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Genomic sequence variation within enhancers and promoters can have a significant impact on the cellular state and pheno-

type. However, sifting through themillions of candidate variants in a personal genome or a cancer genome, to identify those

that impact cis-regulatory function, remains a major challenge. Interpretation of noncoding genome variation benefits from

explainable artificial intelligence to predict and interpret the impact of a mutation on gene regulation. Here we generate

phased whole genomes with matched chromatin accessibility, histone modifications, and gene expression for 10 melanoma

cell lines. We find that training a specialized deep learning model, called DeepMEL2, on melanoma chromatin accessibility

data can capture the various regulatory programs of the melanocytic and mesenchymal-like melanoma cell states. This mod-

el outperforms motif-based variant scoring, as well as more generic deep learning models. We detect hundreds to thousands

of allele-specific chromatin accessibility variants (ASCAVs) in eachmelanoma genome, of which 15%–20% can be explained

by gains or losses of transcription factor binding sites. A considerable fraction of ASCAVs are caused by changes in AP-1

binding, as confirmed by matched ChIP-seq data to identify allele-specific binding of JUN and FOSL1. Finally, by augment-

ing the DeepMEL2 model with ChIP-seq data for GABPA, the TERT promoter mutation, as well as additional ETS motif

gains, can be identified with high confidence. In conclusion, we present a new integrative genomics approach and a deep

learning model to identify and interpret functional enhancer mutations with allelic imbalance of chromatin accessibility

and gene expression.

[Supplemental material is available for this article.]

Understanding the functional consequences of noncoding vari-
ants is still a fundamental challenge in human genetics.
Genome-wide association studies indicate that almost 90% of dis-
ease-related variants reside in noncoding regions (Hindorff et al.
2009; Maurano et al. 2012), and these regions are enriched for
transcription factor (TF) binding sites (Khurana et al. 2013). A large
body of work has been devoted to identifying noncoding variants
that alter gene regulation by linking them to functional genomics
data (Gaffney et al. 2012; The GTEx Consortium 2015; Chen et al.
2016; Banovich et al. 2018). Broadly, the approaches taken to ad-
dress this problem can be classified into two groups. The first
one is quantitative trait loci (QTL) analysis, in which a variant is
correlated to a cellular trait (e.g., expression, binding, accessibility)
across a large number of samples. This strategy is widely used with
expression, chromatin immunoprecipitation (ChIP), and chroma-
tin accessibility data for detecting, respectively, QTL associated
with gene expression (eQTL), TF binding (bQTL) (Kilpinen et al.
2013), histone modifications (hQTL) (McVicker et al. 2013), or
chromatin accessibility (caQTL) (Maurano et al. 2015). This type
of analysis is cost-efficient and can be conducted with array-based
data but requires large sample sizes, because effect sizes are usually

low (Do et al. 2017). Moreover, the resolution is typically too low
to pinpoint a single variant owing to linkage disequilibrium (typ-
ically spanning 10 to 100 kb) (Do et al. 2017). Additionally, struc-
tural variation and rare variants (minor allele frequency<0.05) are
often ignored in these studies (Chen et al. 2016; Audano et al.
2019). The alternative approach is to assess allelic imbalance at a
heterozygous site directly. This allele-counting approach has
been extensively used with RNA-seq data to identify allele-specific
expression (Castel et al. 2015) but is also applicable to other types
of functional genomics data (Rozowsky et al. 2011; Chen et al.
2016). Here, the strategy relies on finding the allelic origin of the
observed signal. Unlike QTL analysis, this approach does not
depend on large sample sizes and can be used to find rare or
even de novo regulatory variants; however, it requires higher geno-
mic coverage and more complex data processing. Technical issues
inherent to alignment and variant calling procedures such as refer-
ence bias (i.e., reads originating from the reference allele map bet-
ter than those containing the variant), ambiguous alignments,
and copy number alterations need to be addressed in order to ob-
tain accurate measures of allelic imbalance (Rozowsky et al. 2011;
Chen et al. 2016; de Santiago et al. 2017). The use of personalized
diploid genomes instead of a haploid reference has been suggested
to prevent some of these technical biases (Rozowsky et al. 2011;
Castel et al. 2015; Chen et al. 2016).5These authors contributed equally to this work.
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Both QTL analysis and inference of allelic imbalance can lead
to the identification of candidate gene regulatory variants. Howev-
er, they typically yield little information as to the precise regulato-
ry mechanisms affected by these variants. More than 70% of
noncoding variants associated with common diseases overlap
with TF binding sites (Maurano et al. 2012); however, studies so
far showed that the majority of the variants associated with al-
lele-specific enhancer activity cannot be explained by TF motif al-
terations (Degner et al. 2012; Kilpinen et al. 2013; Maurano et
al. 2015; Waszak et al. 2015; Deplancke et al. 2016; Kumasaka
et al. 2016; Tehranchi et al. 2019). This might be because of the in-
adequacy of current TF motif models (such as position weight ma-
trices [PWMs]) that do not take other enhancer features into
account, such as flanking sequence context, DNA shape, or combi-
natorial TF binding (Inukai et al. 2017). By leveraging the extensive
chromatin and TF binding data available, machine-learning ap-
proaches hold promise to predict TF-bound regions and chromatin
changes with single-nucleotide resolution. However, thesemodels
require correct training and rigorous validation and are typically
trained either for a single TF (Alipanahi et al. 2015; Lee 2016;
Quang and Xie 2019; Avsec et al. 2021) or for hundreds of epige-
nomic features (Zhou and Troyanskaya 2015; Kelley et al. 2016).
These models tend to be cell type–specific, resulting in reduced
performance when applied to other cell types (Banovich et al.
2018). We have previously shown that specialized deep learning
models can outperform generic ones at predicting regulatory fea-
tures and the effect of sequence variation across species (Minnoye
et al. 2020).

Here, we perform a comprehensive analysis of 10 melanoma
whole genomes to identify and characterize functional noncoding
variants. By integrating sample-matched phased whole-genome
sequencing (WGS), assay for transposase-accessible chromatin us-
ing sequencing (ATAC-seq), ChIP against H3K27ac (ChIP-seq), and
transcriptome sequencing (RNA-seq) data, we identify allele-spe-
cific regulatory changes. To interpret how sequence variation af-
fects the gain or loss of TF binding sites, we used a deep learning
model, called DeepMEL2, that is trained on different melanoma
cell states. We investigate the benefits and limitations of cell
state–specific deep learning and motif analysis to unravel how en-
hancer mutations affect gene regulation.

Results

Identification of ASCAVs using linked-read genome sequencing

and ATAC-seq

We obtained haplotype-resolved WGS data of 10 patient-derived
melanoma cultures (MM lines) using linked-read technology
from 10x Genomics (Fig. 1A; Supplemental Fig. S1; Supplemental
Tables S1, S2). Samples were sequenced to an average depth of 38×,
apart from MM087 and MM099, which were sequenced more
deeply (68× and 133× coverage, respectively). We also profiled
the chromatin accessibility of the same melanoma lines using
Omni-ATAC-seq (nine samples were reanalyzed from Wouters
et al. 2020, whereas data for A375 were generated in this study).

We find a total of 16million phased variants across the 10 ge-
nomes (Fig. 1B) and pinpoint as likely somatic in origin between
206,724 and 304,754 of these per sample, based on their absence
from the Genome Aggregation Database (gnomAD; v3.0). To dis-
sect the contributions of distinctmutational processes, we estimat-
ed exposures to the COSMIC v3 single-base substitution
signatures. We used the Bayesian approach implemented in

SigFit (Gori and Baez-Ortega 2020) and fitted those signatures
that have previously been reported as active in melanoma
(Supplemental Fig. S2). Overall, although amean10.9%of somatic
mutations showed the unique footprint of UV damage (COSMIC
v3 SBS7a–d and -38; range 10.8%–26.2%), 88.5% found its origin
in the endogenous “clock-like” mutational processes SBS1, -5,
and -40 (range 73.7–98.7%) (Supplemental Fig. S2; Alexandrov
et al. 2020). Note that in addition to true somatic SNVs having aris-
en during tumorigenesis, these “clock-like” variants will contain
contributions from germline SNPs that were absent from
gnomAD, as well as SNVs having arisen during passaging in cul-
ture. Only an average of 0.5% of somatic mutations were assigned
to the remaining signatures (range 0.1%–2.3%).

