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A B S T R A C T   

ROCK2 is a protein involved in the restructuring of the cytoskeleton in cell adhesion and contractibility pro-
cesses. miR-138-5p and miR-455-3p regulate Rock2 expression, cell proliferation, migration, and invasion in 
different experimental cell models. However, their participation in the cytoarchitecture and mobility of B16F1 
melanoma cells exposed to 5-Br-2’-dU is partially known. This work aimed to analyze ROCK2 and miRs 138-5p 
and 455-3p expression associated with morphological and mobility changes of B16F1 mouse melanoma cells 
exposed to the thymidine analog 5-Bromo-2’-deoxyuridine (5-Br-2’-dU). We observed an increase (2.2X n = 3, 
p < 0.05) in the cell area, coinciding with an increase in cell diameter (1.27X n = 3, p < 0.05), as well as greater 
cell granularity, capacity for circularization, adhesion, which was associated with more significant polymeri-
zation of F-actin, collapsed in the intermediate filaments of vimentin (VIM), and coinciding with a decrease in 
migration (87%). Changes coincided with a decrease in Rock2 mRNA expression (2.88X n = 3, p < 0.05), 
increased vimentin and a reciprocal decrease in miR-138-5p (1.8X), and an increase in miR-455-3p (2.39X). The 
Rock2 kinase inhibitor Y27632 partially rescued these changes. These results suggest ROCK2 and VIM regulate 
the morphological and mobility changes of B16 melanoma cells after exposure to 5-Br-2’-dU, and its expression 
may be reciprocally regulated, at least in part, by miR-138-5p and miR-455-3p.   

1. Introduction 

Cutaneous melanoma is a highly invasive and metastatic cancer with 
a low survival rate in advanced stages [1,2]. In in vitro models, mela-
noma cells can restructure their cytoskeleton, altering their adhesion 
and contractibility, increasing their migration and invasion capacity. In 
vitro and in vivo, the inhibition of the activity of the Rho-associated 
protein kinase 2 (ROCK2) decreases the volume of the tumor mass in 
mice and the migration and metastasis in melanoma cells [3,4]. 
Furthermore, ROCK2 regulates cytoarchitecture through the collapse of 
intermediate filaments Vimentin phosphorylation (VIM) [5] and the 
formation of actin stress fibers by phosphorylation of the myosin light 
chain 2 (MLC2) and the inhibition of the phosphatase activity of the 
myosin light chain kinase (MLCK), which inhibits MLC2 [6,7]. However, 

in cells induced to senescence, there is not enough knowledge about 
ROCK2 involvement and regulation. 

Senescent cells change various physiological aspects, including 
reorganizing the cytoskeleton and differential kinases expression [8,9]. 
There is a decrease in ROCK1 expression [9], while knockout of both 
ROCK1 and ROCK2 is associated with cell cycle arrest and senescence, 
possibly due to decreased expression CyclinA, CKS1, and CDK1 [10]. 

The thymidine analog, 5-Bromo-2’-deoxyuridine (5-Br-2’-dU), in-
corporates into the DNA, generates instability, and has been widely used 
in different types of cancer [11,12]. Although its mechanism of action is 
unknown, its exposure in B16 mouse melanoma cells induces a senescent 
phenotype together with changes in their extracellular matrix glyco-
proteins, cell attachment, adhesion-related glycoproteins to tumor 
cell-cell interaction and actin expression, as well as a reduction in 
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Bogotá, D.C., Colombia. 
** Corresponding author. Molecular Physiology Group, Scientific and Technological Research, Public Health Research, Instituto Nacional de Salud de Colombia, 
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proliferation, pigmentation, and differential expression of mRNAs and 
microRNAs (miRNAs) [13–16]. The induction of the senescent pheno-
type by genotoxic stress by 5-Br-2’-dU in B16F1 cells is little known. The 
role of ROCK2 in tumor cell cytoarchitecture and senescence, which 
miRNAs could modulate, may expand forward other molecules involved 
in cellular senescence, such as F-actin and VIM. 

miRNAs are small non-coding RNAs (17–22 nt), post-transcriptional 
regulators of the gene expression. Changes in the expression of miRNA 
138-5p and 455-3p affect proliferation, migration, and invasion through 
its molecular target, Rock2 mRNA [17,18]. However, the involvement of 
ROCK2, miRNAs 138-5p, and 455-3p in the cytoarchitecture and 
mobility of B16F1 melanoma cells exposed to 5-Br-2’-dU is limited. This 
study aimed to analyze ROCK2 and miRs 138-5p and 455-3p expressions 
in the highly metastatic B16F1 mouse melanoma cells and assess the 
effect on cell motility and invasion of 5-Br-2’-dU, a reported antitumoral 
agent [11,12,19]. 

