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Abstract
Global climate is changing due to increasing anthropogenic emissions of greenhouse

gases. Forest managers need growth and yield models that can be used to predict future

forest dynamics during the transition period of present-day forests under a changing climatic

regime. In this study, we developed a forest growth and yield model that can be used to pre-

dict individual-tree growth under current and projected future climatic conditions. The model

was constructed by integrating historical tree growth records with predictions from an eco-

logical process-based model using neural networks. The new model predicts basal area

(BA) and volume growth for individual trees in pure or mixed species forests. For model

development, tree-growth data under current climatic conditions were obtained using over

3000 permanent sample plots from the Province of Nova Scotia, Canada. Data to reflect

tree growth under a changing climatic regime were projected with JABOWA-3 (an ecologi-

cal process-based model). Model validation with designated data produced model efficien-

cies of 0.82 and 0.89 in predicting individual-tree BA and volume growth. Model efficiency is

a relative index of model performance, where 1 indicates an ideal fit, while values lower

than zero means the predictions are no better than the average of the observations. Overall

mean prediction error (BIAS) of basal area and volume growth predictions was nominal

(i.e., for BA: -0.0177 cm2 5-year-1 and volume: 0.0008 m3 5-year-1). Model variability

described by root mean squared error (RMSE) in basal area prediction was 40.53 cm2 5-

year-1 and 0.0393 m3 5-year-1 in volume prediction. The new modelling approach has

potential to reduce uncertainties in growth and yield predictions under different climate

change scenarios. This novel approach provides an avenue for forest managers to gener-

ate required information for the management of forests in transitional periods of climate

change. Artificial intelligence technology has substantial potential in forest modelling.
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Introduction
Climate change has become an important issue of the 21st century. Based on many years of
study, the scientific community has concluded that changes in global climate are mainly caused
by increases in anthropogenic emissions of greenhouse gases to the atmosphere [1]. Evidence
from many sources indicates that climate change is getting stronger and this upward trend is
expected to amplify into the future [2,3]. Global climate models (GCMs) predict that there will
be significant change in climate by the end of the current century. For the Maritime Provinces
of eastern Canada, GCMs predict a 2–4°C temperature increase during summer and a 1.5–6°C
increase in winter [4].

Climatic factors have a direct impact on tree growth and overall forest productivity, as well
as indirect impacts on forest ecosystem functioning [5,6]. Climate change will modify tree-
growing environments by altering site conditions, such as soil water content, atmospheric
humidity, soil and air temperatures, and the length of growing seasons. The forest industry is
expected to be the most affected by climate change, compared to other resource-based indus-
tries. This is because normal harvesting rotations for timber range from 50 to 100 years for
most tree species and present-day forests are expected to experience a period of transition from
current to future growing conditions over the next 100 years. Forests provide important socio-
economic and ecological services, and existing forests cannot be replaced quickly over the short
term to accommodate the anticipated changes in tree-growing environment. Therefore, exist-
ing forests need to be managed during this period of transition with well-informed manage-
ment plans that account for the effects of climate change.

The quality of forest management plans hinges on the quality and reliability of growth and
yield (G & Y) predictions. Traditionally, G&Y models are developed from large amounts of his-
torical data using statistical techniques [7,8]. These models usually require simple inputs and
predict with relatively low bias at regional scales [9,10]. Growth models are available for even-
aged and uneven-aged stands as well as single and mixed species forests. These models have
the capability to produce information from individual-tree to stand and forest levels. However,
these models are empirical in nature and as a result are applicable only to stand growing condi-
tions similar to the conditions for which they were developed [10,11]. Also, these empirical
models rely on a core assumption that climatic and environmental conditions significant to
tree growth are not violated [10,12,13]. It has been realised by scientists that G&Y predictions
using traditional empirical models could be biased under a changing climatic regime [14–17].

