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INTRODUCTION

Purinergic signaling comprises a network of extracellular nucleosides and nucleotides, cell surface
adenosine (P1) and nucleotide (P2) receptors, and ecto-enzymes that together participate in cell-to-
cell communication (Giuliani et al., 2019). This network plays key roles in many physiological
processes (Burnstock, 2012) including inflammation and immunity, as recently illustrated by
members of the Italian Purine Club (Adinolfi et al., 2018; Di Virgilio et al., 2018; Magni et al., 2018;
Antonioli et al., 2019) and others (Linden et al., 2019). Much of this understanding has been
obtained from studies of cells expressing endogenous or recombinant purinergic molecules, rodent
models of health and disease, and human tissue samples (Burnstock, 2012). Humanized mice
provide a complementary approach to investigate purinergic signaling in inflammation and
immunity and are valuable tools to translate findings from mice to humans. However, the use of
humanized mice in this context is only in its infancy. In this opinion article, we will briefly provide a
description of humanized mice. Then, using recent studies from our groups, we illustrate how a
humanized mouse model has been used to advance our understanding of purinergic signaling in the
inflammatory immune disorder, graft-versus-host disease (GVHD). Finally, directions for the future
use of humanized mouse models to investigate purinergic signaling in inflammation and immunity
and other systems will be briefly outlined.
HUMANIZED MICE

Humanized mice can be classified into two groups. The first involves the expression of specific
human gene products within mice including cases in which a given mouse gene is replaced by the
human ortholog (Stripecke et al., 2020). Examples of mice incorporating transgenes of human
purinergic molecules include the overexpression of human CD39 (ENTPD1) (Dwyer et al., 2004), as
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well as the substitution of the mouse gene with the
corresponding human gene for the adenosine A3 receptor
(ADORA3) (Yamano et al., 2005), P2X7 receptor (P2RX7)
(Metzger et al., 2017a) or a Gln460Arg P2X7 receptor variant
(Metzger et al., 2017b). The second group of humanized mice, so
called xenogeneic mouse models, involves the transfer of human
cells into mice, which are typically immunodeficient (Stripecke
et al., 2020). It is this group which forms the focus of the
remaining article.

Humanized mice resulting from the engraftment of human
cells have been important pre-clinical tools for three decades
(Shultz et al., 2019). As such, there are a large number of
humanized mouse models including those of relevance to
inflammation and immunity, in which immunodeficient mice
are engrafted with human peripheral blood mononuclear cells
(PBMCs), hematopoietic cells or tissues to form functional
human immune systems (Shultz et al., 2019). A brief history of
the development of humanized mice, including a list of the
current mouse platforms available and potential sources of
human tissue, is provided elsewhere (Shultz et al., 2019).

The humanized mouse model most commonly used to
investigate purinergic signaling in inflammation and immunity
involves the injection of human PBMCs into non-irradiated
NOD.Cg-PrkdcscidIL2rgtm1Wjl (NSG) mice (Hu-PBMC-NSG
mice) (Geraghty et al., 2017), a model established by King
et al. (2008). NSG mice readily engraft human cells due to
naturally occurring and engineered mutations resulting in:
impaired development of T and B cells and natural killer cells,
preventing immune-mediated rejection of human cells; and
enhanced mouse SIRPa-human CD47 interactions, promoting
engraftment of human hematopoietic cells (Shultz et al., 2019).
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NODShi.Cg-PrkdcscidIL2rgtm1Sug (NOG) mice are similar to NSG
mice except they encode a truncated, rather than a null, form of
the IL-2 receptor g-chain and can also engraft human PBMCs
(Shultz et al., 2019). Thus, studies of NOG mice engrafted with
human PBMCs provide supplementary information when
seeking to understand immune mechanisms in Hu-PBMC-
NSG mice. Studies of humanized NOG mice in relation to
purinergic signaling are yet to be reported.

