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Abstract

Background: The BARD1 gene encodes for the BRCA1-associated RING domain (BARD1) protein. Germ line and somatic
mutations in BARD1 are found in sporadic breast, ovarian and uterine cancers. There is a plethora of single nucleotide
polymorphisms (SNPs) which may or may not be involved in the onset of female cancers. Hence, before planning a larger
population study, it is advisable to sort out the possible functional SNPs. To accomplish this goal, data available in the
dbSNP database and different computer programs can be used. To the best of our knowledge, until now there has been no
such study on record for the BARD1 gene. Therefore, this study was undertaken to find the functional nsSNPs in BARD1.

Result: 2.85% of all SNPs in the dbSNP database were present in the coding regions. SIFT predicted 11 out of 50 nsSNPs as
not tolerable and PolyPhen assessed 27 out of 50 nsSNPs as damaging. FastSNP revealed that the rs58253676 SNP in the 39
UTR may have splicing regulator and enhancer functions. In the 59 UTR, rs17489363 and rs17426219 may alter the
transcriptional binding site. The intronic region SNP rs67822872 may have a medium-high risk level. The protein structures
1JM7, 3C5R and 2NTE were predicted by PDBSum and shared 100% similarity with the BARD1 amino acid sequence. Among
the predicted nsSNPs, rs4986841, rs111367604, rs13389423 and rs139785364 were identified as deleterious and damaging
by the SIFT and PolyPhen programs. Additionally, I-Mutant showed a decrease in stability for these nsSNPs upon mutation.
Finally, the ExPASy-PROSIT program revealed that the predicted deleterious mutations are contained in the ankyrin ring and
BRCT domains.

Conclusion: Using the available bioinformatics tools and the data present in the dbSNP database, the four nsSNPs,
rs4986841, rs111367604, rs13389423 and rs139785364, were identified as deleterious, reducing the protein stability of
BARD1. Hence, these SNPs can be used for the larger population-based studies of female cancers.
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Background

A single-nucleotide polymorphism (SNP) is the most common

type of genetic mutation. There are several publically available

databases for SNPs, such as dbSNP, GWAS Central, SwissVar etc.

dbSNP is the most extensive among all the databases. By release of

135 hosting number of human SNPs reached more than 50

million, including 535,660 synonymous and 873,308 non-synon-

ymous SNPs [1]. Only the non-synonymous SNPs (nsSNPs), also

called as missense variants are particularly important as they result

in to changes in the translated amino acid residue sequence. It is

likely that nsSNPs play a major role in the functional diversity of

coded proteins in human populations and have been linked with

many diseases. nsSNPs may affect the protein function by reducing

protein solubility or by destabilizing protein structure and they

may affect gene regulation by altering transcription and translation

all in ways that may not be identified by structure or phylogeny-

based features [2,3,4,5].

It is estimated that breast cancer may affect one out of every

eight women at some point in her lifetime. Only 10% of women

have a hereditary predisposition to breast cancer. Meanwhile, less

than half of the patients have been found to carry a mutation in

the BRCA1 or BRCA2 gene [6]. The disease may occur due to

mutations in the code for the genes of the proteins that interact

with BRCA1 and BRCA2. BARD1 is one of these genes and

encodes the BRCA1-associated RING domain protein (BARD1).

BARD1 is a protein with 777 residues. It contains an amino-

terminal RING domain (residues 46–90), three ankyrin repeats

(residues 427–525) and two carboxy-terminal BRCT domains

(residues 616–653 and 743–777). It also has nuclear export and

localization signals (residues 102–120 and the residues after 177,

potentially residues 204–209) [7]. BARD1 makes a stable

heterodimer in association with BRCA1 [8]. Many mutations

have been identified in BARD1 in non-hereditary site-specific

breast and breast/ovarian cancer cases [9,10]. The majority of
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breast cancer cases (approximately 70%) are considered sporadic

in nature because they do not have extensive familial history [11].

In most of these cases, BRCA1 and BRCA2 are rarely found

mutated. In contrast, both germline and somatic BARD1

mutations are found in sporadic breast, ovarian and uterine

cancers [12].

A somatic mutation (Val695Leu) and a germline mutation in

BARD1 associated with sporadic breast cancer (Val695Leu) and

one (Gln564His) associated with ovarian cancer have been

reported [12]. Three SNPs namely, Lys312Asn, Cys557Ser and

Asn295Ser have been found associated with BRCA1 and BRCA2

mutations in negative familial breast/ovarian cancer [9]. In spite

of those findings, the functional role of BARD1 in cancer

susceptibility is unclear. However, many SNPs have been reported

in BARD1 but only two have been suggested to be involved into

breast cancer susceptibility. Val507Met is considered to be

responsible for high risk of postmenopausal breast cancer and

Cys557Ser for familiar breast cancer [10,13]. In addition of the

female specific cancers, BARD1 SNPs have been found to be

associated with neuroblastoma. As a matter of fact, SNPs in

BARD1 coding region cause the expression of an oncogenic

isoform and that influence the neuroblastoma susceptibility and

oncogenicity [14] (Bosse et al, 2012). BARD1 seems a plausible

target for female-specific cancer and other cancer studies.