Process-based models are widely used to investigate forest response to climatic change
because they predict tree growth based on biological cause-and-effect associations
[12,14,18,19]. Gap models are a special type of process-based forest ecosystem models that can
take into account climatic and environmental influences based on eco-physiological principles
[20]. Gap models are valuable tools to study tree growth, species composition, and stand-struc-
ture dynamics under diverse climatic conditions [21,22]. Considerable attempts had been
made to use gap models to evaluate climate change impacts on forests [23–29]. However, gap
models have rarely been used in conventional forest management planning due to their inten-
sive data requirements, model structure complexity, and incompatibility with management
needs to produce G&Y information [8,30]. Process-based models do not have the same accu-
racy at regional scales compared to conventional models (empirical), because they are not
developed to account for site differences across regions.

There is an urgent need for practical and simple G&Y models, easily operated by forest
managers, and yet sophisticated enough to predict future forest dynamics under a changing cli-
mate. The preferred models should be based on empirical data, but should not be as compli-
cated as process-based models. The objective of this study was to develop a simple G&Y model
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that (1) utilises conventional tree- and stand-growth attributes, and (2) has the capability to
predict individual-tree growth under different climate-change scenarios. The new model was
developed by combining tree growth information generated with a process-based model and
historical data acquired from permanent sample plots (PSPs).

Materials and Methods

2.1. Modelling approach
Artificial intelligence technology was employed in this study. This growing technology has a
potential to solve complex problems in simulation studies. The technology was used to develop
a simple G&Y model for prediction under conditions of changing climate by integrating histor-
ical tree records and data from an ecological process-based model. Historical tree records were
extracted from provincial PSP datasets of the Nova Scotia Department of Natural Resources
(NS DNR). A process-based gap model (i.e., JABOWA-3) was used to project tree growth
under three climate-change scenarios [29]. This model simulates tree growth based on key
assumptions: i.e. (1) trees grow at a maximum rate under optimal conditions, which is influ-
enced by maximum tree age, diameter, and height; (2) tree growth is controlled by biotic and
abiotic factors such as inter-tree competition, temperature, and soil water and nutrient content.
JABOWA-3’s detailed climate-related functions make it a useful tool in the study of tree species
response to climate change. JABOWA-3 had been previously used for climate-change impact
assessments of forests in NS [29]. Historical and projected tree growth data were both desig-
nated as target quantities (“observations”) and employed in the construction and validation of
independent sub-models of diameter- and height-increment. The sub-models were designed to
predict individual-tree basal area (BA) and volume increments. Diameter increment was mod-
eled as BA increment (expressed in cm2 5year-1) and height increment as volume-increment
(m3 5year-1). Tree BA was calculated using standard BA-diameter relations, while volume esti-
mates were based on Honer et al. metric volume tables relevant to the study area [31]. Both
diameter and height can easily be estimated by a re-arrangement of related equations.

2.2. Artificial neural networks
Artificial neural networks (ANNs) are system-constructs of emerging artificial intelligence
technology. They are information-processing systems that are inspired by the functioning of
the human brain and have been used to model complex, non-linear interactions in natural sys-
tems [32]. A typical ANN consist of inputs (input-layer nodes) and computational units (hid-
den-layer nodes) connected by weighted links influencing the output calculation [32]. A
common form of the three-layer feedforward back-propagation network was used to create
independent individual-tree BA and volume increment sub-models. Multi-layer feedforward
networks with nonlinear transfer functions were used in this study, because of their ability to
discover nonlinear relations between input and output attributes [33]. Thirteen normalised
inputs were entered into the network and passed on to the hidden-layer nodes, where a
weighted sum of inputs was calculated according to eq (1). The product of this calculation was
then passed on to a hyperbolic tangent-sigmoidal transfer function (via eq (2)). Calculations by
the hidden-layer nodes were passed forward as input to the output node, with intermediate
processing steps described by eqs (3) and (4).

aj ¼
X

i¼1

ðXi WijÞ þ bj ð1Þ

cj ¼ tansigðajÞ ð2Þ
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dk ¼
X

j¼1

ðcj WjkÞ þ bk ð3Þ

yk ¼ tansigðdkÞ ð4Þ

where X is the input, Y the output,W the connection weight, and b the bias for a given ANN of
i input, j hidden, and k output nodes. Variables aj, cj, dk, and yk are intermediate calculation
products. The information flow and structure of ANNs formulated in this study are illustrated
in Fig 1Development of ANNmodels was carried out using MATLAB software (The Math-
Works, Inc, USA). MATLAB tools and add-on modules facilitate neural-network-model devel-
opment and statistical analysis [33]. Computer programme script was developed in default
MATLAB editor and files are available from the authors upon request.