We report that 5-Br-2’-dU induces greater B16 melanoma cell 
circularization, adhesion, and migration, associated with more signifi-
cant F-actin polymerization, collapsed in the intermediate filaments 
vimentin and coinciding with a reciprocal decrease in Rock2 mRNA, 
miR-138-5p, and miR-455-3p expression and provide evidence that 
ROCK2 activity and miR-138-5p and miR-455-3p may promote tumoral 
mobility associated with the cell senescence phenotype induce for 5-Br- 
2’-dU in this model. 

2. Materials and methods 

2.1. Culture of the cell line B16F1 and viability assays 

The mouse melanoma line B16F1 from the American Type Culture 
Collection® (CRL-6322 ™, Virginia, USA) was cultured in DMEM sup-
plemented with 10% (v/v) fetal bovine serum (Gibco, Thermo Fisher 
Scientific, USA), penicillin (100 U/mL), and streptomycin (100 μg/mL) 
and incubated at 37 ◦C with 5% CO2 and 98% humidity. We exposed an 
average of 1.5 × 105 B16F1 cells seeded in complete DMEM for 72 h to 5- 
Br-2’-dU [2.5 μg/mL] final concentration (Sigma-Aldrich). For all the 
assays for the inhibition of the activity of the mROCK2 protein, 
including cell viability, the inhibitor Y27632 ((R) - (+) - trans - 4 - (1- 
Aminoethyl) was added to cells exposed or not to 5-Br-2’-dU - N - (4- 
Pyridyl) cyclohexane carboxamide dihydrochloride)) (Calbiochem, La 
Jolla, California, USA) [10 μM] final concentration for 1 h. 

2.2. Analysis of cell morphology 

We incubated, on average, 2.0 × 103 B16F1 cells adhered to cover-
slips in the presence or absence of 5-Br-2’-dU. After 72 h, we took phase- 
contrast images in a 20x Nikon Eclipse Ti inverted light microscope 
(Kobe, Japan). The apparent cell area was quantified in the NIS- 
Elements-Nikon program by automatic cell counter for 100 cells per 
replicate. The values presented as an average ± SD with a significance 
level alpha = 0.05. For the diameter of cells in suspension, after expo-
sure to 5-Br-2’-dU, the average cell size function was assessed with the 
Tali ™ Image-based Cytometer. 

2.3. Cell complexity and size analysis by flow cytometry 

We analyzed 1.0 × 104 cells on a BD FACSAria II™ flow cytometer 
(New Jersey, USA), and the degree of diffraction (FSC-A) and scattering 
(SSC-A) of light associated with size and granularity with the FlowJo™ 
program. Statistical significance was determined for n = 3, by multiple t- 
tests without correction, with an alpha = 0.05. 

2.4. Wound healing test 

B16F1 cells exposed to 5-Br-2’-dU, seeded in 24-well boxes up to 
80% confluence and incubated for 1 h in the Y27632 inhibitor’s 

presence, were wounded in the monolayer with a micropipette tip. De-
tached cells were removed with PBS and supplemented with incomplete 
DMEM (iDMEM). We calculated the percentage decrease in the area 
generated by the wound in photographs obtained in phase contrast of 
the Nikon Eclipse Ti microscope at 20x, at times 0 h, 3 h, 6 h, 12 h, 18 h, 
and 24 h with the NIS-Elements program. Statistical significance was 
determined for n = 3, by multiple t-tests without correction, with an 
alpha = 0.05. 

2.5. Cell shedding dynamics 

Cell circularity dynamics were carried out following previous reports 
[20,21], but adjusted for 1.0 × 103 B16F1 cells exposed or not to 
5-Br-2’-dU and Y27632. In summary, cells washed with PBS were 
exposed to 50 μL per sheet of Trypsin-EDTA 0.25% (m/v), preheated to 
37 ◦C, added, and captured in a Nikon Eclipse Ti microscope every 30 s, 
until the 600 s. We assessed the cell area variation from the micropho-
tographs and Boltzmann normalization using the Prism-GraphPad pro-
gram (https://www.graphpad.com/scientific-software/prism/). We 
counted the number of detached cells in each case determined by 
obtaining the non-adhered cells after the addition of trypsin-EDTA and 
quantification assessed on the Tali™ Image-based Cytometer. 