However, knowledge about the clinical relevance for many of

the BARD1 SNPs is still limited [9,10,12]. This study was

undertaken to explore and extend the knowledge related to the

effect of SNPs on the stability and function of the BARD1 gene.

Results and Discussion

The dbSNP database contains both validated and non-validated

polymorphisms. In spite of this drawback, we opted to avail the

dbSNP because allelic frequency of most of nsSNPs of BARD1 has

been recorded there (except 12 out of 50) and that is the most

extensive SNP database [15]. At dbSNP, BARD1 gene contains

data for 1709 SNPs. Out of 1752 SNPs, 50 are nsSNPs and 14 are

in UTRs. There are 6 SNPs in the 59 UTR and 8 SNPs in the 39

UTR. Our investigation accounted for the nsSNPs in the coding

region and the 59 and 39 UTR SNPs. A graphical representation of

the distribution of SNPs in the coding region and the UTRs is

depicted in terms of percentage in Figure 1; 2.85% of the total

numbers of SNPs are nsSNPs present in the coding region,

whereas only 0.34% and 0.45% of the total number of SNPs are in

the 59 and 39 UTRs, respectively.

Deleterious nsSNPs predicted by SIFT
The sequence homology-based tool SIFT was used to determine

the level of conservation of a particular amino acid position in a

protein. SIFT has been tested on many human SNP databases and

was found able to distinguish the disease associated SNPs from a

neutral one with only a 20% false positive error. The sensitivity of

SIFT is confirmed by the subset of nsSNP from dbSNP predicted

to affect function were involved in disease. Furthermore, The

SIFT algorithm works mainly sequence for prediction while that

performs similarly to tools that use structure. Since, SIFT can

predict a large number of a substitutions, as that do not requires

the structures. Seventy four percent (74%) of nsSNPs identified by

the SNP Consortium, were sufficiently similar to homologs in

protein sequence databases for SIFT prediction. Hence, using

SIFT is advantageous over other tools [16].

A .txt file containing ‘‘db SNP rsIDs’’ of all 50 nsSNPs was

submitted to the ‘‘SIFT dbSNP rsIDs’’ page (http://sift.jcvi.org/

www/SIFT_dbSNP.html) to calculate the tolerance index. The

functional impact of the amino acid substitution is inversely

proportional to the tolerance index (TI). Figure 2 and Table 1

summarize the results. Out of 50 nsSNPs 11 were predicted as

‘Not Tolerable’ (Table 1) and had a Tolerance Index (TI) #0.05.

The corresponding amino acid substitutions of rs143914387,

rs1048108, rs71579841, rs61754118 and rs139785364 had a TI

score of 0.00. The TI score was 0.01 for rs187590361 and

rs13389423, 0.02 for rs111367604, 0.03 for rs146629794 and 0.04

for rs3738885 and rs4986841. The nucleotide change CRT

accounted for the maximum number (four) of deleterious SNPs,

followed by ARG (two). The rest of the nucleotide changes

occurred only once.

Damaging nsSNPs predicted by PolyPhen
The nsSNPs involved in structural modification were deter-

mined by the PolyPhen (Polymorphism and Phenotype) program.

PolyPhen software version 2.0.9 predicts the fate of the structure

and function of a protein due to an amino acid change through

specific empirical rules on the sequence. Input options for the tool

are protein sequence, accession number or database ID/accession

number combined with sequence position with amino acid

variants. For sequence-based characterization of the substitution

site PolyPhen uses the TMHMM algorithm, Coils2 program and

SignalP program to predict transmembrane, coiled coil and signal

peptide regions of the protein sequences. PolyPhen identifies

homologues of the input sequences via a BLAST and calculates

position-specific independent count (PSIC) scores for every variant

and estimates the difference between the variant scores, the

difference of .0.339 is detrimental. The program carries out a

BLAST query of a sequence against a protein structure database

(PDB and PQS) for mapping of the substitution site to known

protein 3-dimensional structures. PolyPhen uses the DSSP

database to obtain secondary structure and solvent accessible

surface area for the mapped amino acid residues. There are

certain empirical rules applied on the sequences and the accuracy

of that is approximately 82% with a chance of 8% false positive

prediction [17].

The protein accession number of BARD1 (Q99728) and the

amino acid substitutions corresponding to each of fifty nsSNPs

were submitted separately. Table 2 summarizes the results

obtained from the PolyPhen server. A position-specific indepen-

Figure 1. A graphical representation of distribution of
nonsynonymous, 59UTR and 39 UTR SNPs for BARD1 gene
(based on the dbSNP database).
doi:10.1371/journal.pone.0043939.g001
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dent count (PSIC) score difference was assigned using the

categories ‘probably damaging’ (2.00 or more), ‘possibly damag-

ing’ (1.40–1.90), ‘potentially damaging’ (1.20–1.50), ‘borderline’

(1.00–1.20) and ‘benign’ (0.00–0.90). Twenty-seven out of 50

nsSNPs were predicted as ‘damaging,’ and the PSIC scores fell

into the range of 1.51 to 3.41. Five nsSNPs predicted to be

deleterious by the SIFT program were also predicted to be

‘damaging’ by the PolyPhen server. rs139785364 had a SIFT TI

of 0.00 and a PolyPhen PSIC of 2.495. Therefore, the relevant

mutation would be important when manifesting itself in the

cancers caused by the nonfunctioning of the BRCA1-BARD1

complex.