Next, we constructed a personal genome for each sample to
optimize themapping accuracy at variant positions (seeMethods).
By combining these personal genomes with ATAC-seq, we found
231,370 variants (of the 16 million) that overlap with ATAC-seq
peaks. We then tested each of these variants for allelic imbalance
of the overlapping ATAC-seq signal using amodified alleleseq pipe-
line, yielding allele-specific chromatin accessibility variants
(ASCAVs; Methods) (Fig. 1C,D; Chen et al. 2016). Although bino-
mial or beta-binomial tests are used for the detection of allele-spe-
cific events, the ubiquitous presence of copy number aberrations
in cancer genomes violates the assumptions of these methods.
Therefore, we plugged in the Bayesian framework of BaalChIP,
which specifically addresses this problem (de Santiago et al.
2017). BaalChIP enabled us to correct the allelic ratios observed
in ATAC-seq reads using the genomic allelic ratios from the WGS
data to correct for the extensive copy number variation and fre-
quent whole-genome doubling in these lines (Supplemental Figs.
S3, S4). This pipeline resulted in 19,983 significant ASCAVs
(8.6% of the variants that overlap with an ATAC-seq peak) across
the 10 genomes (range 451–7183 per sample) (Supplemental Ta-
bles S3, S4). The majority of ASCAVs are unique to one MM line,
and a small proportion is shared between multiple samples (1073
out of 19,983; 5.4%) (Supplemental Fig. S5).Only twoof the shared
ASCAVs are called discordantly between the samples, all of
which are known multiallelic polymorphic SNPs (rs138784536,
rs9880846), illustrating the accuracy of the ASCAV pipeline. We
also assembled a set of control heterozygous variants within the
ATAC-seqpeaks that shownoallelic bias. The genomicdistribution
of both sets, ASCAVs andcontrol variants, is highly similar (Supple-
mental Fig. S6; Supplemental Table S5).

Even though most ASCAVs are germline polymorphisms
(88.9%), 2201 ASCAVs are likely somatic (i.e., absent from
gnomAD v3.0). Somatic variants hence appear more likely to con-
stitute ASCAVs than do germline variants (chi-square test per sam-
ple, all P≤3.28×10−8). This may be explained in part by increased
local mutation rates at TF-bound motifs, negative selection in the
germline, and/or positive selection in the tumor. Furthermore, if a
mutational process would be more (or less) prone to introduce
ASCAVs, thismay be detectable as a disproportionate contribution
of the corresponding mutation signature to somatic ASCAVs com-
pared with all somatic variants. We therefore re-estimated the mu-
tational signature exposures specifically from the somatic ASCAVs
and contrasted these estimates with the signature exposures ob-
tained from all somatic variants. No consistent differences in sig-
nature activities could be detected (Supplemental Fig. S7).
Nevertheless, the five samples with the highest overall proportion
of SBS7a mutations showed a smaller contribution of this type of
mutations to ASCAVs, suggesting UV-induced lesions do not sys-
tematically affect chromatin accessibility.
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Figure 1. Detection of allele-specific chromatin accessibility. (A) Circos plot for sample MM074. Circos plots for the remaining samples are shown in
Supplemental Figure S1. (B) Sankey diagram of the number of variants that went through our ASCAV discovery pipeline. (C) Analysis pipeline for identi-
fication of allele-specific events from matched phased whole-genome data and functional genomics data (ATAC-seq, RNA-seq, or ChIP-seq). (D) Phased
whole-genome sequencing (WGS) is applied to 10 melanoma cell lines and is used together with the reference genome to create personalized diploid
genomes. Matched ATAC-seq, RNA-seq, and ChIP-seq data (against H3K27ac mark and transcription factors [TFs]) are used to detect allelic imbalance
in chromatin accessibility (ASCA), gene expression (ASE), histone acetylation (ASHV), or allele-specific binding (ASB). By combining a melanoma-specific
deep learning model (DeepMEL2) and motif discovery, cis-regulatory variants are predicted. (E) Genome-wide allele-specific copy number is shown for
sample MM074. Superposed are the identified ASCAVs in this cell line, of which the mutation copy number is plotted. The color of the ASCAVs indicates
whether they can be classified as either early or late. If their copy number context does not allow timing, they are labeled “na.” Allele-specific copy numbers
for the remaining samples are shown in Supplemental Figure S4. (F) Concordant allele-specific events are detected around TYR, a gene encoding an en-
zyme involved in pigmentation. Inset shows the reads from whole-genome and ATAC-seq data for one of the allele-specific SNPs (rs1799989). Whole-ge-
nome data indicate a haplotype 1–specific heterozygous SNP (i.e., GT =1|0) with a variant allele frequency of 0.33, whereas ATAC-seq data indicate the
reads are coming from one allele (haplotype 1). There are a further six allele-specific variants in TYR that are either haplotype 1 (i.e., GT =1|0) or haplotype 2
(i.e., GT =0|1) specific in theWGS data, yet all the variants manifest a haplotype-specific activity in matched functional genomics data. The inset plots for all
these seven variants show ATAC-seq, H3K27ac ChIP-seq, or RNA-seq reads in these loci segregated into haplotypes. Reads mapping exclusively to haplo-
type 1 are shown at the top (red), whereas the ones mapping exclusively to haplotype 2 are shown in themiddle (blue). We can detect exclusive mapping
only at the variant locations; hence, the majority of the reads map equally well to both haplotypes and are shown at the bottom (green). Additionally, ref-
erence allele fractions (RAFs) are shown for all the variants (corrected RAFs are obtained via BaalChIP for ASCAVs and ASHV).
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To further evaluate whether our ASCAV detection pipeline is
robust to copy number variation, we inferred allele-specific copy
number from the WGS data (Van Loo et al. 2010), evidencing ex-
tensive aneuploidy (Fig. 1E; Supplemental Fig. S4). In addition, us-
ing sample ploidy and the fraction of the genome with loss of
heterozygosity, wewere able to classify eight of our 10 lines as hav-
ing undergone a whole-genome doubling (Supplemental Fig. S8;
Dentro et al. 2021). By considering the number of chromosome
copies carrying an ASCAV, we can time the variants with respect
to copy number gains: If a variant arose on a chromosome before
its duplication, it will be duplicated as well (mutation copy num-
ber≥2, an “early” variant). If it arose after, only one copy will be
present (mutation copy number= 1, a “late” variant). In regions
with loss of heterozygosity or gains on both alleles, these two sce-
narios can be readily distinguished (Gerstung et al. 2020). Apart
from a reduction in regions with loss of heterozygosity (i.e., only
somatic and no germline variants can be tested for allelic skewing),
ASCAVs are called across all copy number states, and both early
and late variants are detectable as ASCAVs, confirming that our
pipelines are robust in the face of copy number changes (Fig. 1E).