2.6. Cell migration in the Boyden-type chamber 

B16F1 cells previously exposed to 5-Br-2’-dU and Y27632 incubated 
for 12 h in DMEM. In the upper compartment of the Transwell™ 
chamber (Corning™), 100 μL of iDMEM seeded per well, containing, on 
average, 1.0 × 105 cells; we added 600 μL of complete DMEM in the 
lower compartment of the chamber as a chemo-attractant. After 24 h, we 
recovered from the upper chamber cells that did not penetrate the 
membrane with a cotton swab. We added 0.25% (m/v) Trypsin-EDTA to 
quantify the cells that crossed the membrane to both compartments and 
the collected cell suspension counted in Tali® image-based cytometer. 

2.7. Immunocitofluorescence 

Cells were fixed with 4% paraformaldehyde (m/v) in PBS and per-
meabilized with Triton™ X-100 0.3% (v/v) (Sigma-Aldrich). Anti- 
ROCK2 (sc-1851) (Santa Cruz Biotechnology. Inc, Dallas, USA) and 
exposed to anti-Vimentin (SAB4300676 Sigma-Aldrich) polyclonal an-
tibodies as primary antibodies. In all cases, the final concentration of 
primary antibody was 0.4 μg/mL. As secondary antibodies, we used a 
Texas Red-labeled (sc-3923) or CFL-647 (sc-362292) at 0.15 μg/mL. For 
F-actin fiber staining, we incubated with 50 μg/mL of Faloidin conju-
gated with Fluorescein Isothiocyanate (FITC) (Sigma – Aldrich P5282) 
for 40 min at room temperature, and nuclei labeled with DAPI (4’,6- 
diamidino-2-fenilindol) (Sigma-Aldrich). We obtained the images by 
using an inverted Nikon Eclipse Ti microscope. For quantifying the mean 
fluorescence intensities (MFI), we used the NIS-Elements program for 
n = 3 and an average of 100 cells per replicate and sample. 

2.8. Western blot 

We used 30 μg of protein per sample and fractionated in a 10% SDS- 
PAGE electrophoresis under denaturing conditions. The transferred 
proteins to a PVDF membrane (Millipore-Merck) in a Novex® Semi-Dry 
Blotter system (Thermo Fisher Scientific) following the manufacturer’s 
recommendations were blocked with a solution of polyvinylpyrrolidone 
(PVP-40) (Sigma-Aldrich) at 1% (m/v) in PBS-Tween 20 (Sigma- 
Aldrich) [22] and incubated with the antibodies used in IF for mROCK2, 
mVIM or Lamin-B1 (sc-6216). As secondary anti-goat (PI-9500) or 
anti-rabbit (P1-1000) antibody, labeled with HRP (VECTOR, 
Burlingame-California, USA). The detection was carried out by the 
chemiluminescent method ECL-Western blotting system (Amersham, 
Boston, USA) following the manufacturer’s recommendations and the 
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densitometric analysis assessed in Fiji - ImageJ (https://fiji.sc/), using as 
loading control detection of nuclear protein Lamin-B1. 

2.9. Total RNA extraction and small RNA enrichment 

Based on the method described [23,24], we extract total RNA 
following the organic extraction protocol with TRIzol-chloroform. For 
the enriched fractions of small RNAs ≤200 nt, we used the miRVana™ 
miRNA Isolation Kit (Ambion, Austin, USA) following the manufac-
turer’s recommendations and quantified on a Nanodrop 2000 (Thermo 
Fisher Scientific). 

