 0.248 0 -

Lin(BMA) 0.940 0.706 - 0.012 0.156 0.002 -

RS(BMA) 0.927 0.650 - 0.004 0.042 0.001 -

Jiang(BMA) 0.010 0 0 0 0 0 0

TO 0 0 0 0 0 0 0

NTO 0.555 0.001 0 0.366 0.478 0 0.009

Dice 0.926 0.014 0 0.384 0.890 0 0.001

Kappa 0.896 0.010 - 0.518 0.866 0 -

GIC 0.552 0 - 0.096 0 0 -

VSM 0.291 0 - 0.006 0 0 -

* The numbers in the table represent the percentages of the scores that fitted normal distributions after data transformation, among all group 
pairs with different length combinations.
** λ was estimated by the method described in the Methods section.
*** "-" indicates the transformation method was not suitable for the similarity measure.

Figure 3 Probability density of  estimated for pairs of term 

groups with different annotation length combinations based on 
the RS(BMA) measure.

l L L1 2
,

Figure 4 Relationship between sequence similarity and semantic 
similarity of protein pairs. The semantic similarity scores of protein 
pairs were calculated by RS(BMA) (blue) and normalized RS(BMA) 
(green) measure. The results showed that the original and normalized 
RS(BMA) scores had similar correlation with sequence similarity scores, 
and confirmed that proteins with similar sequences tend to have high-
er "functional similarity" [2,14].
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similarity between proteins. Depending on the available
knowledge about domains, and the final aim of the appli-
cation, different criteria could be used to define similarity
between proteins. We note that protein annotations in
GO for most model organisms (e.g., Saccharomyces cere-
visiae) are also incomplete and suffer from the research
bias because important genes such as the homologues of
human disease genes tend to be studied more intensively
[79,80]. By analyzing the Saccharomyces cerevisiae data,
we also found that the similarity scores between two
groups of terms increased significantly with the annota-
tion lengths (data not shown). Thus, our conclusion on
the bias of semantic similarity scores for proteins would
be applicable to other organisms.

A protein is usually annotated to a group of GO terms.
Often, the semantic similarity scores between two pro-
teins are calculated using some combination methods
[2,3] based on the semantic similarity scores for pairs of
terms annotated with the two proteins. Many semantic
similarity scores for term pairs such as the Resnik [6], Lin
[5], Relevance (RS) [4] and Jiang [7] are based on the
information content (related to the annotation specific-
ity) of the terms. Based on these similarity scores for term
pairs, the similarity scores for two proteins might not
always increase, if the proteins have many annotations
with low-specificity. However, as shown here, all the AVG
and BMA scores for protein pairs based on the Resnik,
Lin, RS and Jiang scores for term pairs still significantly
correlated with the protein annotation lengths.

To reduce the effects of protein annotation bias, we
normalized the scores based on the power transforma-

tion by estimating power . The normalization
method based on the power transformation can trans-
form most scores based on nine of the similarity mea-
sures to fit normal distributions but it performs poorly
for the other five similarity measures. Thus, future works
are needed to further improve the data transformation
and normalization method.

The feasibility of the normalized scores was analyzed
for two types of applications and the results showed that
the normalized scores were useful in these applications.
Analysis of the correlation between functional similari-
ties and similarities on other aspects [2,8,14-19] might be
less affected by the annotation bias, because the ranks of
semantic similarity scores for protein pairs and their cor-
responding normalized scores were highly correlated.
Our results also showed that clustering analysis [7,20-22]
using the magnitude of the semantic similarity scores
might be more seriously affected by biased protein anno-
tations, and the results could be improved by using the
normalized scores.

A third type of applications that uses protein semantic
similarity scores is predicting protein functions [29-35],

l L L1 2
,

Figure 6 Scatter plot of RS(BMA) vs. normalized RS(BMA) scores 
for pairs of genes in "Hematological" and "Immunological" dis-
ease categories. Disease gene pairs were classified into five groups, 
according to the minimum of annotation lengths of the two genes: 
one (red triangles), two (green squares), three (magenta plus signs), 
four (black diamonds) and more than four (blue circles).

Figure 5 Cluster analysis of genes in "Hematological" and "Immu-
nological" disease categories. Two types of disease genes were clus-
tered by the normalized (A) and original (B) RS(BMA) methods. 
Horizontal axis represents all disease genes of "Hematological" (red) 
and "Immunological" (blue) categories.
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protein-protein interactions [36-41] and disease genes
[42-45]. However, because many other factors, such as
the selection of algorithms and the definition of positive
and negative sets [81] can affect the prediction results, we
did not evaluate the effect of the annotation bias on these
uses. Nevertheless, because this type of applications also
uses the similarity score magnitudes, we recommend also
using normalized scores in prediction studies, to reduce
the effects of the annotation bias.

To avoid the influence of annotation bias, other
approaches may be attempted. For example, the statistical
p-value of a semantic similarity score for a protein pair
could be evaluated by comparing this score with the
scores of random protein pairs with the same annotation
lengths. If the semantic similarity score of the two pro-
teins was significantly larger than the score expected by
random chance, at a given significance level (p-value), we
could determine that the two proteins are functionally
similar [82]. Functional modules could be found by link-
ing functionally related proteins. To analyze the func-
tional relationships of proteins more comprehensively,
the semantic similarity scores should be combined with
other functional data, such as protein-protein interaction,
co-expression and co-conservation of proteins [83-85].

Conclusions
Current protein semantic similarity scores are highly
dependent on protein annotation lengths, which are sub-
ject to biological research bias. This bias may affect many
current applications based on these scores. The proposed
normalization method might solve this problem to some
extend.
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