A subset of ASCAVs overlaps with allele-specific gene expression

and allele-specific histone modifications

To investigate whether allele-specific chromatin accessibility is as-
sociated with allelically skewed gene expression or histonemodifi-
cations, we analyzed matching RNA-seq and H3K27ac ChIP-seq
data for all 10 samples (Verfaillie et al. 2015). RNA-seq and ChIP-
seq reads were processed with the same analysis pipeline (Fig.
1C). For identifying allele-specific expression variants (ASEVs) in
the presence of copy number alterations, we used a beta-binomial
test of the RNA-seq allele counts, in which the shape of the beta
distribution is informed by the corresponding WGS allele counts
(Methods).We identified 11,578 distinct autosomal ASEVs, associ-
ated with 6029 genes (Supplemental Table S6). One gene,MAP2K3
(also known as MEK3), shows ASE in all 10 samples and was previ-
ously reported to be allele specifically expressed in various human
and mouse tissues (Tuskan et al. 2008; Kukurba et al. 2014).
Globally, ASCAVs are enriched near genes with ASE (P-value=
0.005; Fisher’s exact test) with 6% of ASCAVs located in promoters
(<2 kb upstream of a TSS) or introns of ASE genes (Supplemental
Table S7).

We also tested for allele-specific H3K27ac ChIP-seq signal us-
ing the same pipeline coupled to BaalChIP. Across the 10 lines, we
identified 4016 allele-specific histone variants (ASHVs) (Supple-
mental Table S8), 343 are both ASCAVs and ASHVs, and an addi-
tional 170 are within 1 kb of an ASCAV. Similar to ASEVs,
ASCAVs are enriched near ASHVs compared with control variants
(P-value<2.2 × 10−16; Fisher’s exact test) (Supplemental Table S9).
When combined, there are 1589 ASCAVs that are either close to a
gene with ASE or close to an ASHV, and 89 of them show signifi-
cant changes on all three levels (odds ratio of 1.6 and 3.9, respec-
tively, compared with control variants, with P-value<2.2 ×
10−16). One such example is observed near the pigment-associated
factor TYR (Fig. 1F), in which four loci show allele-specific events
on all three levels (ATAC-seq, H3K27ac ChIP-seq, and RNA-seq).
Taken together, our finding that a significant fraction of ASCAVs
is linked with ASHVs and ASE supports their functional relevance.

TF motifs are enriched on ASCAVs, with AP-1 being dominant

Next, we investigated whether ASCAVs affect TF binding sites. We
evaluated a variety of regulatory sequence analysis tools to assess

which ASCAVs may have arisen through direct cis-regulatory
changes, such as gains or a losses of TF binding sites (Fu et al.
2014; Maurano et al. 2015; Deplancke et al. 2016), and which
ASCAVs aremore likely to result from indirect events.We first eval-
uate simple models, namely, PWMs before moving on to more
advanced deep learning–based models and comparing their
prediction accuracy.

Binding site predictions using PWMs are notorious for their
high false-positive rates (Wasserman and Sandelin 2004), and
this problem is aggravated as our collection of PWMs is very large
(more than 22,000 PWMs) (Janky et al. 2014). To overcome this
problem, we asked whether, for any given TF, multiple binding
sites are gained or lost in a sample or across the cohort. This pro-
vides a statistical cue, as we can exploit motif enrichment across
all variants, testing which PWM yields a disproportionate number
high “delta-PWM scores,” compared with the control variants. A
similar motif enrichment technique has been applied before to
identify pioneer factors from chromatin accessibility QTL data
(Jacobs et al. 2018). Out of all 22,000 motifs tested, 719 are signifi-
cantly altered by ASCAVs compared with control SNPs (Fisher’s ex-
act test, FDR 0.05) (Fig. 2A). As our collection of motifs is highly
redundant (multiple PWMs are present per TF), we clustered the
719 significant PWMs into 47 distinct families. We then focused
on 13 of these clusters for which the associated TF is known and
that contained at least six motifs (Fig. 2B). This analysis revealed
the AP-1 family as the top hit, with a total of 191 enriched
PWMs (FET-adjusted P-value threshold 0.05) in 4011 allele-specif-
ic ATAC-seq peaks across the 10 samples (Fig. 2C,D; Supplemental
Table S10; Supplemental Fig. S9). We observed a significant corre-
lation (Kendall’s tau 0.68 with P-value =0.035) between expres-
sion of AP-1 factors (all JUN and FOS paralogs together) and the
fraction of explainable ASCAVs per sample (Fig. 2E). Indeed,
MM lines of the mesenchymal subtype (MES; MM099, MM047,
andMM029) have higher AP-1 activity and more AP-1 motif gains
and losses at ASCAVs compared with MM lines of the melanocytic
subtype (MEL;MM031 andMM001).MM011 represents an excep-
tion in this case, being of the MEL subtype but with high AP-1 ac-
tivity. The remaining lines (MM087, MM057, and MM074) are in
an intermediate state (Wouters et al. 2020). Overall, these findings
suggest that AP-1 binding sites are strongly correlated with chang-
es in chromatin accessibility, and confirm the power of allele-spe-
cific chromatin accessibility profiling to identify both gain- and
loss-of-function enhancer mutations. AP-1 has, indeed, been re-
ported to act as a pioneer factor, resulting in nucleosome displace-
ment at enhancers in murine mammary epithelial cells (Biddie
et al. 2011).

By using the entire set of 719 enriched motifs, we calculated
the delta-PWM score across all ASCAVs. This allows us to evaluate
the sensitivity and specificity of the PWM approach for predicting
which variants induce allele-specific chromatin accessibility (Fig.
2F). At 95% specificity, 1919 variants are predicted to be
ASCAVs. Finally, we also tested whether somemotif gains or losses
can be negatively associated with accessibility, that is, the delta-
PWM and accessibility are negatively correlated. We only identi-
fiedmotifs linked to TFs of the ZEB/SNAI family, which are known
repressors in the neural crest lineage, including in melanomas
(Supplemental Fig. S10) (Postigo and Dean 1999; Postigo et al.
1999; Peinado et al. 2007; Caramel et al. 2013; Denecker et al.
2014).

In conclusion, motifs of the relevant TFs are enriched at
ASCAVs, suggesting that ∼9.6% of variants in ATAC-seq peaks cre-
ate or break a binding site. In turn, suchmotif gains or losses likely
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underlie the observed allele-specific chromatin accessibility
signals.

A cell state–aware deep learning model can interpret ASCAVs

Wenext tried to improve the accuracy obtained with the PWMap-
proach using more advanced enhancer modeling. Machine-learn-
ing models can be trained on enhancers and take flanking
sequence information into account. Examples of deep learning
models are Basset (Kelley et al. 2016) and DeepSEA (Zhou and
Troyanskaya 2015), which are available in Kipoi (Avsec et al.
2019) and can readily be applied to score cis-regulatory variants.
These genericmodels have been trained on large collections of epi-
genomic data (DeepSEA was trained on 919 cell type–specific epi-
genomic features; Basset was trained on DNase-seq from 164 cell
types), allowing their application to “any” cell type. Their predic-
tion accuracy on our MM lines (to discriminate ASCAVs from con-
trol variants) is usually higher than that of the motif-based
approach (Supplemental Fig. S11). Particularly on the MES lines,
Basset and DeepSEA achieve high accuracy, explaining 14%–16%
of ASCAVs by motif changes, at 95% specificity. This is likely
because the training data were rich in AP-1-bound enhancers,
which are well represented in the ENCODE repositories on which
DeepSEA and Basset were trained.

Next, we train our own deep learning model that takes the
main melanoma cell states into account, namely, the melanocytic
state (MEL) expressing melanocyte-specific TFs and pigmentation
genes, and the mesenchymal-like state (MES) in which cells are
more invasive and therapy resistant (Verfaillie et al. 2015;
González-Blas et al. 2019; Wouters et al. 2020). In our previous
work (Minnoye et al. 2020), we trained a deep learning model,
DeepMEL, on ATAC-seq from a cohort of 16 melanoma samples,
including the 10 MM lines used in this work. Applying
DeepMEL to discriminate ASCAVs from control variants outper-
forms the generic models (Basset and DeepSEA) for the MEL but
not MES lines. This is likely because the generic models were
trained on a larger data set with a high amount of MES-like geno-
mic enhancers. In contrast,melanocyte andMEL-melanoma states
are likely underrepresented in ENCODE, resulting in models that
are not fully “aware” of this regulatory program.