2.10. RT-qPCR of mRNAs 

For retro-transcription (RT), we used 2 ng of total RNA, oligo dT, and 
Superscript II reverse transcriptase (Invitrogen), following the manu-
facturer’s recommendations: 50 min at 42 ◦C and then 15 min at 70 ◦C in 
a thermal cycler (BIO-RAD Hercules, California, USA). We used Real- 
time PCR (qPCR) in a BIO-RAD Chromo 4™ System thermocycler to 
analyze differential expression. In brief, each reaction contained 600 ng 
of cDNA as a template and primers corresponding to each gene evalu-
ated (Supplementary Table 1) and the DyNAmo HS SYBR Green Kit 
(Thermo Fisher Scientific). The amplification conditions were one cycle 
of 95 ◦C 15 min, 36 cycles of 10 s at 96 ◦C, 30 s of annealing temperature 
according to each set of primers, and 30 s at 72 ◦C. We calculated the 
relative expression radius (rER) normalized by the expression of the 
housekeeping gene GAPDH [25]. 

2.11. RT-qPCR-stem-loop of miRNAs 

The expression of miR-138-5p and miR-455-3p was evaluated by RT- 
qPCR stem-loop using miRVana™ microRNA Detection Kit (Thermo 
Fisher Scientific) under the manufacturer’s recommendations. We used 
65 ng of enriched RNA in Reverse transcriptions for 30 min at 16 ◦C, 
30 min at 42 ◦C, and 5 min at 85 ◦C. For the qPCR, we used 2.5 μg of the 
cDNA, 3 min 95 ◦C, 40 cycles 15s 95 ◦C, 1 min 60 ◦C, 1 min at 72 ◦C, with 

a final extension of 10 min at 72 ◦C. We calculated the relative expres-
sion radius (rER) normalized by the expression of the housekeeping gene 
GAPDH [26]. 

2.12. Statistic analysis 

The number of independent replications used in the statistical ana-
lyses was three, the values reported as a mean ± S.D. and the results 
were considered non-significant (ns) with p > 0.05, significant (*) with 
p < 0.05, very significant (**) with p < 0.01, highly significant (***) 
with p < 0.001 and very highly significant (****) with p < 0.0001. Using 
the software GraphPad Prism® (Graphpad Software Inc., La Jolla, CA, 
USA). We tested significant differences between each exposure and 
control using an unpaired Student t-test. In contrast, for multiple tests, 
the level of significance (we performed two-tailed multiple t-tests *) and 
differences were considered statistically significant for a p < 0.05 value 
using the Holm-Sidak method. 

3. Results 

3.1. Area and size of B16F1 cells after exposure to 5-Br-2’-dU 

We performed an analysis of the apparent cell area to identify vari-
ations in the morphology of B16F1 cells exposed to 5-Br-2’-dU. 
Compared with the control (non-exposed cells), cells exposed to 5-Br-2’- 
dU showed a more extended and flattened morphology, fewer exten-
sions, and an apparent decrease in the number of cells and pigmentation 
(Fig. 1A); previously reported changes in B16 [24–26] and other cellular 
models [27–29]. The apparent cell area increased by 2.2X (3.2 × 104 ± 2 
EXP3 μm [2] and % CV 6.15) in exposed cells concerning the control 
(1.4 × 104 ± 2 EXP3 μm [2] and % CV 13.58) (Fig. 1B). 

On the other hand, cells in suspension exposed to 5-Br-2’-dU 
increased their cell diameter by 1.27X, going from 12.0 ± 1.0 μm to 
15.3 ± 0.57 μm (Fig. 1C). These results coincided with analyzing the 
population classification of suspended cells by light scattering (FSC-A). 
Light diffraction (SSC-A), in which the exposed cells showed a 

Fig. 1. Changes in the morphology and size of B16F1 cells after exposure for 72 h to 5-Br-2’-dU. A. Representative photographs of B16F1 cells exposed or not 
exposed to 5-Br-2’-dU 2.5 μg/mL. B. Measurement of Apparent cell area (μm [2]) determined from the contour of adhering cells. C. Average diameter (μm) of cells in 
suspension exposed or not to 5-Br-2’-dU. D. Representative diagrams obtained by a cytometry flow rate of the number of cells distributed by quartiles (Q) as a 
function of SSC-A and FSC-A and their percentages (Q1, Q2, Q3, and Q4) for three independent replicas with a total of 10,0000 events each. 
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displacement towards the Q1 quadrants (of 5.2 ± 0.3% to 7.9 ± 0.6%), 
Q2 (from 3.4 ± 0.4% to 6.0 ± 0.8%) and Q3 (from 3.4 ± 0.4% to 
9 ± 1.0%), decreasing the percentage of cells in the control population 
(Q4) from 87, 83 ± 1.0% to 73.33 ± 0.5% (Fig. 1D). In the Q3 quadrant 
representing larger cells, a higher % CV (14.14) for control vs. exposed 
cells to 5-Br-2’-dU (10.7) suggested a more homogeneous pattern for the 
latter. Changes were associated with increased cellular organelles and 
the cytoskeleton’s restructuring, which altered cell proliferation [30, 
31]. 