Fig 1. Data flow and ANN structure with eight hidden-layer nodes for the prediction of individual-tree growth.

doi:10.1371/journal.pone.0132066.g001
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2.2.1. Artificial neural network input-layer nodes. At the tree level, individual trees were
described in the model by their species and size (i.e., BA). Forty-three tree species present in
the PSPs were grouped into eighteen separate species categories for simplification (Table 1;
[34]). Dominant tree height was used to reflect stand developmental stage. Total stand BA of
softwoods and hardwoods (BASW, BAHW) were used to reflect the overall stand composition.
Inter-tree competition was captured by ranking trees according to their size. PSP total BA of all
larger softwood and hardwood trees than a given tree (BALSW, BALHW) were used as inputs
to account for competition among individual trees [35]. Stocking, a descriptor of tree occu-
pancy of a stand to a standard value of stand-density conditions [36], was selected as a model
input to help capture stand-growing conditions. Site conditions and growing environment
were defined by biophysical variables, such as (i) incident solar radiation (SR), (ii) cumulative
growing degree-days (GDD), and (iii) indices of soil nutrient and water content. Present-day
and future forest response to changing climate was defined for four main forest growth scenar-
ios: historical tree-growth records (PSP data) were considered to represent present-day climate,
whereas JABOWA-3 generated data for three climate-change scenarios were used to represent
future growing conditions. The inputs, their units, abbreviated codes, and species groups are
listed in Tables 1 and 2. Further detail about inputs selection and calculation procedures is
available in Ashraf et al. [34].

2.3. Study area
The Province of NS is located on the east coast of Canada (43°27' N—46° 01' N; 59° 38' W- 66°
16' W). Elevation of the area ranges from 0–540 m above mean sea level. The current climate of
the region is temperate humid with an average annual precipitation of 1425 mm along the
coast and 1000 mm inland. Average daily air temperature ranges from 16–24°C in summer
and around -3°C during winter. Annual GDD (base temperature of 5°C) for the province vary
from 1500 to 1750 [36]. Under Canadian-GCM projections, GDDs are expected to increase by
about 800–1400 at the end of 21st century. Forests cover 77% of the province, with 50% classi-
fied as softwood, 11% as hardwood, 25% as mixedwood, and the remaining 14% as unclassified
forests [37]. Major tree species are spruce (Picea sp.) at 35% of total wood volume, balsam fir
(Abies balsamea) at 22%, and broadleaved species at 30% [38]. Location of the study area and
the network of PSPs used in this study are indicated in Fig 2.

2.4. Data acquisition and preparation
2.4.1. Growth and yield data from permanent sample plots. The required tree and stand

information were available from PSP datasets maintained by NS DNR. Permission to use the per-
manent sample plot data was granted by the NS DNR under a fair-use data agreement with The
University of New Brunswick, Canada. Data collection did not involve any destructive sampling
of either endangered or protected forest species. The data for this study was obtained from 3250
PSPs established to update forest inventories. Each PSP was of 0.04 ha (fixed size) and circular in
shape with a radius of 11.35 m. Measurement of traditional inventory attributes included tree
diameter at breast height (DBH) and tree height. Data collection included only trees with a
DBH> 9.1 cm. Inventory measurements were collected every five years since ~1960’s, with the
most recent data collected in 2006. Analysis of PSP data indicated an average DBH of 15.99 cm
(Min = 9.1; Max = 99.6) and an average height of 10.52 m (Min = 0.6; Max = 24.9).

2.4.2. Growth and yield data under climate change. Input data required to predict future
forest states with JABOWA-3 includes (i) climatic information, (ii) initial stand conditions,
and (iii) site conditions, including soil information. Projected future climate data (climate
change) were acquired from Environment Canada [39]. The information related to site
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Table 1. Tree species groups, their codes, and assigned values used as categorical input for ANNs of basal area and volume growth.