We then asked whether we could further improve DeepMEL,
including additional ATAC-seq data (and further below also ChIP-
seq). We extended our DeepMEL cohort with 14 new samples to a
total of 30 melanoma lines. A cisTopic (González-Blas et al. 2019)
analysis on this larger cohort identifies 47 cis-regulatory topics, in
which two of them are generally accessible across all cell lines
(Topic-14 and Topic-31) and nine state-specific MEL andMES top-
ics (Fig. 3A). We also enhanced the deep learning framework by
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Figure 2. TF motif enrichment on ASCAVs. (A) Selection of ASCAVs and control variants used to assess the association between sequence content and
allele-specific accessibility. (B) Heatmap showing the clustering of all 719 ASCAV-enrichedmotifs into 47 families (color-codedmargins). The 13major fam-
ilies are labeled with their cognate TF on the diagonal. (C) Scatter plot of motifs that are associated with chromatin accessibility. Each dot indicates a motif
and is colored based on the motif cluster to which they belong. The x- and y-axes represent the delta cluster-buster motif score and the negative log-scaled
FDR corrected P-value, respectively. (D) Bar plot showing the number of ASCAVs explained by each motif cluster. For each family, the consensus motif is
shown. (E) Scatter plot of the average expression of AP-1 family members (JUN, JUNB, JUND, FOS, FOSB, FOSL1, FOSL2) and the fraction of ASCAVs that
affects an AP-1 binding site. Correlation coefficient (Kendall’s tau) and P-value are shown. (F) Fractions of ASCAVs explained at different false-positive rates
are shown as curves for each MM line. Dashed lines represent the control for each MM line, where labels of ASCAVs and control variants are shuffled.
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including the 283 known clustered and partitioned PWMs from
the JASPAR database (Fornes et al. 2020) in the convolutional fil-
ters that serve as priors (Fig. 3B). After training DeepMEL2 on the
47 topics, we evaluated its classification performance on left-out
data (Supplemental Fig. S12). Particularly promoter topics, MEL-

topics, and MES-topics achieve high performance, whereas cell
line–specific topics are difficult to predict (Fig. 3C). For the latter,
we believe this is because the cell line–specific topics represent
sample-specific copy number variation rather than differentially
accessible regions (Supplemental Fig. S4). Next, we applied in silico

E F

BA C

D

G

Figure 3. Cell state–aware DeepMEL2 can interpret ASCAVs. (A) Normalized cisTopic cell-topic heatmap of 30 melanoma cell lines showing general,
state-specific, and cell line–specific sets of coaccessible regions. (B) Schematic overview of DeepMEL2 highlighting improvements compared with
DeepMEL. (C) Scatter plot of auROC and auPR values shows the performance of DeepMEL2 on each topic. Promoter, state-specific, and cell line–specific
topics are represented by red, blue, and green colors, respectively. (D) Performance of DeepMEL2 and other models at predicting variant effects on IRF4
enhancer activity. (E,F) Curves indicate fractions of ASCAVs explained by Topic-17 score (MEL; E) and Topic-19 score (MES; F) at different false-positive rates
for each MM line. Bar chart insets show the exact fraction of the explained ASCAVs at 5% false-positive rate. (G) Bar charts showing the fraction of ASCAVs
explained at 5% false-positive rate for each MM line using either DeepMEL2, DeepMEL, DeepSEA, Basset, and PWM. The black bar represents the fraction
when ASCAVs and control variants are shuffled.

Melanoma enhancer mutations

Genome Research 1087
www.genome.org

http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.260851.120/-/DC1
http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.260851.120/-/DC1


saturation mutagenesis on the MEL-type IRF4 enhancer. This ex-
plainable AI technique, inwhich each possiblemutation in the en-
hancer sequence is evaluated by reclassification using the model,
highlights the outperformance of DeepMEL2 compared with
DeepMEL (Fig. 3D).

Next, we used DeepMEL2 to score all ASCAVs (Methods). On
the six MEL lines, DeepMEL2 identifies more ASCAVs compared
with all the other methods at the same false-positive rate (Meth-
ods) (Fig. 3G; Supplemental Fig. S11). When we score ASCAVs by
using a MEL-specific topic (Topic-17), which represents MEL en-
hancers, explainable mutations occur more frequently in the sam-
ples of the melanocytic subtype, in which MEL enhancers are
operational (Fig. 3E). AMES-specific topic (Topic-19), on the other
hand, is mostly affected in samples of the MES (Fig. 3F). Note that,
in agreement with the motif enrichment analysis, AP-1 motif
changes (the main drivers of the MES scores) (Fig. 2C,D) are also
found enriched for ASCAVs in the melanocytic lines, except for
MM001, which has no AP-1 activity (Supplemental Fig. S9).

In conclusion, additional enhancement and training of
DeepMEL2 further improves prediction of functional cis-regulato-
ry changes, particularly on melanoma samples of the MEL sub-
type, and provides high-resolution insight into precise enhancer
changes.

DeepMEL2 predictions on ASCAVs are confirmed by allele-

specific TF binding

We predicted a large fraction of allele-specific AP-1 binding sites
that are associated with an allele-specific ATAC-seq peak. To test
whether AP-1 factors indeed bind preferentially to the predicted al-
lele, we performed ChIP-seq against four AP-1 family members
(JUN, JUNB, FOS, FOSL1) that are expressed in the MES-type
MM099 line. The ChIP-seq peaks of all four data sets are enriched
for the AP-1 motif (Supplemental Fig. S13). The FOSL1 and JUN
ChIP-seq yield the highest quality peaks, suggesting that these
play a role in MM099 and that these antibodies are of high quality
(Supplemental Fig. S13). By using the pipeline developed above to
infer ASCAVs, we now identify 583 significant allele-specific bind-
ing (ASB) events for JUN and 241 for FOSL1 (JUNB and FOS yield
only 138 ASBs in total), and some of themare identified as ASCAVs
in other cell lines as well (Fig. 4A). TheMES-specific topics are able
to predict allele-specific AP-1 binding events (Fig. 4B). When we
rank all MM099 ASCAVs by their maximum score from the differ-
ent models (i.e., delta between the two alleles for the PWM ap-
proach, Basset, DeepSEA, DeepMEL, and DeepMEL2), we find
that DeepMEL2 performs best at enriching for ASB events (Fig.
4C). This means that a significant fraction of the ASCAVs with
high DeepMEL2 delta scores are indeed ASB for JUN or FOSL1.
Note that whereas Basset and DeepSEA are better at distinguishing
ASCAVs from control variants in MEL099, this is not the case for
predicting ASB. Because DeepMEL2 was trained to distinguish 47
different melanoma cis-regulatory topics, we can also score
ASCAVs using specific topics. Leveraging the best performing
MES topic (Topic-19) indeed further improves the prediction of al-
lele-specific AP-1 binding (Fig. 4C). Note that we did not search
specifically for AP-1 sites but rather exploit the regulatory topic
of the matching cell state to score the genomic variants.