3.2. ROCK2 and VIM proteins expression involved in the cytoarchitecture 
of B16F1 cells exposed to 5-Br-2’-dU 

Morphological changes induced by exposure to 5-Br-2’-dU coincided 
with mRNA expression changes [32,33] and β-actin cytoskeletal protein 
[34]. Therefore, we evaluated the eventual variation of ROCK2, VIM, 
and the polymerization of F-actin in this cellular model. When quanti-
fying the mean fluorescence intensity (Fig. 2 A-B) of the ROCK2 protein, 
we found a 3X decrease in cells exposed to 5-Br-2’-dU compared to the 
control correlated with the Western blot results where the value was 
reduced 0.79X (Fig. 2C). 

On the other hand, in control cells, the distribution of F-actin labeled 
with Faloidin-FITC showed a perinuclear localization, in contrast to the 
F-actin observed in 5-Br-2’-dU exposed cells, where the distribution of F- 
actin showed positivity throughout entire the all cytoplasm, more 
defined fibers, and an apparent more significant number of these were 
visualized (Fig. 2D). The addition of the ROCK2 inhibitor Y27632 in 

control cells showed no apparent changes in F-actin. In contrast, cells 
exposed to 5-Br-2’-dU shifted in shape and distribution, suggesting that 
5-Br-2’-dU may induce downregulation of ROCK2 in B16F1. The high 
affinity of Y27632 for the ROCK family of kinases [35], actin fibers 
distributed throughout the cytoplasm with more stable adherent struc-
tures [36], and ROCK2 decrease in its expression, upon exposure to 
5-Br-2’-dU, allow us to propose that ROCK2 are involved in the stability 
of polymerized F-actin. 

We found a 2.02X increase in the expression level of VIM by Western 
Blot (Fig. 2F.) and distributed peri-nuclearly (Fig. 2E), a phenomenon 
also previously reported in cells with greater adhesion capacity. Possibly 
due to the binding of VIM to focal adhesion complexes [37]. These re-
sults are consistent with mechanisms that may facilitate efficient 
remodeling F-actin polymerization and ameboid-type mobility, as has 
already been described in melanoma cells [38]. ROCK2 and VIM pro-
teins expression and the polymerization of F-actin suggested possible 
changes in the mobility of B16F1 cells after exposure to 5-Br-2’-dU. 

3.3. Modifications in the cellular mobility of B16F1 exposed to 5-Br-2’- 
dU 

We evaluated the phenomena of circularity, adhesion, and migration 
of B16F1 cells exposed to 5-Br-2’-dU and the Rock2 inhibitor Y27632. As 
visualized in Fig. 3A, the cells exposed to 5-Br-2’-dU presented a greater 
circularity concerning the control cells; and while, in exposed cells, the 
addition of Y27632 did not generate further modification, the cells 
exposed to 5-Br-2’-dU did show an apparent increase in their circularity. 