Input Node 9values Code Species Group Common Name Scientific Name

1 ASH Ash Black ash Fraxinus nigra

White ash Fraxinus americana

2 BE Beech American beech Fagus grandifolia

3 BF Balsam fir Balsam fir Abies balsamea

4 BS Black spruce Black spruce Picea mariana

5 EH Eastern hemlock Eastern hemlock Tsuga canadensis

6 MH Misc. hardwoods Alder (speckled) Alnus rugosa

Ailanthus Ailanthus altissima

Apple Malus sp.

Black cherry Prunus serotina

Choke cherry Prunus virginiana

Dogwood Cornus sp.

English oak Betula populifolia

Hawthorn Crataegus sp.

Ironwood Ostrya virginiana

Mountain ash Sorbus Americana

Mountain maple Acer spicatum

Pin cherry Prunus pensylvanica

Service berry Amelanchier sp.

Striped maple Acer pensylvanicum

American elm Ulmus americana

Willow Salix sp.

7 MP Misc. pines Jack pine Pinus banksiana

Red pine Pinus resinosa

Scots pine Pinus sylvestris

8 MS Misc. softwoods Japanese larch Larix kaempferi

Norway spruce Picea abies

Sitka spruce Picea strobus

9 PO Poplar Balsam poplar Populus balsamifera

Larch Larix sp.

Trembling aspen Populus tremuloides

Large-tooth aspen Populus grandidentata

10 RM Red maple Red maple Acer rubrum

11 RO Red oak Red oak Quercus rubra

12 RS Red spruce Red spruce Picea rubens

13 SM Sugar maple Sugar maple Acer saccharum

14 TL Tamarack European larch Larix decidua

Tamarack Larix laricina

15 WB White birch Grey birch Quercus robura

White birch Betula papyrifera

16 WP White pine White pine Pinus strobus

17 WS White spruce White spruce Picea glauca

18 YB Yellow birch Yellow birch Betula alleghaniensis

Adapted from Ashraf et al. 2013 [34].

doi:10.1371/journal.pone.0132066.t001
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conditions was extracted from a digital elevation model (DEM) and GIS thematic maps of NS,
while soil-related information was acquired from the Canadian Soil Information Service
(CANSIS) [40]. Initial stand conditions were based on PSP records. Tree growth projections
were developed for 34 PSP locations across NS, selected to represent nine eco-regions and cap-
ture the diverse climatic and site growing conditions of NS. The model was first calibrated
using historical weather records and observed PSP data from NS [41]. JABOWA-3 was initi-
ated with existing stand conditions using relevant projected future climates. The model was
run 5–7 times for each location to lessen the effect of model stochasticity inherent in model
functions of mortality and ingrowth. Individual-tree diameter and height dynamics for the
next 90 years were extracted from JABOWA-3 outputs under three projected climate-change
scenarios.

2.4.3. Climate change data. Future climate data used for model prediction were derived
from the third generation Canadian-GCM (CGCM3-T47) for the fourth assessment period of
the IPCC [1]. Climate data produced were based on future emission scenarios of greenhouse
gases defined by IPCC. Three illustrative emission scenarios chosen for the study include B1,
A1B, and A2 [42]. The emission scenarios were based on future global development with a par-
ticular emphasis on greenhouse gases and aerosol-precursor emissions [43]. The A1B scenario
was developed to reflect the world in an era of balanced energy use of fossil and non-fossil
fuels, rapidly growing economy, and an increasing world population achieving a maximum in
the middle of the current century. The B1 scenario reflects an environment friendly world,
population trend similar to A1B, and global economy rapidly moving towards a service and
information framework with the introduction of clean and efficient energy technologies. The
A2 scenario signifies a heterogeneous world, moderate economic growth, and high population
growth throughout the century [42]. Ninety year projections of monthly mean temperatures
and precipitation (2012–2102) relevant to selected locations of NS were obtained from the
CGCM3-T47 simulations for B1, A1B, and A2 climate scenarios. Discrepancy in CGCM3-T47
produced data was calculated by comparing past weather records with the relevant predictions

Table 2. Input variables for ANN-models of basal area (BA) increment and volume increment.