A number of features need to be considered when studying
purinergic signaling pathways in Hu-PBMC-NSG mice. First,
despite readily engrafting human T cells, the engraftment of
human B cells and myeloid cells in these mice is limited (King
et al., 2008), presumably due to species-specific factors (Shultz
et al., 2019). Second, these factors are likely to disrupt the
engraftment of other human leukocyte subsets, such as the
observed decline of human T regulatory cells in these mice
over time (Hu et al., 2020). Third, NSG mice display defects in
other immune pathways such as the complement pathway
(Verma et al., 2017) limiting the scope of studying some
inflammatory and immune processes. Fourth, disparities
between murine MHC class I and II molecules and human T
cell receptors may yield sub-optimal human immune responses
(Lee et al., 2019). Fifth, NSG mice display higher rates of
antibody clearance compared to other strains (Li et al., 2019)
reducing the efficacy of functional monoclonal antibodies in this
model. Finally, Hu-PBMC-NSG mice develop lethal GVHD
from 4 weeks (King et al., 2009; Geraghty et al., 2019b),
limiting long-term studies in these mice. This last feature
however affords a valuable pre-clinical model of this disease,
which we have utilized to investigate the role of purinergic
signaling pathways in GVHD (Figure 1).
FIGURE 1 | Purinergic signaling in a humanized mouse model of graft-versus-host disease (GVHD). Intraperitoneal (i.p.) injection of 10 × 106 human (h) peripheral
blood mononuclear cells (PBMCs) into NOD.Cg-PrkdcscidIL2rgtm1Wjl (NSG) mice (Day 0) results in the engraftment of human (h) CD45+ leukocytes predominately
hCD4+ and hCD8+ T cells as early as Day 21. The percentages of hCD45+ leukocytes, hCD3+ T cells and hCD4+ or hCD8+ T cells represent the average
percentages of these cells among total CD45+ leukocytes, hCD45+ leukocytes and hCD3+ T cells, respectively, typically observed in this model (Cuthbertson et al.,
2020). From Week 4, mice display signs of clinical GVHD (as indicated) corresponding with the production of circulating human interferon-g (hIFN (g), tumor necrosis
factor (hTNF) and interleukins (hIL) (as indicated) (Geraghty et al., 2017; Geraghty et al., 2019a; Geraghty et al., 2019d), increased murine P2rx7 and P2rx4
expression in GVHD tissues, and histological evidence of GVHD at endpoint (Day 70) (Cuthbertson et al., 2020). The box highlights studies of humanized mice in
which roles for purinergic molecules were established as follows. Injection of the CD39/CD73 antagonist, a,b-methylene ATP (APCP), which potentially increases
extracellular ATP, increases weight loss and liver GVHD (Geraghty et al., 2019d). Injection of the P2X7 antagonist, Brilliant Blue G (BBG), decreases weight loss and
liver GVHD (Geraghty et al., 2017; Geraghty et al., 2019c). Injection of PBMCs from human donors encoding an ENTPD1 polymorphism, which increases the
proportion of CD39+ T regulatory cells, worsens GVHD (Adhikary et al., 2020).
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PURINERGIC SIGNALING IN GVHD IN
HUMANIZED NSG MICE

Allogeneic hematopoietic stem cell transplantation (HSCT) is
a curative therapy in people with malignant and other blood
disorders (Copelan et al., 2019). However, GVHD, in which
donor immune cells damage and destroy host tissues occurs in
up to 30% of HSCT recipients, leading to severe morbidity and
high rates of death (Zeiser and Blazar, 2017). GVHD typically
occurs in the skin, intestines, liver and lungs, but can
extend to the eyes, ovaries and brain (Zeiser and Blazar,
2017). As such, new and additional treatments are needed to
further decrease the impact and incidence of GVHD in
HSCT recipients.

Studies from allogeneic mouse models of GVHD, in which
donor leukocytes from one mouse strain are transplanted into a
second mouse strain, have revealed important roles for
purinergic signaling pathways in GVHD development,
identifying new potential therapeutic targets in preventing this
disease in humans. Using small molecule antagonists/agonists
and knockout mice of purinergic molecules, these studies have
revealed that ATP is released at sites of inflammation and that
P2X7 receptor activation on host antigen presenting cells
contributes to the stimulation of donor effector T cells to
promote GVHD progression (Wilhelm et al., 2010). Moreover,
P2Y2 receptor activation on host cells contributes to this disease
by directing monocytes to sites of inflammation and causing the
apoptotic loss of intestinal cells (Klämbt et al., 2015). Conversely,
adenosine A2A receptor activation by CD73-generated adenosine
limits GVHD progression (Lappas et al., 2010; Tsukamoto et al.,
2012), an effect mediated in part by the expansion of donor T
regulatory cells (Han et al., 2013). Collectively, these data suggest
a working paradigm in which extracellular ATP activates P2
receptors to promote inflammation and GVHD, while
extracellular adenosine activates adenosine receptors to limit
inflammation and GVHD.