Fig. 2. Variation in mROCK2 and mVIM expression in B16F1 cells after exposure to 5-Br-2’-dU. Representative photographs of the location and distribution by 
immunofluorescence (IF) of the mROCK2 (A.) and mVIM (E.) proteins marked in red and quantified in arbitrary units of medium fluorescence intensity (MFI) of 
mROCK2 (B.). D. Microphotographs of F-actin marking with phalloidin-FITC (green) in B16F1 cells exposed to 5-Br-2’-dU and inhibitor Y27632. In A, D, and E 
against nuclear staining with DAPI (blue). Western blot and densitometry of mROCK2 in C. and mVIM in F; as load control, we used the nuclear protein Lamin-B1. 
(For interpretation of the references to colour in this figure legend, the reader is referred to the Web version of this article.) 
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These variations were quantified and represented as a normalized area 
as a function of time, which allowed the generation of sigmoid curves 
that suggested greater speed due to the shift to the left (Control +
Y27632 and 5-Br-2’-dU 2.5 μg/mL) (Fig. 3. B). We confirmed these 
observations by quantifying the constants τ1, τ2, and τ1 + τ2 after 
Boltzmann normalization (Fig. 3C-E). The cells exposed to 5-Br-2’-dU 
presented shorter circularization times in all cases (τ1 = 123.04 ± 27.9; 
τ2 = 30.5 ± 4.9 and total time = 153.3 ± 28.3) compared to the 
circularization times for unexposed cells (τ1 = 272.3 ± 6.4; 
τ2 = 75.8 ± 28.8 and total time = 384.1 ± 72.2). The addition of 
Y27632 in the control cells showed a reduction in the circularization 
times (τ1 = 117.9 ± 17.2; τ2 = 34.3 ± 1.3, and total 
time = 152.2 ± 20.9), while in cells previously exposed to 5-Br-2’-dU, a 
slight increase in constants (τ1 = 182.7 ± 9.5; τ2 = 56.4 ± 8.2, and total 
time = 233.2 ± 13.2) (Fig. 3C-E). Decreased ROCK2 expression associ-
ated with increases in the circularization capacity of B16F1 cells due to 
the exposure to 5-Br-2’-dU identified possible modifications in cell 
mobility by exposure to 5-Br-2’-dU and the participation of ROCK2. 
Also, since the inhibitor’s presence, the cells previously exposed to 5-Br- 
2’-dU do not completely circularize. It is possible that the low expression 
of ROCK2, added to its inhibition, activates other mechanisms that 
promote greater stability of the cell cytoskeleton. 

When evaluating the differences in the percentage of cells shed from 
the substrate after the addition of Trypsin-EDTA, we found that the cells 
exposed to 5-Br-2’-dU maintained a lower percentage of shedding 
compared to the control cells (5.7% and 14.7%, respectively); This value 
increased by 43.6%, after the addition of Y27632, for control cells and 
not significantly for cells in the presence of 5-Br-2’-dU. These results 
suggest that shedding in exposed 5-Br-2’-dU cells would not be depen-
dent on circularization but rather implies a decrease in the expression of 
ROCK2, redistribution adhesion, a phenomenon reported in different 
cell models [29,39–41]and associated with greater expression of integ-
rins [42]. 

Regarding alterations in cell mobility, we evaluate Boyden chamber 
migration and wound healing tests for cells exposed to 5-Br-2’-dU and 
Y27632. Cells exposed to 5-Br-2’-dU with the ability to cross the mem-
brane in the Boyden chamber decreased by 86.6% vs. cells without 5-Br- 
2’-dU (Fig. 3G). After the addition of Y27632, a reduction of 60%, while 
in cells exposed to 5-Br-2’-dU, there were no statistically significant 
changes. In the wound healing test, the exposure to 5-Br-2’-dU produced 
a more significant closure of the wound starting from 3 h vs. the control 
cells, and independent of the exposure to 5-Br-2’-dU, the addition of 
Y27632 increased the closing capacity, starting at 18 h (Fig. 3 H-I). 

The evidence presented here suggests favoring different mobility 

Fig. 3. Changes in circularity, adhesion, and migration of B16F1 cells after exposure to 5-Br-2’-dU. A. Representative images of time-lapse for circularity 
dynamics by trypsin-EDTA addition in B16F1 control cells exposed 5-Br-2’-dU and in the presence of inhibitor Y27632. B. Variation of the normalized area con-
cerning time during the circularity test; C and D. The data fixed to an equation Boltzmann sigmoid to determine the time constants τ1 and τ2, respectively. E. We 
added τ1 and τ2 to calculate the total detachment time. F. Number of cells detached after addition of Trypsin-EDTA. G. Number of B16F1 cells passing through the 
membrane in a Boyden-type chamber after exposure to 5-Br-2’-dU and Y27632. H. Photographs from the wound healing assay for B16F1 cells exposed or not to 5-Br- 
2’-dU and inhibitor Y27632. I. Percentage of wound closure measured at 0 h, 3 h, 6 h, 12 h, 18 h, and 24 h. * Represents a statistical significance with a value p 
< 0.05. 

E.N. Muñoz et al.                                                                                                                                                                                                                               



Biochemistry and Biophysics Reports 27 (2021) 101027

6

types to the differential expression of ROCK2 and VIM proteins. It was 
necessary to determine whether these expression levels coincided with 
changes in the expression of the corresponding mRNAs and the miR- 
138-5p and miR- 455-3p, which by predictors we described as poten-
tial regulators. 