Input Node # Code Description Units

1 BA Basal area cm2

2 BASW Sum of SW BA in PSP m2 ha-1

3 BAHW Sum of HW BA in PSP m2 ha-1

4 BALSW Sum of BA of larger SW trees a m2 ha-1

5 BALHW Sum of BA of larger HW trees a m2 ha-1

6 DOM-HT Dominant height m

7 SMO Soil moisture 1–7 unit less

8 SN Soil nutrients 5–47 unit less

9 SPE Species class identification 1–18 b unit less

10 STOC-FAC Stocking factor Relative index

11 GDD Growing degree days Temperature index; > 5°C

12 SR Solar radiation watt-hours m-2

13 Climate Climate scenarios 1–4 c unit less

a Sum of the BA of large trees (based on diameter) in a PSP, larger than a given tree.
b A complete list of species groups and assigned values are provided in Table 1.
c 1: present-day climate (PC); projected climate change scenarios: 2: minimal (B1), 3: moderate (A1B), 4: maximum (A2)

SW: softwood trees; HW: hardwood trees.

doi:10.1371/journal.pone.0132066.t002
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for each location. Monthly mean temperatures were adjusted by accounting for the mean bias,
whereas ratio adjustments were used to correct future estimates of precipitation [29]. In this
study, we define B1 as a minimal impact, A1B as a moderate impact, and A2 as a maximum
impact scenario.

2.5. Neural network training and optimummodel structure
The dataset assembled for training and validating the individual ANNs for BA and volume
increment predictions consisted of 326,395 records of tree growth for each network; 220,657
records extracted from historical datasets (i.e., PSPs) as representative of present-day forest
conditions, and 105,738 tree-growth records generated with JABOWA-3 for the three climate
scenarios (B1, A1B, and A2). The dataset was then divided into a training sub-dataset (75% of
the original dataset) and validation sub-dataset (25%). Both training and validation sub-

Fig 2. Province of Nova Scotia, Canada, and distribution of permanent sample plots (PSPs).

doi:10.1371/journal.pone.0132066.g002
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datasets were normalised to a range from -1 to 1, due to widely varying ranges and magnitudes
of inputs and outputs [44].

During training, the ANNs predicting BA and volume increments were compared with
their corresponding target values, differences calculated, and propagated back through the net-
work for weight optimisation and error reduction [45–47]. Number of hidden-layer nodes is a
sensitive structural parameter in ANNs, as too few can lead to under-fitting of the target data
and too many can lead to over-fitting [47]. An early-stop option was used to stop training in
order to prevent over-fitting of the target data.

In this study, we examined ANN structures with four to ten hidden nodes and evaluated
their prediction accuracy. In ANN training, mean squared error (MSE) describes the variance
and bias of the predictor with respect to normalised observation values. Pearson’s correlation
coefficient (R) and BIAS (eq (5)) were used to evaluate training accuracy (predicted vs.
observed); BIAS demonstrates the average difference between predicted and observed data.

BIAS ¼
Pn

i¼1ðOi � SiÞ
n

ð5Þ

where Oi denotes observed values of tree i, Si is the associated predicted value, and n is the
number of prediction-to-observation data-point comparisons.

Pearson’s correlation coefficient was calculated for normalised data, while BIAS was calcu-
lated from de-normalised data. The final ANNs for BA and volume increments were selected
based on training accuracy indicated by R, MSE, and BIAS. The ANNs selected with optimised
and set weights were validated against independent datasets.

2.6. Model validation
The accuracy of ANNs with respect to predicted BA and volume increments was statistically
evaluated by comparing against values from the validation sub-dataset. Statistical indicators
used in the assessment of accuracy included (i) root mean squared error (RMSE), (ii) BIAS (eq
(5)), and (iii) model efficiency (ME, eq (6)). Model efficiency is a relative index of model per-
formance estimated by directly comparing predicted and observed data [48]. Model efficiencies
range from 1 to -1; 1 represents a perfect fit, while values lower than zero means the predic-
tions are no better than the average of the observations.

ME ¼ 1�
Pn

i¼1 ðOi � SiÞ2Pn
i¼1 ðOi � �OiÞ2

ð6Þ

where �Oi is the mean observed value, others are same as in eq (5).
Observed and ANN-predicted BA and volume increments were plotted against the 1:1 line.