Functional SNPs in untranslated regions (UTR) predicted
by FastSNP

The polymorphisms in the 39 UTR affect gene expression

during translation of mRNA while the polymorphisms in the 59

UTR influence RNA half-life by altering polyadenylation [18,19].

The FastSNP (Function Analysis and Selection Tool for Single

Nucleotide Polymorphisms) program was used to predict the

functionally important SNPs in the 39 and 59 UTRs. That is a web

server that efficiently identifies the functional SNPs. That

prioritizes SNPs according to twelve parameters (phenotypic risks

and functional effects), such as changes to the transcriptional level,

pre-mRNA splicing, protein structure, etc. FastSNP is unique in its

feature that the prediction of functional effects is always based on

Figure 2. Sequence homology-based results from Sorting Intolerant from Tolerant (SIFT) server for SNPs (SIFT output is modified
and depicted only the intolerant amino acid substitutions).
doi:10.1371/journal.pone.0043939.g002

Table 1. List of nsSNPs predicted by SIFT as Not Tolerated.

SNP IDs
Nucleotide
Change

Amino Acid
Change

Tolerance
Index

rs143914387 G/T Q11H 0.00

rs1048108 C/T P24S 0.00

rs71579841 C/T A40V 0.00

rs3738885 C/G S241C 0.04

rs146629794 C/A A613E 0.03

rs4986841 A/T I653F 0.04

rs187590361 A/G N663S 0.01

rs111367604 G/C V695L 0.02

rs13389423 C/T S728F 0.01

rs61754118 A/G I738V 0.00

rs139785364 C/T R751W 0.00

doi:10.1371/journal.pone.0043939.t001

Table 2. List of nsSNPs that were predicted to be significantly
damaging by PolyPhen.

SNP IDs
Nucleotide
Change

Amino Acid
Change PSIC SD

rs140254589 A/G D 102 N 1.614

rs144856889 C/T H 116 Y 2.082

rs184660818 C/T S 184 F 1.998

rs16852741 A/G S 186 G 1.633

rs138593305 T/C L 220 S 1.804

rs145009419 A/G E 223 G 2.039

rs151325889 C/A P 246 Q 2.087

rs138904906 A/G N 255 S 1.736

rs146223579 T/C I 258 T 1.568

rs148760338 C/T P 315 L 2.299

rs141351035 T/G C 362 G 2.902

rs2229571 G/C R 378 S 1.79

rs76824305 T/G V 422 G 1.527

rs137988817 G/C D 458 H 2.064

rs111350417 T/C V 477 A 1.51

rs149839922 T/C L 480 S 1.885

rs146946984 G/A R 565 H 1.859

rs75709313 C/A A 594 D 1.863

rs140642433 T/C C 628 R 3.41

rs4986841 A/T I 653 F 1.718

rs187590361 A/G N 663 S 1.669

rs111284953 T/A V 695 D 1.879

rs150121935 A/T D 710 V 2.514

rs140729292 G/A A 721 T 1.268

rs13389423 C/T S 728 F 1.998

rs76744638 C/G R 731 G 2.27

rs139785364 CRT R 751 W 2.495

doi:10.1371/journal.pone.0043939.t002
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the most up-to-date information. FastSNP extracts updated

information from eleven external Web servers. FastSNP also

provides project management services for registered users to store

and export their candidate SNPs and update the SNPs putative

functional effects by re-submitting the query [20].

The FastSNP search was performed by querying by gene

symbol (BARD1). Table 3 lists the SNPs in the UTRs and the

intronic region. The SNP rs58253676 in the 39 UTR may have

splicing regulator and enhancer functions and may possibly be a

splice site. Most importantly, the nucleotide change may have a

medium-high (3–4) level of risk for being a splicing regulator and a

low-medium (2–3) level of risk for enhancer functions. rs17489363

and rs17426219 in the 59 UTR may alter the transcriptional

binding site. In the intronic region, rs67822872 SNP, an intronic

enhancer, may have a medium-high (3–4) level of risk upon

nucleotide change.

Modeling of amino acid substitution effects due to
nsSNPs on protein structure, Energy minimization and
RMSD

(A) The closest related protein structures. By using the

EMBL-EBI Web-based tool PDBsum, the BARD1 gene product-

related protein structures were searched. Three related protein

structures, namely 1JM7, 3C5R and 2NTE, were found to share

100% amino acid sequence similarity (Table 4). 1JM7 is a

BRCA1-BARD1 complex. Chain B belongs to BARD1 and has 97

amino acid residues. Chain B accounts for residues 26 to 122.

3C5R and 2NTE are homodimers. They are the stretches of

BARD1 that account for residues 425 to 545 and 568 to 777,

respectively.

(B) Models of substituted amino acids and their

minimized energy and RMSD. The single amino acid

polymorphism database (SAAP) server http://www.bioinf.org.

uk/saap/db/ is offline due to essential maintenance. Thus, we

were unable to map the deleterious nsSNPs into protein structure

through SAAP. 1JM7, 3C5R and 2NTE were scanned manually

to identify amino acid polymorphisms. IJM7 accounted for three

nsSNPs: rs71579841 (Ala40Val), rs140254589 (Asp102Asn) and

rs144856889 (His116Tyr). 3C5R also had three nsSNPs:

rs137988817 (Asp458His), rs111350417 (Val477Ala) and

rs149839922 (Leu480Ser). However, 2NTE had 10 nsSNPs.

nsSNPs found in 1JM7, 3C5R and 2NTE are listed in Table 5.