In a second validation experiment, we evaluated the putative
effect of ASCAVs on enhancer activity. Our phased genomes allow
direct linking of ASCAVs to allele-specific expression of nearby
genes. A total of 6.5% of all ASCAVs that can be explained by
DeepMEL2 are located in the promoter or body of genes with

ASE. Therefore, these enhancer mutations may underlie the ex-
pression imbalance of the target gene. To further examine this,
we selected three enhancers inMM057 forwhich the predicted tar-
get gene showsASE. The first two examples, PEPD andMITF, have a
DeepMEL2-predicted AP-1 motif gain (Fig. 4D,E). Luciferase re-
porter assays in this cell line, using sequences of both haplotypes,
confirm the potency of these variants to drive enhancer activity
and gene expression only when the AP-1 site is present (Fig. 4D,
E). The third example is an enhancer in the first intron of EVA1C
with a predicted SOX10 motif gain. This variant (rs2833812) is
identified as a phased heterozygous SNP in four lines (MM031,
MM057, MM074, MM087) and results in allele-specific accessibil-
ity in all cases (Supplemental Fig. S14). Again, when assessed in a
luciferase reporter assay (in MM057), only the enhancer sequence
that carries the allele generating the SOX10 motif is able to drive
luciferase expression (Fig. 4F; Supplemental Fig. S17). This con-
firms that enhancermutations associatedwith changes in chroma-
tin accessibility can have an effect on the expression of nearby
genes.

Analysis of TERT promoter mutations by augmenting DeepMEL2

with ChIP-seq data

As a final analysis, we askedwhetherDeepMEL2 can identify onco-
genic mutations in the TERT promoter (Horn et al. 2013; Huang
et al. 2013). Two TERT promoter hotspots are recurrently mutated
(C228T and C250T) across a large fraction of cancers of the central
nervous system (43%), bladder cancer (59%), melanoma (29%),
and other cancer types (Vinagre et al. 2013). These gain-of-func-
tionmutations create a binding site for the ETS-family TFs, notably
GAPBA, leading to up-regulation of the TERT oncogene (Bell et al.
2015). TheA375 cell line contains one of thesemutations, which is
predicted as an ASCAV (Fig. 5A).

First, we evaluated the accuracy of DeepMEL2 and other
methods to predict functional changes across the TERT promoter,
by comparing the predictions to a previously published saturation
mutagenesis screen performed in a glioblastoma cell line (Kircher
et al. 2019). In silico saturationmutagenesis of theTERT promoter,
scored with DeepMEL2, correlates strongly (54%) with the experi-
mental data, outperforming other methods (Fig. 5B). Despite the
ability of DeepMEL2 to interpret overall cis-regulatory variation
in the TERT promoter, the model does not predict the oncogenic
gains of GABPA sites themselves to cause an increase in enhancer
activity.

In an attempt to improve interpretation of oncogenic TERT
mutations, we retrained DeepMEL2 by adding a 48th topic repre-
senting GABPA binding. Particularly, we labeled all ATAC-seq
peaks that overlap with GABPA ChIP-seq peaks (ENCODE acces-
sion ENCSR000BJK) as Topic-48. With this fine-tuned model, the
explainability of the entire TERT promoter increases to 68% (Fig.
5B), and both TERT mutations are identified (Fig. 5C–E).

This provides us with a model that can potentially identify
other functional gains or losses of GABPA binding sites. In fact,
43 ASCAVs across the 10 lines show a higher Topic-48 delta score
than the known TERT promoter mutations. Thirteen of these are
observed in other cancers (listed in COSMIC), and five are located
in the promoter of a genewith ASE (Fig. 5D; Supplemental Fig. S15;
Supplemental Table S11). Thus, the augmented DeepMEL2 model
can be used to interpret cis-regulatory variation in melanoma ge-
nomes, with awareness of the MEL and MES enhancer code, the
proximal promoter code, and cis-regulatory elements used by
ETS-family members (Fig. 5F–H).
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Discussion

Functional variants affecting crucial genes and pathways are un-
derpinning the fitness advantages of cancer cells. Such mutations
may be found by recurrence analysis across patients and even
across cancer types, at least in the coding fraction of the genome
(Bailey et al. 2018). In the noncoding genome, however, this ap-
proach typically breaks down (Melton et al. 2015; Zhang et al.
2018), and TERT promoter mutations are a notable exception
(Horn et al. 2013; Huang et al. 2013). Overall, noncoding muta-
tions tend not to affect the same nucleotide or the same enhancer
across samples. A recent large-scale and comprehensive whole-ge-
nome pan-cancer study from the ICGC-TCGA PCAWG consor-
tium identified only 30 regionally recurrent cis-regulatory
changes (Zhu et al. 2020). One reason for this might be the com-
plex nature of gene regulation: Often multiple enhancers are

brought into close proximity of a promoter to initiate transcrip-
tion, and redundancy or cooperativity of these enhancers remains
difficult to disentangle (Gasperini et al. 2020).

Here we address the challenge of identifying functional non-
coding variants by focusing on allelic imbalances in chromatin ac-
cessibility and by linking those to changes in the enhancer
sequence using an explainable AI model. Then, by exploiting
phased genomes,we further link these potentially causal enhancer
changes to allele-specific gene expression, TF binding, and histone
acetylation.

Earlierwork has shown that sample-matched epigenomic and
transcriptomic data are instrumental to obtain a functional read-
out for genomic alterations (Stevenson et al. 2013; Castel et al.
2015; Chen et al. 2016). An intuitive approach to further establish
causality is to assess how these variants affect the binding of TFs.
Indeed, this strategy has previously been applied in several studies
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Figure 4. Model explanation and experimental validation of three cis-regulatory variants. (A) C > T intronic SNP (rs2322683) in SUMF1 is an ASCAV and
AP-1 ASB (JUN and FOSL1 ChIP-seq data sets). (Left) Haplotypes 1 and 2 and unphased reads (color-coded) from this locus inMM099 JUN and FOSL1 ChIP-
seq and ATAC-seq reads. (Right) Same locus in three additional MM lines (MM011, MM047, andMM087) in which rs2322683 is also inferred as an ASCAV.
WGS genotypes (GT) and BaalChIP allele ratios are shown in parentheses. (B) DeepExplainer plot of the rs2322683 locus (position indicated with dashed
lines), where the height of the nucleotides indicates their importance for the final prediction. Scoring using Topic-19 on both haplotypes shows C>T sub-
stitution generates an AP-1 binding site. In silico saturation mutagenesis on the reference sequence reveals the effect of each possible variant as a delta
Topic-19 prediction score. (C ) The curves represent the number of FOSL1 or JUN ASB variants found among the top-nMM099 ASCAVs ranked by themax-
imum delta prediction score of the different models. (D–F) Each row showcases the following: (I) an ASCAV and its allele-specific accessibility peak, (II)
DeepExplainer and in silico mutagenesis results of the two haplotypes, (III) the DeepMEL2 score for both haplotypes, and (IV) the luciferase enhancer-re-
porter activity for both haplotypes. (D) C >T intronic variant in PEPD is identified as an ASCAV and predicted to generate an AP-1 binding site, with an
increase inMES enhancer score. The in silicomutagenesis plot shows that only a singlemutation to T at position 269 increases theMES enhancer prediction
significantly, and this is exactly the location of the ASCAV. (E) C > T intronic variant in MITF is identified as an ASCAV and predicted to generate an AP-1
binding site. (F ) G >A intronic variant in EVA1C is identified as an ASCAV and predicted to generate a SOX10 binding site.
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using PWMs to explain the impact of allele-specific noncoding
variants (Deplancke et al. 2016). However, as PWM scoring re-
quires stringent thresholds to limit the number of false-positive
predictions, these models typically have low sensitivity (e.g.,
3.3%–6.2% explainable variants) (Degner et al. 2012; Maurano
et al. 2015; Chen et al. 2016; Tehranchi et al. 2019). More sophis-
ticated machine-learning methods have been developed that can
overcome these limitations. Models including support vector ma-
chines (Ghandi et al. 2014; Svetlichnyy et al. 2015) and neural net-
works (Alipanahi et al. 2015; Zhou and Troyanskaya 2015; Kelley
et al. 2016; Liu et al. 2018) can be trained on enhancer sequences
and used to predict the impact of mutations. In the context of al-
lele-specific variant interpretation in normal genomes, Banovich
et al. (2018) developed OrbWeaver, a four-layered neural network
with log-transformed PWMs of 1320 TFs as the first layer.
OrbWeaver was used to predict features of accessible chromatin
in induced pluripotent stem cells and successfully captures the ef-
fect of chromatin accessibility QTL in a cell type–specific manner.
In another study, Hoffman et al. (2019) developed DeepFIGV us-
ingDNase-seq andhistonemodification data from75 lymphoblas-
toid cell lines and used it to predict ASB in an independent set of TF
ChIP-seq data.