We also plotted residuals to get further insight as to the prediction accuracy of ANNs. The vali-
dation dataset along with relevant ANN predictions were categorised according to climate sce-
nario, since the model was developed with a special intention to predict forest response under
conditions of climate change. The residuals ([observed increment]-[ANN-predicted incre-
ment]) vs. individual-tree size (BA) were plotted according to climate scenario.

Results

3.1. Selection of neural network structure
Values of R, MSE, and BIAS for the individual ANNs with four to ten hidden-layer nodes are
presented in Table 3; variations according to the number of hidden-layer nodes are illustrated
in Fig 3. For BA increment, ANN configurations with four to ten hidden-layer nodes produced
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Table 3. Training accuracy of ANNs for basal area (BA) increment and volume increment with different numbers of hidden-layer nodes.

Hidden nodes BA increment Volume increment

R MSE BIAS R MSE BIAS

4 0.87 0.00219 2.69360 0.92 0.00108 -0.00007

4 0.89 0.00194 -0.58540 0.92 0.00115 0.00160

4 0.89 0.00199 0.62620 0.90 0.00136 0.00280

6 0.88 0.00207 0.89810 0.91 0.00126 0.00120

6 0.90 0.00180 0.77700 0.93 0.00096 0.00100

6 0.91 0.00174 -1.35230 0.93 0.00092 0.00120

8 0.89 0.00184 -0.06670 0.94 0.00083 0.00080

8 0.90 0.00180 0.84440 0.94 0.00086 0.00083

8 0.90 0.00170 0.22040 0.95 0.00075 0.00048

10 0.92 0.00144 1.41510 0.93 0.00093 0.00130

10 0.93 0.00124 1.47580 0.95 0.00074 0.00011

10 0.92 0.00142 1.19360 0.92 0.00104 0.00073

R: correlation coefficient; MSE: mean squared error; both R and MSE are estimated from normalised data ([-1] to [+1]).

BIAS is calculated from denormalised data using eq (6); BA increment (basal area; cm25year-1); volume increment (m3 5year-1).

doi:10.1371/journal.pone.0132066.t003

Fig 3. ANN training accuracy for basal area (BA) increment (a-c) and volume increment (d-f). The points represent results from individual training
sessions and the trend lines represent the average of results from the three best models with the same number of hidden-layer nodes. R is the correlation
coefficient, MSE the mean squared error of normalised data, and BIAS the average difference between predicted and observed data.

doi:10.1371/journal.pone.0132066.g003
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R values between 0.87 and 0.93, MSE of 0.00124 to 0.00219, and BIAS of -0.06670 to 2.69360.
The R values increased with the number of hidden layer nodes from four to six, but were similar
for six and eight hidden layer nodes, and increased with ten hidden nodes (Fig 3a). Lowest MSE
values were observed for ANNs with ten hidden nodes and greatest with four hidden nodes.
BIAS values were consistent, lowest, and close to zero for network structures with eight hidden
nodes; BIAS values were progressively higher with four, six, and ten hidden nodes (Fig 3c).

ANN prediction accuracy for individual-tree volume increment (m3 5year-1) is given as a
function of the number of hidden-layer nodes in Fig 3d–3f. The R values ranged from 0.90 to
0.95 and MSE from 0.00074 to 0.00136, whereas BIAS ranged from -0.00007 to 0.00280. Over-
all highest R and lowest MSE were produced with ANNs with eight hidden nodes, while aver-
age minimum BIAS occurred when eight hidden nodes were used. In general, prediction
accuracy increased from four to eight hidden nodes, and decreased from eight to ten nodes.

3.2. Model validation
Scatter plots and residuals generated from ANN validation are presented in Fig 4. Predictions
with the optimised ANN for BA increment, when compared to the validation data produced a
BIAS of -0.0177, RMSE of 40.53, and ME of 0.82. Similarly, ANN-predictions for volume incre-
ment generated a BIAS of 0.00079, RMSE of 0.0393, and ME of 0.89. High ME-values (> 0.80)
indicated good overall ANN performance for both BA and volume increment under present-
day and future projected climates. Overall, average difference between ANN-predicted and
observations (i.e., BIAS) was low for both BA and volume increments.