All the functional nsSNPs predicted using the SIFT and PolyPhan

tools and present in the three structures mentioned above were

subjected to the SPDBV mutation tool. A model for each

functional nsSNP was made and visualized as a comparison using

SPDBV.

Energy minimization for all the models and their native

structures was achieved using the NOMAD-REF Gromacs server.

The Gromacs tool uses a force field for energy minimization. The

total energy for all the mutant and native models after

minimization is listed in Table 5. The total energies for the native

structures of 1JM7, 3C5R and 2NTE are 25209.592 kJ/mol,

26174.53 kJ/mol and 212127.86 kJ/mol, respectively. Change

in total energy due to mutation is noticeable in the 1JM7 mutant

rs71579841 (Ala40Val), being 22218.149 kJ/mol. Change in the

total energy due to mutation is also noticeable in the 2NTE

mutants rs76744638 (Arg731Gly) and rs139785364 (Arg751Try),

being 211862.29 kJ/mol and 211881.313 kJ/mol, respectively.

Interestingly, other mutant models had almost the same energy as

their native structures.

RMSD is the measure of the deviation of the mutant structures

from their native configurations. Higher the RMSD value, the

more deviation between the two structures. Structure changes, in

turn, affect functional activity. Among all the 16 mutants,

rs144856889 (His116Tyr) had the highest RMSD (1.8039 Å),

followed by rs137988817 (Asp458His) (1.1598 Å). rs140254589

(Asp102Asn), rs140729292 (Ala721Thr), rs140642433 (Cy-

s628Arg), rs149839922 (Leu480Ser) and rs150121935 (As-

p710Val) had 0.6960 Å, 0.6725 Å, 0.5496 Å and 0.5399 Å

RMSD scores, respectively. Scores for other mutants fall in the

range between 0.1364 (rs71579841, Ala695 Val) and 0.4724

(rs76744638, Arg731Gly). RMSDs for all the mutant structures

are listed in Table 5.

Prediction of change in stability due to mutation
The I-Mutant 2.0 server was used to predict the change in

protein structure stability due to mutations. the input option for

this tool is the 3D structure of protein. The tool was developed and

Table 3. List of SNPs intron and UTR (mRNA) predicted to be functionally significant by FastSNP.

SNP ID Nucleotide Change UTR/Intronic Position Possible Functional Effect Level of Risk

rs58253676 (.6 bp) 39UTR Splicing regulation Very Low-Medium (2–3)

Splicing Enhancer Very Low-Medium (2–3)

Splicing Site Medium-High (3–4)

rs17489363 A/G 59UTR Promoter regulation Very Low-Medium (2–3)

Intronic Enhancer Very Low-Medium (2–3)

Change in transcription Binding Site Yes

rs17426219 G/A 59UTR Promoter regulation Very Low-Medium (2–3)

Change in transcription Binding Site Yes

rs67822872 –/A Inton Intronic enhancer Medium-High (3–4)

doi:10.1371/journal.pone.0043939.t003

Table 4. The available PDB structure for the BARD1 gene with
a similarity (100%) with BARD1 FASTA sequence at PDBsum.

PDB IDs Length (AA) Similarity Chain used for study

1JM7 97 100% Cain B

3C5R 125 100% Chain A or B (Homodimer)

2NTE 210 100% Chain A or B (Homodimer)

doi:10.1371/journal.pone.0043939.t004
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tested with the data extracted from ProTherm which is the most

comprehensive available database of thermodynamic experimen-

tal data of free energy changes of protein stability due to mutation.

Hence, that efficiently predicts whether a protein mutation affects

the stability of the protein structure or not. The predictions are

80% or 70% accurate depending upon the usage of structural or

sequence information, respectively. The tool provides the scores of

free energy change predictions calculated with the energy-based

FOLD-X tool. By incorporating the FOLD-X approximation with

those of I-Mutant, an precision of 93% on one third of the

database can be accomplished, thus making I-Mutant a helpful

tool for protein design and mutation [21].

Although the stabilities of the two nsSNPs rs144856889

(His116Tyr) and rs137988817 (Asp458His) increased, their

reliability index (RI) was zero (0) and one (1), respectively. Other

mutants exhibited decreased stability with an RI ranging between

9 and 3. These results are summarized in Table 6.

Mutant amino acids affect the domain structures of
BARD1

The affected domains and the allelic frequency of corresponding

nsSNPs are listed in Table 7. Only ankyrin ring and BRCT

domains harbor the predicted deleterious mutations. All the

mutations of 2NTE, except rs187590361 (Asn663Ser), were

located in the BRCT domains of BARD1, whereas all the 35CR

mutations were located in the ankyrin rings. Structural changes in

BARD1 due to 2NTE mutations can be better understood in

Figure 3.

One of the major purposes of genetics studies is to distinguish

functionally neutral mutations from those that contribute to

disease. About half of the known gene lesions accounting for

human inherited disease involve amino acid substitutions. Hence,

to identify the nsSNPs those affect protein functions and, in turn,

manifest themselves as diseases are an important issue [22,23].