3.4. Variation in the expression of Rock2 and Vim mRNAs and miRNAs 
138-5p and 455-3p in B16F1 cells exposed to 5-Br-2’-dU 

To establish whether cells exposed to 5-Br-2’-dU showed changes in 
the expression of miR-138-5p and miR-455-3p and of the Rock2 mRNA, 
we used RT-qPCR assays. Compared with unexposed cells, the expres-
sion levels of Rock2 and miR-138-5p showed a decrease of 2.88X and 
2.39X, respectively (Fig. 4A, D); meanwhile, miR-455-3p showed a 1.8X 
magnification (Fig. 4C). miR-138-5p and miR-455-3p had the potential 
to reduce the luciferase reporter gene expression through 3’UTR se-
quences of Rock2, suggesting Rock2 as a molecular target of these miRs 
[17,18,43]. Interestingly, humans and mice fully conserve these 3’UTR 
sequences’ content (Fig. 4E), which suggests that in B16F1 cells, these 
two microRNAs would also have a regulatory potential on Rock2. These 
results would indicate that miR- 455-3p would have greater participa-
tion than miR-138-5p in the downward regulation of the Rock2 level, 
which would coincide with that observed in the protein product 
(Fig. 2A-C). As for Vim’s mRNA, its expression level showed an increase 
of 3.64 X (Fig. 4B), coinciding with the increase in protein levels. Vim’s 
increased expression may be a consequence of the under-expression 
found here for miR-138-5p (Fig. 4E), as Vim is a molecular target of 
miR-138-5p [44]. These results suggest that these and other miRNAs 
would regulate the variations in Vim and Rock 2 expression observed 
after exposure to 5-Br-2’-dU and that these variations would, in turn, 
have significant repercussions on mobility phenomena. 

4. Discussion 

Cancer cells in melanoma reorganize their cellular skeleton favoring 
migratory and invasive processes [45–47]. Exposure to the thymidine 
analog 5-Br-2’-dU generates a senescent phenotype in different cellular 
models [27,29,30], which implies the restructuring of the cellular 
cytoskeleton and variations in the expression of mRNAs and miRNAs 
involved in melanogenesis, cell cycle control, senescence in melanoma 

[15,16,33,34]. However, the association between structural variations 
and mobility of B16F1 cells is still unknown, as well as the involvement 
of ROCK2 and miRNAs mediate regulation would be related to mobility 
in other tumor models [47–51]. 

This article reports an increase in the apparent cell area, the diameter 
of cells in suspension, and cellular granularity (Fig. 1). These changes 
are consistent with other in vitro cell models, including fibroblasts [27], 
embryonic retinal pigment cells [28], lung cancer cells [29], and mel-
anoma cells [30,52]. These changes could be associated with an increase 
in the cell complexity due to the number of organelles, for example, 
lysosomes, coinciding with the senescent phenotype [30,31]. Although 
the apparent cell area and the B16F1 cells’ diameter exposed to 
5-Br-2’-dU vs. control coincided in their upward trend, the rate of 
change between apparent area and diameter (1.74X). This variation 
suggests that the area’s increase did not depend entirely on the increase 
in its cell size. One potential explanation could imply a greater capacity 
for an extension by these cells; in which case, there would be possible 
changes at the level of the reorganization of the cellular cytoskeleton 
and the expression of structural and regulator cytoskeletal proteins such 
as ROCK2 kinase, one of the central regulators of cytoskeletal restruc-
turing [7,38]. 

In this regard, the B16F1 mouse melanoma cells exposed to 5-Br-2’- 
dU for 72 h show a decreased expression of ROCK2 (Fig. 2A-C), a 
decrease in the polymerization of actin stress fibers (Fig. 2D.), and a 
greater expression of the main component of the intermediate filaments 
VIM (Fig. 2E-F.), both processes regulated by ROCK2 [5,6], previously 
reported for cells with a senescent phenotype [53,54] and that are 
related to migration [7,38], metastasis [55,56], and amebic-type inva-
sion in melanoma [57,58]. Although further work on variations in the 
phosphorylation of MLC or Cofilin, direct effectors of F-actin regulation, 
in the presence of Y27632, is necessary to confirm the involvement of 
ROCK2. The alterations in the cytoskeleton reported so far have not been 
quantified in other cells exposed to 5-Br-2’-dU and could suggest vari-
ations in the tumor mobility and mechanisms that regulate the expres-
sion of these genes, such as microRNAs. 