Scatter plots of residuals vs. individual-tree BA are presented in Figs 5 and 6.
Most residuals for BA increment were within ± 200 cm2 5-year-1 and tree BA was< 2500

cm2 (Fig 5a).

Discussion
Many ANNs with random initialisation of weights were trained to avoid the problem of local
minima [49,50]. Results presented in Table 3 are the best three runs for each model structure
as to individual training accuracies for different number of hidden nodes. With all the runs and
model structures examined, the best ANNs for modelling BA and volume increments consisted
of eight hidden nodes. Optimised ANNs for both variables consisted of 13 input nodes, eight
hidden-layer nodes, and one output node.

There are few related studies available in the literature to compare against, as this is the first
time that a G&Y model has been developed and validated against tree data for both present-
day (i.e., PSP data) and projected future climates (JABOWA-3 generated data). Statistical indi-
cators of model accuracy (i.e., BIAS, RMSE, and ME) demonstrate good overall model perfor-
mance compared to conventional models designed for static climatic conditions. The Forest
Vegetation Simulator-Inland Empire model (i.e., FVS-IE), generally over-predicted diameter
increments by 14% compared to field records, whereas discrepancy in predicting different spe-
cies diameter ranged from -49.1% to 5.9% [51]. This was reported in a study validating the BA
increment component of FVS-IE with forest inventory data across the Inland Empire region,
USA. Basal area increment models developed in Norway generated coefficients of determina-
tion (r2) ranging from 0.26 to 0.55 for different tree species [52]. A study evaluated conven-
tional tree-level models for Finland and obtained overall relative BIAS of 2.3 to -6.0% in the
prediction of stand BA [53].

Previous studies modelling individual-tree growth with ANNs based on data from the prov-
ince of NS, reported a RMSE of 26.14 and 23.50, respectively, and ME of 0.39 and BIAS of
0.1356 for BA increment [34,54]. In general, the model developed in this study demonstrated

A NewModel for Predicting Forest Growth under Climate Change

PLOSONE | DOI:10.1371/journal.pone.0132066 July 14, 2015 11 / 18



better overall performance in terms of BIAS and ME compared to past studies in NS, albeit
with a slight increase in RMSE for both BA and volume predictions compared to those
reported by Ashraf et al.[34]. Addition of JABOWA-3 growth data to account for climate
change has increased the dispersion in target data. High R and ME values can also be attributed
to the addition of JABOWA-3 generated growth data in the training dataset and should not be
interpreted that the newly developed ANNs are substantially better than the other models.

There is always a certain level of uncertainty in model predictions as forest G&Y models are
abstractions of highly complex, nonlinear systems. It would be unrealistic to expect that a
model can replicate all natural variation exhibited by biological systems. Potential sources of
model discrepancy in JABOWA-3 calculations may arise from inaccuracies in GCM-produced
future climates [55] and climate-response functions in JABOWA-3 [56]. Further discussion
about the limitations of gap models is available in published scientific literature [7,21,57].

Fig 4. ANNmodel validation of individual-tree observed and predicted basal area and volume increment. (a) basal area increment (BA: cm2 5-year-1),
(b) BA increment residual plot, (c) volume increment (m3 5-year-1), and (d) volume increment residual plot. ME is model efficiency, BIAS is the average
difference between predicted and observed data (eq 6), and RMSE is the root mean squared error.

doi:10.1371/journal.pone.0132066.g004
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All residuals were randomly dispersed along the horizontal axis indicating good overall
model performance [58]. This demonstrates, with field records spanning ~40 years of present-
day climate, that most stands are young to immature (0–40 years) due to intensive harvests in
the past [37,59]. However, dispersion of data points along the x-axis (BA) increased in Fig 5b–
5d, since these Figs show results of 90 years growth predicted by JABOWA-3 under climate
change scenarios.