The functional effect of many nsSNPs may be neutral because

natural selection will have removed mutations in essential

positions. Using phylogenetic information with certain structural

approaches is the basis of the assessment of these nsSNPs. Still,

there is increasing evidence that the onset of many human diseases

is due to mutations in the intronic regions of genes. Such

mutations cause alterations in regulatory regions and the splicing

process [24,25].

SNPs are widespread throughout the genome. This fact makes

them a preferred choice as genetic markers in the research on

diseases and their corresponding drugs [26]. More than 1 million

SNPs have been reported so far. Many of them provide a large

amount of information about relationships between individuals,

populations and diseases. However, the large numbers of SNPs

cause a challenge for biologists and bioinformaticians [26].

Studying associations between disease risk and these genetic

variations using a molecular epidemiological approach has gained

much attention from scientists. The number of reported and

recorded SNPs is increasing. This huge number of SNPs makes it

difficult for researchers to plan costly population-based genotyp-

ing. Due to a plethora of SNPs, it is difficult to choose the target

SNPs that will most likely affect phenotypic functions and

ultimately contribute to disease development [24,26,27].

Approximately 5–10% of breast and ovarian cancer predispo-

sitions are hereditary [28] BRCA1 and BRCA2 being the most

studied susceptibility genes. Mutations in BRCA1 are found in 40–

50% of families with a high breast cancer risk. Among these

mutation occurrences, 75–80% account for both breast and

ovarian cancers [29]. Even so, a significant proportion of

predisposition to breast cancer that is due to these genetic

aberrations is still unanswered. This leads us to hypothesize that

there must be involvement of some other susceptibility genes.

Table 5. RMSD and total energy after energy minimization of native-structures of 1JM7, 3C5R and 2NTE and their mutant models.

Molecules RMSD (Å)
Total energy after energy minimization
(KJ/mol)

1JM7 native-type structure 25209.592

1JM7 Mutant 40 (rs71579841 ) 0.1364 22218.149

1JM7 mutant 102 (rs140254589) 0.7866 25389.294

1JM7 mutant 116 (rs144856889) 1.8039 25464.582

3C5R native-type structure 26174.53

3C5R mutant 458 (rs137988817) 1.1598 26126.259

3C5R mutant 477 (rs111350417) 0.1626 26166.61

3C5R mutant 480 (rs149839922) 0.5496 26126.997

2NTE native-type structure 212127.86

2NTE mutant 594 (rs75709313) 0.2848 212146.148

2NTE mutant 628 (rs140642433) 0.6725 211952.286

2NTE mutant 653 (rs4986841) 0.2891 212192.765

2NTE mutant 663 (rs187590361) 0.3793 212020.879

2NTE mutant 695 (rs111367604) 0.4299 212263.969

2NTE mutant 710 (rs150121935) 0.5399 212018.463

2NTE mutant 721 (rsrs140729292) 0.696 212200.248

2NTE mutant 728 (rs13389423) 0.4079 212134.148

2NTE mutant 731 (rs76744638) 0.4724 211862.29

2NTE mutant 751 (rs139785364) 0.1796 211881.313

doi:10.1371/journal.pone.0043939.t005
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Therefore, we targeted the genes encoding proteins associated to

BRCA1 for study.

In this study, we have examined the BARD1 gene to analyze and

identify the deleterious and functional nsSNPs using in silico

methods. BARD1 is one of the BRCA1-associated proteins and

the two share closely related domain structures [30]. Both have an

N-terminal zinc finger domain and a C-terminal BRCT domain

which had been found in many proteins. In these proteins, the

domains are involved in DNA repair and cell cycle regulation.

Particularly, the zinc finger domain is functionally important in

the formation of the BRC1/BARD1 complex [31]. BARD1

contains three ankyrin repeats, which have been reported to be

involved in transcription regulation when they are also present in

other proteins [32]. Furthermore, the complex of the BARD1/

BRCA1 heterodimer and CstF-50 (cleavage stimulation factor

subunit 1) represses the polyadenylation machinery, presumably to

prevent inappropriate mRNA processing at sites of DNA repair

[33]. BARD1 also regulates the nuclear translocation of BRCA1

by preventing its export [34]. The involvement of BARD1 in

TP53-independent apoptotic signaling has been reported previ-

ously. It can also function independent of BRCA1. BARD1

interacts with ankyrin repeats of BCL3 and thus is likely to

modulate the activities of the transcription factor NFKB [35,36].

Hence, nsSNP variation which causes a change in amino acid

composition may result in the alteration of structural domains. For

example, if there is an alteration in the ring finger domain, it may

hinder BRCA1/BARD1 complex formation, reduce the stability

of BRCA1, and change the polyadenylation process of mRNAs.

Nevertheless, the alteration of ankyrin repeats or the BRCA1 C-

terminal (BRCT) domain may lead to abnormal transcriptional or

cell cycle regulation, respectively.