In addition to normal genomes, deep learning models have
also been used to understand noncoding mutations in a disease
context, such as autism spectrum disorders (Zhou et al. 2019)
and pancreatic cancer (Feigin et al. 2017). These studies trained
models on regulatory features from a diverse set of tissues and
cell types profiled by the ENCODE andRoadmap Epigenomics pro-
jects. Although broadly applicable, this approach might limit

model performance as regulatory activity is context dependent
(The ENCODE Project Consortium 2012). Indeed, models trained
on cell type–specific enhancers have been shown to yield better
predictions (Banovich et al. 2018;Minnoye et al. 2020). Themodel
we developed here is also context dependent and captures regula-
tory information from different melanoma cell states. The mesen-
chymal-like melanoma state, with a dominant role for AP-1, is
shared with other cancer types (Baron et al. 2020) and is therefore
well represented within ENCODE and other resources. As such,
models trained on these large compendia (e.g., DeepSEA and
Basset) can effectively identify AP-1 motif gains and losses. The
melanocytic cell state, on the other hand, is less well represented.
As a result, DeepMEL2 achieves a higher accuracy for all melano-
cytic samples than do DeepSEA and Basset.

We combined three components that improve the efficiency
to detect enhancer mutations. First, we performed linked-read
WGS on pure cancer cells (avoiding normal cell admixture); sec-
ond, we incorporated matched ATAC-seq and RNA-seq data; and,
third, we developed a context-dependent deep learning model,
DeepMEL2. The use of pure cancer samples allowed us to accurate-
ly correct allelic signals in ATAC-seq, ChIP-seq, and RNA-seq data
for genomic copy number alterations, leading to robust inference
of functional allelic imbalances (Rozowsky et al. 2011; Chen et al.
2016; de Santiago et al. 2017).

By using DeepMEL2, 10%–16% of ASCAVs per MM line can
be explained by changes in the cis-regulatory code. A sizable frac-
tion of thesewere attributed to gains or losses of AP-1 binding sites,
particularly in mesenchymal enhancers, which, in turn, could be
confirmed by assaying ASB of the AP-1 family members JUN and
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Figure 5. Analysis of TERT promoter mutations. (A) TERT promoter hotspot mutation in A375 is detected as an ASCAV as evidenced by ATAC-seq reads
segregated into haplotypes (color-coded). In A375, haplotype 2 harbors the mutant allele T (according to WGS data) (see Supplemental Fig. S16), and
ATAC-seq evidences exclusive accessibility for this allele. The corrected reference ATAC-seq allele ratio is indicated in parentheses. (B) Bar chart of model
variant effect prediction performance on TERT promoter activity assessed by experimental saturation mutagenesis. (C) Scatter plot showing the effect
of each variant in the in vitro (x-axis) and in silico (y-axis) mutagenesis of the TERT promoter. The two hotspot gain-of-function mutations are highlighted.
(D) Scatter plot of delta Topic-14 score (promoter topic) versus delta Topic-48 score (GABPA topic) of all ASCAVs from 10MM lines calculated by using the
DeepMEL2+GABPA model. ASCAVs are colored by their maximum delta prediction score. The TERT mutation of A375, as well as two newly predicted
GABPA gains in MM047 andMM001 that are discussed in the text, are encircled. (E) The DeepMEL2 prediction score for each topic for both the haplotype
1 (red) and haplotype 2 (blue) of the A375 TERT locus is shown on the left, and the delta prediction scores between two haplotypes are shown on the right.
The delta prediction scores for both Topic-14 (promoter topic) and Topic-48 (GABPA topic) are above the 0.05 detection threshold. (F,H) Haplotype-spe-
cific DeepExplainer plots of the A375 TERT promoter locus by using Topic-14 (F ) and Topic-48 (H), annotatedwith the corresponding TFs. (G) Comparison
of in silico (top; DeepMEL2 delta Topic-14 prediction scores) and in vitro (bottom; fold change in promoter activity) saturation mutagenesis assay. Each
variant is color-coded.
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FOSL1. We found that in melanocytic enhancers, gains and losses
of SOX10 binding sites were most commonly linked with allele-
specific chromatin accessibility. Although a large fraction of these
events influences binding of a TF, without any other observed con-
sequences, a subset does impact enhancer activity and is associated
with changes in gene expression.

Finally, we investigated how context-specific models such as
DeepMEL2, trained on epigenomic data, can be fine-tuned to bet-
ter understand underrepresented enhancer logic. By examining
the recurrently mutated TERT promoter, we found that the
DeepMEL2model did not use ETSmotifs to classify melanoma en-
hancers. This may be owing to ETS binding sites not discriminat-
ing between MEL and MES enhancers, whereas other sequence
features were more informative to predict classes. We resolved
this limitation by providing the model with specific ChIP-seq
data as an additional label. The augmented model achieved high
prediction accuracies on the entire TERT promoter, including
the known oncogenic mutations.

Our study shows that deep learning models provide a power-
ful means to pinpoint functional noncoding variation in cancer
genomes, which may translate into clinical benefits for future pa-
tients. However, our results also suggest that each cancer typemay
require its own “matched” deep learning model, trained on epige-
nomic data from the relevant cancer cell states. Whereas the cur-
rent work uses patient-derived cell cultures to infer ASCAVs, our
framework is in principle also applicable to data obtained from
bulk tumor biopsies. We envision that in a clinical setting, (1)
deep learning models can be trained on ATAC-seq data from
pure cancer cell clusters, when single-cell ATAC-seq is applied to
a cohort of biopsies; and (2) genomics methods for single-nucleo-
tide variant and copy number calling take normal cell admixture
into account. It is worth noting that both points have been suc-
cessfully shown in the literature (Satpathy et al. 2019; Dentro
et al. 2021).

In conclusion, we have shown that high-confidence cis-regu-
latory variants can be detected by directly comparing the alleles of
a cancer genome and using specialized predictive and explainable
deep learning models trained on corresponding epigenomics pro-
files. Our compilation of multiomemelanoma data and a melano-
ma-specific deep learning model provides unique data sets and a
novel framework for understanding the impact of noncoding var-
iants. Our approach is applicable to pure samples of any cancer
type and may contribute to the identification of cis-regulatory
driver mutations.

Methods

Cell culture

The melanoma MM lines are derived from patient biopsies by the
Laboratory of Oncology and Experimental Surgery (Prof. Dr. Gha-
nem Ghanem) at the Institut Jules Bordet, Brussels (Gembarska
et al. 2012; Verfaillie et al. 2015; Wouters et al. 2020). For further
details on culture conditions, see Supplemental Methods.

Phased whole-genome library preparation and sequencing

The extraction of high-molecular-weight (HMW) genomic DNA
(gDNA) and the subsequent preparation of the phased whole-ge-
nome libraries were performed using the Chromium instrument
and the linked-reads genome kit v2 (10x Genomics), according
to the manufacturer’s protocol (Rev A). Experimental details are

elaborated in Supplemental Methods. Genomic aberrations per
samples was visualized using Circos (Krzywinski et al. 2009).

Copy number analysis

Allele-specific copy number calls were generated using ASCAT
v2.5.2 (Van Loo et al. 2010). The analyses are further detailed in
the Supplemental Methods.