Therefore, we evaluated the phenomena of cell adhesion, contrac-
tility, and migration in B16F1 cells exposed to 5-Br-2’-dU and ROCK2 
inhibitor Y27632. There was an increase in the adhesion, circularization 
capacity, and wound closure capacity and a decrease in its Boyden 
chamber migration capacity (Fig. 3). Since the wound healing assay 

Fig. 4. Variation in Rock2, Vim, and miR-455-3p and miR-138-5p mRNA expression in B16F1 cells exposed to 5-Br-2’-dU. The radius of differential 
expression (rER) by RT-qPCR for Rock2 (A) and Vim (B) mRNAs normalized with the expression of the constitutive gene GAPDH. rER for miRNAs miR-455-3p (C) and 
miR-138-5p (D) determined by RT-qPCR stem-loop and normalized with the expression of snRNA U6. E. Scheme summarizing the possible regulation of miRNAs miR- 
455-3p and miR-138 5p on Rock2 and Vim expression and their association with mobility phenomena. 

E.N. Muñoz et al.                                                                                                                                                                                                                               



Biochemistry and Biophysics Reports 27 (2021) 101027

7

allows the evaluation of collective cell migration, favored by cell po-
larity [59] and also related to the perinuclear location of VIM [37] 
(Fig. 2E), these results are consistent with the reorganization of the 
cytoskeleton favoring adherence and this type of migration in B16F1 
cells, possibly through the use of pseudopods and independent of ROCK2 
regulation [60,61]. In contrast, control cells migrate 86.6% more in the 
Boyden chamber assay (Fig. 3G), consistent with a reorganization 
peri-nuclear F-actin (Fig. 2D), a critical role for ROCK2 associated with 
ameboid-like mobility [62,63]. 

The participation of F-actin regulators such as Cdc42/MRCK [53] 
and VIM intermediate filaments such as caspases [64], the use of 
Y27632, and its high affinity for ROCK kinases [35], suggests some 
involvement of this kinase in the variation of the motility phenomena 
evaluated here, however, knockout or silencing assays with RNA inter-
ference are still necessary. 

The results observed in migration phenomena coincide with the 
decrease in Rock2 mRNA expression (Fig. 4A) and the differential 
expression of two miRs (138-5p downward and 455-3p upward) (Fig. 4. 
BC). This result is consistent with whose variations have recently linked 
to alterations in mobility in squamous cell cancer of the tongue and renal 
fibrosis [17,18] through their common molecular target Rock2. Small 
RNAseq sequencing results, recently obtained by our laboratory [16] 
confirmed the differential expression of these two microRNAs, but also 
of another set of microRNAs with high expression (129-5p, 30d-5p, 22 
-3p, 335-5p, 193b-3p, and 144-3p) and to the low (211-5p, 128-3p and 
23a-3p), that have Rock2 as a molecular target [44]. On the other hand, 
Vim’s mRNA expression showed an increase of 3.64 X (Fig. 4B), a change 
that could be the consequence of direct regulation of miR-138-5p [44]. 
These results strengthen the hypothesis that the regulation mediated by 
microRNAs on Rock2 and Vim results from expression changes at the 
high and low levels of sets of microRNAs in which miR-455-3p and 
miR-138-5p participate, and that would be related to the morphological 
and proliferative changes observed in B16 melanoma cells from expo-
sure to 5-Br-2’-dU. 

The results reported so far are consistent with the coordinating role 
of ROCK2 in melanoma cell mobility [20,50,56] and contribute to the 
hypothesis of miRNA-mediated expression regulation as an anticancer 
therapy [3,65–67]. Additionally, experimental evidence on variations in 
tumor mobility related to the use of migration events [7,38], metastasis 
[55,56], and amebic-type invasion in melanoma [57,58], whose ability 
to induce senescence allows to propose as a chemotherapeutic adjuvant 
that enhances anti-tumor activity [29]. We believe that future trials 
should focus on experimentally confirming the functional association of 
miRNAs 138-5p and 455-3p with Rock2, as well as evaluating the col-
lective participation of other molecular targets and transcription factors 
eventually involved in these cytoskeletal reorganization pathways, such 
as RhoC, another molecular target of miR-138-5p [17,67]. 
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