SIFT predicted 11 nsSNPs as deleterious, and PolyPhen

predicted 27 nsSNPs as deleterious. Among them, only 5 nsSNPs

were common (Table 1 and 2). They are rs4986841 (Ile653Phe),

rs187590361 (Asn663Ser), rs111367604 (Val695Leu), rs13389423

(Ser728Phe) and rs139785364 (Arg751Trp). rs111367604

(Val695Leu) has been found to be associated with predisposition

to breast, ovarian and uterine cancers [12], which is in agreement

with our findings. SNPs in UTRs may alter transcription binding

sites, splicing sites and polyadenylation of mRNAs [18,19]. The

SNPs rs58253676 in the 39 and rs17489363 and rs17426219 in the

59 UTRs are predicted to be involved in splice site regulation

(Table 3). None of them have been studied so far in terms of their

functional effects in any population. There were only three

structures found in the Protein Data Bank, 1JM7, 3C5R and

2NTE, which shared 100% similarity with the BARD1 amino acid

sequence (Table 4). Energy minimization, RMSD calculation and

modeling of mutants were performed on the above-mentioned

structures. The free energies of the mutant models of 1JM7

rs71579841 (Ala40Val), C35R rs137988817 (Asp458His), C35R

rs149839922 (Leu480Ser) and 2NTE rs140642433 (Cys628Arg)

and rs76744638 (Arg731Gly) decreased markedly. The minimum

RMSD was calculated to be 0.1364 for 1JM7 rs71579841

(Ala40Val), while the maximum RMSD was calculated to be

1.8039 for 1JM7 rs144856889 (His116Tyr) and 1.1598 for C35R

rs137988817 (Asp458His). RMSDs in the range of 0.7866 for

rs140254589 (Asp102Asn) and 0.1796 for rs139785364

(Arg751Trp) (Table 5) were observed in these mutants. All five

nsSNPs which were predicted to be deleterious by both SIFT and

PolyPhen were found to be involved in decreasing protein stability.

Four of them, rs4986841 (Ile653Phe), rs111367604 (Val695Leu),

rs13389423 (Ser728Phe) and rs139785364 (Arg721Trp), were

Table 6. Predictions of protein stability change due to mutations.

Molecules Models

Position of amino
acid on protein
Molecule WT MT

SVM2 Prediction
Effect

DDG Value
Prediction
Kcal/mol RI RSA

1JM7 Mutant Models

1JM7 (rs71579841) 40 A V Decrease 20.53 3 0.0

1JM7 (rs140254589) 102 D N Decrease 22.33 9 20.8

1JM7 (rs144856889) 116 H Y Increases 20.13 0 74.2

3C5R Mutant Models

3C5R (rs137988817) 458 D H Increases 20.26 1 8.3

3C5R (rs111350417) 477 V A Decreases 21.29 8 0.0

3C5R (rs149839922) 480 L S Decreases 22.15 6 0.0

2NTE Mutant Models

2NTE (rs75709313) 594 A D Decrease 21.25 6 13.6

2NTE (rs140642433) 628 C R Decrease 21.84 7 4.3

2NTE (rs4986841) 653 I F Decrease 20.51 8 3.8

2NTE (rs187590361) 663 N S Decrease 21.49 6 10.2

2NTE (rs111367604) 695 V L Decrease 20.7 8 0.7

2NTE (rs150121935) 710 D V Decrease 21.07 4 59.0

2NTE (rsrs140729292) 721 A T Decrease 21.02 6 0.0

2NTE (rs13389423) 728 S F Decrease 20.41 3 6.8

2NTE (rs76744638) 731 R G Decrease 20.88 6 31.4

2NTE (rs139785364) 751 R W Decrease 0.15 7 37.6

For all the predictions, pH and temperature were selected as 7.0 and 25uC, respectively. WT: Wild type amino acid, MT Mutant type amino acid, DDG: DG(New Protein)-
DG(Wild Type) in Kcal/mol (DDG,0: Decrease stability, DDG.0: Increase stability), RI: Reliability index, RSA: Relative solvent accessible area.
doi:10.1371/journal.pone.0043939.t006
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found in the BRCT domain of BARD1. This finding suggests that

these four nsSNPs may decrease protein stability, hinder

transcriptional regulation, and interfere with cell cycle regulation

[31].

BARD1 SNPs G1743C (Cys557Ser), T2006C (Cys645Arg) and

G2355A (Ser761Asn) have been identified to be associated with

ovarian cancer, breast and ovarian cancer and breast cancer,

respectively [9,12]. A Finnish population study reported three

synonymous and four nsSNPs. The nsSNPs were C1207G

(Ser378Arg), G1592A (Val507Mat), C2045T (Arg658Cys) and

G1743C (Cys557Ser). Only G1743C (Cys557Ser) was found

associated with breast cancer predisposition in that study [10]. The

same SNP was found associated with risk of single and multiple

primary breast cancer [37]. Pro24Ser and C1207G (Ser378Arg)

Table 7. ns SNPs found in different motifs and domains of BARD1 protein.