We also assessed our ability to infer ASCAVs having arisen
pre- and post-copy number gains (Supplemental Fig. S4). By lever-
aging theWGS variant allele-frequency (VAF), and the total tumor
copy number and sample purity estimates from ASCAT (ntot and
ρ =100%, respectively), we can compute the number of chromo-
some copies carrying a variant (mutation copy number, mcn) as
mcn= |ntot ×VAF/ρ|. In turn, this can be used to “time” variants
with respect to copy number gains: If a variant arose on a chromo-
some before its duplication, it will be duplicated as well (mcn≥2,
an “early” variant). If it arose after, only one copy will be present
(mcn=1, a “late” variant). In regions with loss of heterozygosity
or gains on both alleles, these two scenarios can be readily distin-
guished. Note that, in our case, early variants will include germline
SNPs.

Personalized genome construction

Indels and SNVs (as generated by GATK/longranger) were used to
construct personalized genomes with CrossStitch (https://github
.com/schatzlab/crossstitch). This procedure resulted in the genera-
tion of personalized reference sequences per haplotype in FASTA
format as well as chain files that link reference genome to person-
alized genomes. To obtain chain files to link personalized genomes
to the reference genome, we performed whole-genome alignment
between personalized genomes and reference genome using BLAT.
The analyses are further detailed in Supplemental Methods.

Mutational signatures

We use the Bayesian approach SigFit (Gori and Baez-Ortega 2020)
to estimate mutation signature exposures in our MM lines for
those COSMIC v3 signatures that have previously been reported
as active in melanoma (SBS1, -2, -5, -7a–d, -9, -13, -14, -36, -38,
and -40). SigFit was run on all likely somatic variants, namely,
called variants not present in the gnomAD (v3.0), as well as on
the likely somatic ASCAVs.

ATAC-seq library preparation and sequencing

ATAC-seq data were generated using the Omni-ATAC-seq tech-
nique as described previously (Corces et al. 2017). For further
detais, see Supplemental Methods.

ATAC-seq alignment to the reference and personalized genomes

We aimed at obtainingminimum 15million usable reads per sam-
ple, and eventually achieved 65million reads on average across 10
sequenced samples (Supplemental Table S2). Paired-end readswere
mapped to the human genome (hg38) and sample-specific person-
alized genomes using Bowtie 2 with ‐‐very-sensitive option
(v2.2.6). Mapped reads were sorted using SAMtools (v1.8) (Li
et al. 2009), and duplicates were removed using PicardMarkDupli-
cates (v1.134). Reads were filtered by removing chromosomemito-
chondria reads and filtering for Q>2 using SAMtools. Usable reads
are defined as the number of reads retained after these filtering
steps. We observed that the number of reads mapping to personal-
ized genomes was slightly higher than the number of reads map-
ping to the reference genome (hg38), which has been reported
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previously for ChIP-seq data (Supplemental Table S2; Rozowsky
et al. 2011; Mayba et al. 2014).

ATAC-seq peak calling

Peaks from ATAC-seq data were called for reference mapped and
personalized genome mapped data using MACS2 (v2.1.2) (Zhang
et al. 2008) using the parameters -q 0.05, ‐‐nomodel, ‐‐call-sum-
mits, ‐‐shift -75 ‐‐keep-dup all, and ‐‐extsize 150. Summits for per-
sonalized genome mapped samples were lifted over to reference
genome using liftOver. Summits were extended by 250 bp up-
stream and downstream using slopBed (BEDTools, v2.28.0), pro-
viding human chromosome sizes, and filtered for blacklisted
regions of the reference genome (ENCSR636HFF). Per sample, we
obtained reference mapped peaks, HAP1 mapped peaks, and
HAP2mapped peaks. To obtain a consolidated peak set per sample,
we followed the strategy described previously described (Corces
et al. 2018), as elaborated in Supplemental Methods.

Identification of allele-specific events in ATAC-seq data

We have built a new allele-specific variant detection pipeline us-
ing the backbone of the AlleleSeq pipeline (Chen et al. 2016). We
used Bowtie 2 (Langmead and Salzberg 2012) to map ATAC-seq
reads to personalized genomes as described above. Next, we
marked duplicate reads in each alignment using Picard. Then,
we evaluated two alignment files (i.e., haplotype 1 mapped and
haplotype 2 mapped) to identify the most likely origin of
each read. Each read was evaluated iteratively using mapping
quality (MapQ), CIGAR string, and XM tag (which reports the
number of mismatches in the alignment). If the read had
the same mapQ, same CIGAR string (or the same number of
Ms), and same XM tag for both alignments, it was marked as
commonly mapping. This step resulted in four BAM files:
haplotype1.exclusive, haplotype2.exclusive, haplotype1.com-
mon, and haplotype2.common.

After identifying the source of each read, we filtered out dupli-
cate reads. We also filtered out ambiguously mapping reads by
evaluating the reads that map equally well to both haplotypes
(i.e., reads in haplotype1.common and haplotype2.common
alignment files) in the reference genome.We lifted these positions
over to hg38 coordinates, andwediscarded reads if theymapped to
different locations. Next, we overlapped phased heterozygous var-
iants obtained from whole-genome sequence data with consoli-
dated peak set (as described above). The variant positions that
overlappedwith the peakswere lifted over to haplotype 1 and 2 co-
ordinates, and allele counts were obtained using the samtools mpi-
leup command with all four alignment files (allelic counts coming
from common alignment files were compared, and no major dif-
ferences were found). Then allelic counts over heterozygous sites
were merged, and variants that had at least six reads were further
processed for allele-specific accessibility analysis with the
BaalChIP (de Santiago et al. 2017) package in R/Bioconductor (R
Core Team 2019). Count tables containing number of reference
and alternative supporting reads per variant, together with the al-
lelic ratio of the same variant from the whole-genome sequence
data, were provided to runBayes command of BaalChIP, and
ASCAVs were identified. The remaining variants were defined as
control variants.

Genomic annotations of both sets of variants were performed
usingChIPseeker (Yu et al. 2015)with theUCSChg38 knownGene
table (TxDb.Hsapiens.UCSC.hg38.knownGene package in R/
Bioconductor).

Motif enrichment analysis with ASB events

ASCA and control variants per sample were overlapped with con-
solidated ATAC-seq peaks. Peaks that had multiple variants were
filtered out if the allelic bias between variants was inconsistent.
Allelic counts were used to determine preferred allele (i.e., allele
that has the highest ATAC-seq signal). Peak sequences were ex-
tracted from the FASTA sequence of the preferred allele (using
fastaFromBed command from BEDTools) (Quinlan and Hall
2010). The reference sequence for each variant was extracted
from hg38 using the same command. For each peak, we calculated
the CRM score for the preferred allele and the other allele (refer-
ence sequence) using a set of 22,000 PWMs (Janky et al. 2014)
and calculated a “delt a CRM score” for each peak and for eachmo-
tif (Fig. 1D). We evaluated the enrichment of the CRM delta’s in
the ATAC-seq peaks using a one-sided Fisher’s exact test with a
control set of 152,999 peaks containing non-ASCA variants. We
performed enrichment analysis individually (per MM-line) and
globally (across all MM-lines) (Fig. 2C; Supplemental Fig. S9).
Haplotype-resolved ATAC-seq alignment figures were created
with fluff (Georgiou and van Heeringen 2016).