The expanded range in some of the residual points in Fig 5b–5d indicated that ANNs cannot
predict a number of data points (tree growth) produced with JABOWA-3 for future climate
scenarios. However, most of the other data points (~98%) were within the same range as in Fig
5a for existing field records. Residual analysis revealed that most data points (-1,-300] or
[300,1) belonged to red maple (Acer rubrum L.) with its growth expected to increase with cli-
mate change [29]. Similar trends were observed in residual plots (Fig 6) for volume growth pre-
dictions. Generally, these results indicated the advantage of pooling data (JABOWA-predicted
+ PSP tree data) together for joint influence on ANN development. As the number of data

Fig 5. Scatterplots of individual-tree basal area (BA) increment as a function of residuals of BA increment during validation (a) present-day climate
scenario; (b) B1, (c) A1B, (d) A2 climate-change scenarios.Residuals = (observed)—(ANN-predicted) individual-tree BA increment [cm2 5-year-1].

doi:10.1371/journal.pone.0132066.g005

A NewModel for Predicting Forest Growth under Climate Change

PLOSONE | DOI:10.1371/journal.pone.0132066 July 14, 2015 13 / 18



points associated with field-measured PSP data was greater than that of the JABOWA predic-
tions, the PSP data may have helped to adjust some over-prediction with red maple under sce-
narios of climate change.

It is important to mention other approaches such as potential growth surfaces (PGS), cli-
mate envelops (CE), and plant-hardiness zones (PHZ) applied to study forest response to cli-
mate change [60–64]. These approaches mostly describe species response to climatic variables
and ignore biotic factors critical to tree growth, such as inter- and intra-specific competition
[60]. Biotic factors may not be so important for studies at larger spatial scales, such as land-
scape or biomes, but they are particularly vital for stand- and regional-scale studies [63]. In
addition, PGS, CE, and PHZ are developed for discrete time intervals, taking into account
30-year climate normals and their modification under projected climate change [60–64].
Therefore, the inferences drawn based on these approaches are for certain time-periods assum-
ing step-wise changes. However, as climate change is a gradual process, information about suc-
cessional pathways that present-day forests are expected to take during the transition period is

Fig 6. Scatterplots of individual-tree BA increment as a function of residuals of volume increment during validation (a) present-day climate
scenario; (b) B1, (c) A1B, (d) A2 climate-change scenarios.Residuals = (observed)—(ANN-predicted) individual-tree volume increment [m3 5year-1].

doi:10.1371/journal.pone.0132066.g006
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greatly desirable [65]. Furthermore, PHZs define the climate ranges (mainly as a function of
temperature) where certain plant species can survive based on species geographic presence-
absence [66]. PHZs are developed based on species existence and are not true illustrations of
species-growth behaviour. Species can survive within defined PHZ ranges, but may not achieve
optimal or even normal growth. Numerous researchers have suggested the importance of find-
ing ways to combine empirical and process-based approaches in the development of hybrid
models to address forest-growth response with climate change [e.g., 10,16]. In this study, we
introduced a modelling approach to improve the scope of current G&Y models by using
knowledge acquired with process-based models [15].

Climate change impact assessments always have uncertainty due to the complex and sto-
chastic nature of biological and climate systems [62,63]. Although model parameters need to
be fine-tuned, gap models are considered to have the best model structure for assessing impacts
of climatic change over the transitional period of present-day forests [29]. Moreover, gap mod-
els can be tailored to provide individual-tree data in the same format as provided by PSP rec-
ords. In this study, projecting tree growth under the influence of climate change with a gap
model in developing empirical G&Y models is a unique contribution to forest modelling
addressing non-static growing conditions. However, opportunities exist for expanded studies
using other types of process-based models and comparative studies of different modelling tech-
niques in assessing forest-related climate change impacts.

Conclusions
In this study, we developed a simple and practical G&Y model that can predict individual-tree
BA increment and volume increment over 5-year intervals. The model is based on ANNs and
has the capability to predict growth under current climate conditions as well as under three
projected climate-change scenarios. The G&Y model was formulated and validated against
over 40 years of tree data from 3250 PSPs, together with 90 years of data for projected future
climates. The model predicted individual-tree growth in multi-species forest for both even-
aged and uneven-aged stands. The model requires traditional forest inventory attributes, in
addition to incident solar radiation, GDDs, and indices of soil nutrient and soil water content
at the location of PSPs as primary input. This study demonstrated a novel modelling approach
to integrate climate change impacts in forest G&Y models. The study also demonstrated the
virtue of using artificial intelligence in modelling forest G&Y.
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