Structural domains Mutants Amino Acid Position Wild Type Mutant Allelic Frequency

Ankyrin Repeat 3C5R (rs137988817) 458 D H 0.00

3C5R (rs111350417) 477 V A 0.5

3C5R (rs149839922) 480 L S NA

BRCT domain 2NTE (rs75709313) 594 A D 0.05

2NTE (rs140642433) 628 C R 0.0

2NTE (rs4986841) 653 I F 0.01

2NTE (rs111367604) 695 V L 0.05

2NTE (rs150121935) 710 D V 0.0

2NTE (rsrs140729292) 721 A T 0.0

2NTE (rs13389423) 728 S F 0.019

2NTE (rs76744638) 731 R G 0.5

doi:10.1371/journal.pone.0043939.t007

Figure 3. A comparison of amino acid substitutions due to nsSNPs, rs4986841 (Ile653Phe), rs111367604 (Val695Leu), rs13389423
(Ser728FPhe) and rs139785364 (Arg751Trp). Figure shows the differences of structure and electron cloud density between native and mutant
models BARD1 Protein (PDB ID: 2NTE). Models were generated by using SPDBV (v4.0).
doi:10.1371/journal.pone.0043939.g003
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may jointly contribute to the susceptibility of breast cancer. Their

heterozygote and homozygote are associated with decreased risk of

breast cancer [38]. Recently, G1743C (Cys557Ser) has been

reported for no association with the predisposition of familial

breast cancer in an Australian population based case control study

[39]. In a cohort based study of a French population, nine

common SNPs of BARD1 including G1743C (Cys557Ser) were not

shown any role as modifier of risk in BRCA1/2 mutant carriers

[40]. Furthermore, BARD1 SNPs rs6435862 and rs3768716 and

some known common SNPs has been found significantly

associated with the aggressive neuroblastoma [41].During the last

decade, approximately 12 nsSNPs have been studied in different

populations for their association with the predisposition to various

female cancers. Some of them are recorded in the dbSNP database

for the BARD1 gene (http://www.ncbi.nlm.nih.gov/gene/580).

They are rs28997576 (Cys557Ser), rs146946984 (Arg565His),

rs34744268 (Cys645Arg), rs111367604 (Val695Leu) and

rs142155101 (Ser761Asn) [9,12]. rs111367604 (Val695Leu) has

been predicted to be deleterious by SIFT and PolyPhen, while I-

mutant also predicts its decreased stability. rs146946984 (Ar-

g565His) has been predicted to be deleterious by PolyPhen only.

Contrarily, among nsSNPs predicted damaging by SIFT and/or

PolyPhen rs1048108 (Ser24Pro), rs16852741 (Gly186Ser)

rs2229571 (Ser378Arg) had been reported in population based

studies. Studies revealed that above three nsSNPs show no

significant association with disease [42,43]. Although, rs28997576

(Cys557Ser), rs34744268 (Cys645Arg) and rs142155101 (Ser761-

Asn) are well studied and published nsSNPs, however, none of the

tools used for the predictions were able to predict their damaging

effects. Hence, there is a need of testing the predicted nsSNPs for

their functional roles meanwhile; there is also a need of

improveing the web-based tools for more précised predictions.

Many nsSNPs have been studied in populations but not indexed in

the dbSNP database, such as Asn295Ser, Lys312Asn, Asn470Ser,

Gln564His, Thr598Ile and Ile692Thr [9,12,13,44]. Thus, there is

also a need to update the dbSNP database accordingly.

Conclusions

This study concludes that with the available bioinformatics tools

and the data present in the dbSNP database, four snSNPs are

deleterious and likely reduce protein stability. These snSNPs are

rs4986841 (Ile653Phe), rs111367604 (Val695Leu), rs13389423

(Ser728FPhe) and rs139785364 (Arg751Trp). Their presence in

the BRAC domain increases the possibility of altered transcrip-

tional and cell cycle regulation. Therefore, the probability of their

involvement in disease predisposition increases. This prediction

can be further tested through larger population-based studies.

Materials and Methods

Datasets
BARD1 gene SNPs and their protein sequences in the FASTA

format were retrieved from the dbSNP database [15,45] (http://

www.ncbi.nlm.nih.gov/SNP/), and ‘‘.pdb’’ files for BARD1

subunits were retrieved from the RCSB Protein Data Base [46]

(http://www.rcsb.org/pdb/home/home.do) for computational

analysis in this study.

Sequence homology-based prediction of deleterious
nsSNPs by using SIFT

The Sorting Intolerant from Tolerant (SIFT) server available at

(http://sift.jcvi.org) was used to predict the deleterious coding

non-synonymous SNPs. The SIFT program can sort out the

functionally neutral and deleterious amino acid changes due to

SNPs in the coding regions of genes [16]. For the prediction of

functional consequences on proteins due to nsSNPs, the SIFT

program utilizes amino acid sequence homology and the physical

properties of the proteins in combination with naturally occurring

nsSNPs by aligning paralogous and orthologous protein sequences.

The algorithms for the SIFT program use the latest SWISS-

PROT, nr and TrEMBL databases to find homologous sequences

by considering the median conservation sequence score to be 3.00.

The threshold for the intolerance index is $0.05. Seq-Rep is the

fraction of sequences that contain amino acids shown in color

code: black (non-polar); green (uncharged polar); red (basic); blue

(acidic). A low fraction indicates the position is either severely

gapped or non-alignable and has little information.