Identification of ASEVs

RNA-seq reads were mapped to the personalized genomes using
Bowtie 2 (Langmead and Salzberg 2012) with the ‐‐very-sensitive
option. We implemented the same postprocessing steps as in the
ATAC-seq analysis; this included choosing the best alignment be-
tween two mappings based on mapping quality and number of
mismatches, as well as removal of ambiguously mapping or dupli-
cate reads. Next, we overlaid phased heterozygous variants ob-
tained from the WGS data with the coding genome (hg38 CDS
regions). Variant positions falling inside genes were lifted over to
haplotype 1 and 2 coordinates, and allele counts were obtained us-
ing samtools mpileup. Then allelic counts over heterozygous sites
were merged, and variants that had at least 10 reads were further
processed for allele-specific expression variant analysis. To assess
allele-specific expression in the presence of copy number changes,
we used a beta-binomial model of the RNA-seq allele counts, in-
formed by the WGS data. Briefly, for every variant, we obtain the
posterior estimate Beta(1+#A, 1 + #B) of theWGS B-allele frequen-
cy using a uniform Beta(1, 1) prior and a binomial likelihood to
describe the WGS allelic read counts (#A and #B). This posterior
BAF estimate is then used to perform a two-tailed beta-binomial
test of the observed RNA-seq allele counts. Multiple testing correc-
tion was implemented with the Benjamini–Hochberg method,
and variants with a FDR<0.05 were reported as allele-specific ex-
pression variants.

Identification of allele-specific variants in H3K27ac ChIP-seq data

ChIP-seq readsweremapped personalized genomes using Bowtie 2
(Langmead and Salzberg 2012) with the ‐‐very-sensitive option. We
implemented the same pipeline as in ATAC-seq analysis for allele-
specific variant detection.

cisTopic analysis

To train DeepMEL2 on, we used cisTopic (González-Blas et al.
2019) to obtain sets of coaccessible regions as in previous work
in which we trained DeepMEL (Minnoye et al. 2020). To be able
to use cisTopic, single cells were simulated from bulk Omni-
ATAC-seq data on the 30 human melanoma cell lines.
Bootstrapping was used for the single-cell simulation, and 50 sin-
gle cells were simulated for each melanoma line. Each single
cell contains 50,000 random reads from its original bulk
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Omni-ATAC-seq data. Then, cisTopic was run on these simulated
single cells (parameters: α= 50/T, β=0.1, burn-in iterations =500,
recording iterations =1000). The best model (47 topics) was select-
ed according to log-likelihood value.

The DeepMEL2 neural network

In previous work, we developedDeepMEL on 16 humanATAC-seq
samples (Minnoye et al. 2020). Here, we developed an updated
model, DeepMEL2, on 30 ATAC-seq samples. DeepMEL2 is, simi-
larly to DeepMEL, a hybrid CNN-RNN deep learning enhancer
classification model composed of convolutional, max pooling,
time-distributed dense, bidirectional LSTM, as well as dense layers
between input and output. The 128 convolutional filters of
DeepMEL were initialized with random numbers, whereas in
DeepMEL2, 283 of 300 filters are populated with JASPAR PWMs
that are clustered for five taxonomic groups (Fornes et al. 2020).
Number of filters is increased from 128 to 300 and filter size is in-
creased from 20 to 30 in order to populate convolutional filters
with JASPAR motif collection. The detailed model architecture is
shown in Supplemental Table S12. DeepMEL2 is trained on mela-
noma-specific coaccessible region classes. It takes a 500-bpDNA se-
quence and predicts an output vector corresponding to binarized
47 topics. To evaluate its performance, auROC and auPR on train-
ing (%80), validation (%10), and test (%10) sets were calculated for
each topic.

DeepMEL2+GABPA model was trained on 48 classes. On top
of 47 topics, we added a 48th class in which regions in input data
were labeled as 1 if it overlaps with GABPA ChIP-seq peaks
(ENCSR000BJK). The same architecture that was used to train
DeepMEL2 to was used for DeepMEL2+GABPA

Scoring enhancers and ASCAVs with DeepMEL2

To score ASCAVs, we perturbed the 500-bp ATAC-seq peaks by do-
ing a single-nucleotide change according to variants coming from
two alleles. We calculated delta prediction score for each of the
ASCAVs and the control variants for each of the classes. Then,
we evaluated the delta prediction scores for each class to identify
the fraction of explainable ASCAVs. We used a one-sided Fisher’s
exact test with a control set of non-ASCA variants at 5% false-pos-
itive rate.

To compare different models, the maximum delta score for
each variant was calculated.

Calculating the contribution of each nucleotide to the final output

We initialized DeepExplainer (Lundberg and Lee 2017) with ran-
domly selected sequences (500) and calculated the importance
scores of the sequence of interest with respect to any of the 47 clas-
ses. We multiplied this importance score by the one-hot encoded
matrix of the sequence. Finally, we visualized the sequence by ad-
justing the nucleotide heights based on their importance score,
similar to earlier work (Shrikumar et al. 2019).

In silico saturation mutagenesis

For a 500-bp sequence, we generatedmutated sequences by chang-
ing each single nucleotide into the three other possible nucleo-
tides. We scored the initial sequence without mutations, as well
as all 1500 generated sequences with DeepMEL2, and calculated
the delta prediction score for each class and for each mutation
by comparing the final prediction relative to prediction for the ini-
tial sequence.

Luciferase assays

The 501-bp regions, surrounded by 20-bp flanking adaptors, were
synthesized (TWIST Bioscience) and then individually cloned in a
pGL4.23 plasmid. Luciferase activity in MM057 was measured us-
ing the dual-Luciferase reporter assay system (Promega).
Experimental details are elaborated in the Supplemental Methods.

AP1 ChIP-seq library preparation and sequencing

The melanoma MM lines were grown to ∼85% confluence, and a
total of 20 million cells per ChIP sample was collected. ChIP sam-
ples were prepared following the “Myers Laboratory ChIP-seq Pro-
tocol v011014,” using the following antibodies at a concentration
of 5 µg per ChIP: FOS (c-Fos; sc-166940X, Santa Cruz Biotechnol-
ogy), FOSL1 (Fra-1; sc-376148, Santa Cruz Biotechnology), JUN (c-
Jun; sc-74543X, Santa Cruz Biotechnology), JUNB (Jun-B; sc-8051
X, Santa Cruz Biotechnology). For experimental details, see Sup-
plemental Methods.

Analysis of AP1 ChIP-seq data

Sequence reads were mapped to human reference genome (hg38)
using Bowtie 2 with the ‐‐very-sensitive option (v2.2.6). Mapped
reads were sorted using SAMtools (v1.8), and duplicates were re-
moved using Picard MarkDuplicates (v1.134). Reads were filtered
formapping quality of 30 (MAPQ>30) using SAMtools.We imple-
mented the same pipeline as in ATAC-seq analysis for allele-specif-
ic variant detection.

Publicly available data used in this work

RNA-seq data and H3K27ac ChIP-seq (data for A375, MM001,
MM011, MM029, MM031, MM047, MM057, MM074, MM087,
and MM099) were downloaded from the NCBI Gene Expression
Omnibus (GEO; https://www.ncbi.nlm.nih.gov/geo/) under acces-
sion number GSE60666 (Verfaillie et al. 2015).

Data access

All raw and processed sequencing data, except theWGS data, gen-
erated in this study have been submitted to the NCBIGene Expres-
sion Omnibus (GEO; https://www.ncbi.nlm.nih.gov/geo/) under
accession numbers GSE134432, GSE142238, and GSE159965. Ge-
nome sequencing data have been submitted to the European Ge-
nome-phenome Archive (EGA; http://www.ebi.ac.uk/ega/) under
accession number EGAS00001004136. The code for the analysis
of the WGS data and detection of ASCAV is available at GitHub
(https://github.com/aertslab/AS_variant_pipeline) and as Supple-
mental Code. The DeepMEL2 and DeepMEL2_GABPA models are
available from Kipoi (http://kipoi.org/models/DeepMEL/). The
Jupyter notebooks to train DeepMEL and DeepMEL2 are available
at GitHub (https://github.com/aertslab/DeepMEL), and the note-
books to train DeepMEL2 are provided as Supplemental Code.
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