To determine if the above paradigm is relevant to human
GVHD, our groups have investigated the roles of purinergic
signaling in Hu-PBMC-NSG mice using small molecule
antagonists/agonists of purinergic molecules and PBMCs
from human donors encoding natural variants of the P2RX7
and ENTPD1 genes (Figure 1). Collectively, this data supports
the role of extracellular ATP (Geraghty et al., 2019d) and the
subsequent activation of the P2X7 receptor (Geraghty et al.,
2017; Geraghty et al., 2019c) in promoting GVHD, most
notably liver GVHD, in this humanized mouse model. This
effect appeared to be due to activation of host P2X7 receptors,
as PBMCs from human donors encoding either loss-of-
function or gain-of-function P2RX7 gene variants resulted in
similar rates and severity of GVHD (Adhikary et al., 2019). In
contrast, a role for CD73-derived adenosine and A2a receptor
activation in preventing GVHD in Hu-PBMC-NSG mice could
not be established (Geraghty et al., 2019d). Use of the adenosine
A2a receptor agonist, CGS 21680, suggested a role for this
receptor in preventing GVHD progression, but this result was
confounded by this agonist increasing weight loss in Hu-
Frontiers in Pharmacology | www.frontiersin.org 3
PBMC-NSG mice (Geraghty et al . , 2019a). Further
complicating an immunosuppressive role for adenosine in
this model, is our observation that engraftment of human
PBMCs with a polymorphic variant of the ENTPD1 gene, that
results in increased CD39+ T regulatory cells, worsens GVHD
(Adhikary et al., 2020). Finally, our studies have revealed
increased expression of murine P2rx7 and P2rx4 in GVHD
tissues from Hu-PBMC-NSG mice compared to those from
non-engrafted NSG mice (Cuthbertson et al., 2020) and the
presence of functional murine P2X7 receptors in NSG mice
(Geraghty et al., 2017), whilst both human P2RX7 and
ADORA2 are detected in Hu-PBMC-NSG mice (Geraghty
et al., 2019d). Collectively, this data suggests Hu-PBMC-NSG
mice provide a pre-clinical model of GVHD in which new
therapeutics aimed at inhibiting P2X7 receptor activation can
be tested, whilst the potential use of this model to test new
therapeutics aimed at activating A2A receptors remains to be
established. Moreover, through the use of species-specific
biologics (Koch-Nolte et al., 2019), Hu-PBMC-NSG mice
afford new opportunities to delineate the role of donor
(human) and host (murine) purinergic molecules in GVHD.
One caveat in using Hu-PBMC-NSG mice to study purinergic
signaling in GVHD is that the use of purinergic antagonists/
agonists in these mice are typically less effective in modifying
disease outcomes than in allogeneic mouse models of GVHD.
This difference most likely reflects the greater disparity in MHC
molecules between species than between mouse strains
resulting in more severe forms of GVHD in Hu-PBMC-NSG
mice compared to allogeneic mice.
CONCLUSIONS AND FUTURE
DIRECTIONS

Due to the development of lethal GVHD in Hu-PBMC-NSG
other studies of purinergic signaling in inflammatory and
immune processes in these mice remain limited. Nevertheless,
given these mice readily engraft human T cells, these mice
present opportunities to study the role of purinergic molecules
in human T cell activation, differentiation, migration and
survival in vivo for up to 4 weeks prior to clinical GVHD
development. Moreover, the above studies of purinergic
signaling in GVHD in Hu-PBMC-NSG mice serve as a proof-
of-concept to consider studying the roles of purinergic signaling
in inflammatory and immune processes in other humanized
mouse models. In this regard, recent advances, such as the
expression of transgenes for human growth factors and use
of human progenitor cells, have facilitated the engraftment of
human T cells and other human leukocytes in the absence of
GVHD (Stripecke et al., 2020). Other advances have assisted the
study of human T cell responses in vivo. For example, expression
of human MHC class I and II transgenes in NSG mice has
facilitated the study of CD8+ and CD4+ T cell responses in graft-
versus-leukemia immunity (Ehx et al., 2018) and colitis (Goettel
et al., 2016), respectively, in Hu-PBMC-NSG mice. Thus,
purinergic investigators seeking to employ humanized mice
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need to consider the purinergic pathway(s) and cell type(s) of
interest in selecting the most appropriate humanized mouse
model available, including the development of new humanized
mouse models to address aims.

In wanting to employ humanized mice, investigators also need
to consider the ethical implications and constraints of using animals
and human tissues, including the generation of human–mice
chimeras and the source of human cells (Devolder et al., 2020),
with some humanized mouse models requiring human fetal liver
tissue (Shultz et al., 2019). Nevertheless, given the range of
humanized mouse models emerging (Stripecke et al., 2020),
humanized mice provide new and exciting opportunities for the
study of purinergic signaling in inflammation and immunity, as well
as in other physiological and pathophysiological settings. For
example, von Willebrand factor mutant mice, which support
human but not murine platelet-induced thrombosis, have been
used to study the P2Y12 receptor antagonist clopidogrel in vivo
(Magallon et al., 2011). Additionally, given the roles of purinergic
signaling in cancer progression and metastasis, as highlighted by
members of the Italian Purine Club (Di Virgilio and Adinolfi, 2017;
Ferrari et al., 2017; Giuliani et al., 2018), human tumor xenograft
models will support the future study of such pathways in this
disease. Humanized mouse models also afford opportunities to
develop personalized medicine relating to purinergic targets in
disease, as illustrated by the use of human tumor xenografts (so
called patient-derived xenograft or PDX models) in tailoring
therapies for people with cancer (Shultz et al., 2019). Finally,
investigators are directed to recent standardized reporting
Frontiers in Pharmacology | www.frontiersin.org 4
guidelines concerning the use of humanized mice aimed at
enhancing rigor and reproducibility (Stripecke et al., 2020).
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