Structural homology-based prediction of functional
consequences of coding nsSNPs by using PolyPhen

The ability of the protein to interact with other molecules or to

have different functions depends upon its tertiary structure

[47,48]. Therefore, analysis of damaged coding nsSNPs at the

structural level is necessary to understand the activity of the

protein. The Polyphen server (http://genetics.bwh.harvard.edu/

pph/) was used to study the functional consequences of nsSNPs

[17,49]. The PolyPhen server requires the protein sequence or a

SWALL database ID or accession number as well as the sequence

position of amino acid variants. PolyPhen classifies the SNPs as

‘‘benign,’’ ‘‘possibly damaging’’ or ‘‘probably damaging’’ based on

site-specific sequence conservation among mammals, as well as

their location in the three-dimensional structure of the protein

molecule. The term ‘‘damaging’’ used by PolyPhen reflects the

mutations affecting protein structure and not the loss or gain of

function [50]. The protein identifier from the UniProt database for

the BARD1 protein ‘‘Q99728’’ was submitted with the position of

variation along with the wild type and mutant amino acids.

PolyPhen then calculated PSIC scores for each of the two variants

based on three parameters, namely, (i) sequence-based character-

ization of the substitution site, (ii) profile analysis of homologous

sequences and (iii) mapping of a substitution site to a known three-

dimensional protein structure. The PSIC score difference between

the two variants elucidates the amount of functional consequences

that the nsSNP exerts. The PSIC score difference is regarded to be

directly proportional to the impact of a particular amino acid

substitution [51].

Scanning of functional SNPs in untranslated regions
(UTRs) of the BARD1 gene using FastSNP

SNPs in the UTR sites are involved in the regulation of gene

expression in many ways, such as RNA transcript splicing site or

transcription factor binding site alteration [52,53]. Hence, the

UTRs were also analyzed for their functional SNPs. FastSNP

(http://fastsnp.ibms.sinica.edu.tw) prioritizes SNPs according to

twelve phenotypic risks and putative functional effects, such as

changes to the transcriptional levels and pre-mRNA splicing and

protein structure. The input order for the candidate SNPs was (i)

input the candidate gene using the gene symbol, (ii) input a single

SNP ‘‘rsID’’ or a list of SNP rsIDs for batch analysis and (iii) paste

the novel SNP sequence. Input of the candidate gene symbol

(BARD1) was used for analysis. Finally, the 39and 59 UTRs were

analyzed. The SNP prioritization result was a list of SNPs with its

risk ranking and possible function types. Risk level is ranked as 0,

1, 2, 3, 4 or 5, which signify the levels of ‘‘no risk’’, ‘‘very low risk,’’

‘‘low risk,’’ ‘‘medium risk,’’ ‘‘high risk,’’ and ‘‘very high risk,’’

respectively.
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Modeling of protein structure amino acid substitutions
caused by nsSNPs, energy minimization and calculating
the RMSD

(A) Finding the closest related protein. The EMBL-EBI

Web-based tool PDBsum (http://www.ebi.ac.uk/pdbsum/) was

used to find the proteins related to the BARD1 gene. PDBsum

provides an at-a-glance overview of every macromolecular

structure deposited in the Protein Data Bank (PDB). It performs

a FASTA search against all sequences in the protein data bank

(PDB) to obtain a list of the closest matches. The FASTA sequence

of the BARD1 protein was provided in the query space. We

selected only the three closest matches, namely the solution

structure of the BRCA1/BARD1 ring-domain heterodimer (PDB

ID 1JM7) [8], the crystal structure of the BARD1 ankyrin repeat

domain (PDB ID 3C5R) [54] and the crystal structures of the

BARD1 BRCT domains (PDB ID 2NTE) [55].
(B) Modeling amino acid substitution, energy

minimization and RMSD calculation. Swiss-PDBViewer

(v4.04) was used to generate the mutated models of each of the

selected PDB entries for the corresponding amino acid substitu-

tions. Swiss-PDBViewer allows browsing through a rotamer

library to change amino acids. A ‘‘mutation tool’’ was used to

replace the native amino acid with a new one. The mutation tool

facilitates the replacement of the native amino acid by the ‘‘best’’

rotamer of the new amino acid. The ‘‘.pdb’’ files were saved for all

the models. The NOMAD-Ref Gromacs server was used to

perform energy minimization for all the native and mutated

models of 1JM7, 3C5R and 2NTE. The NOMAD-Ref Server

makes use of Gromacs using force fields for energy minimization

according to the steepest descent, conjugate gradient or L-BFGS

methods [56]. The conjugate gradient method was utilized in this

study. RMSDs between the native structure and each mutant were

calculated using YASARA [57].

Predicting the change in stability due to mutation
To predict the change in the stability of the protein upon

mutation, a support vector machine (SVM)-based tool server, I-

Mutant 2.0, was used. This tool automatically predicts protein

stability changes upon single point mutations. Prediction can be

performed using either protein structure or sequence. I-Mutant 2.0

can be used both as a classifier for predicting the sign of the

protein stability change upon mutation and as a regression

estimator for predicting the related change in Gibbs-free energy

(DDG) [21]. Scanning of nsSNPs for their position in different protein

domains

To find the nsSNPs and the amino acid changes they may cause

in different domains of the protein structures, the Prosit-ExPaSy

tool was used (http://prosite.expasy.org/). The UniProtKB ID

was provided for the query column, and the UniProt database was

searched for motifs and domains of BARD1. The results were

obtained as the categorized sequence of amino acids with their

respective positions in the protein subsequences and domains.
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