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Abstract: Nowadays commercial preparations of yeast polysaccharides (PSs), in particular
mannoproteins, are widely used for wine colloidal and tartrate salt stabilization. In this context,
the industry has developed different processes for the isolation and purification of PSs from the
cell wall of Saccharomyces cerevisiae. This yeast releases limited amounts of mannoproteins in the
growth medium, thus making their direct isolation from the culture broth not economically feasible.
On the contrary, Schizosaccharomyces japonicus, a non-Saccharomyces yeast isolated from wine, releases
significant amounts of PSs during the alcoholic fermentation. In the present work, PSs released by
Sch. japonicus were recovered from the growth medium by ultrafiltration and their impact on the wine
colloidal stability was evaluated. Interestingly, these PSs contribute positively to the wine protein
stability. The visible haziness of the heat-treated wine decreases as the concentration of added PSs
increases. Gel electrophoresis results of the haze and of the supernatant after the heat stability test are
consistent with the turbidity measurements. Moreover, particle size distributions of the heat-treated
wines, as obtained by Dynamic Light Scattering (DLS), show a reduction in the average dimension of
the protein aggregates as the concentration of added PSs increases.

Keywords: wine protein; wine haze; protein stability test; protein stability treatment; mannoprotein;
polysaccharide; Schizosaccharomyces japonicus; non-Saccharomyces

1. Introduction

The use of bentonite represents the most common method used worldwide for wine protein
stabilization [1]. Bentonite acts as a cation exchanger and, by binding to proteins present in the wine
through electrostatic interactions, forms complexes that can be then removed by filtration. Although
this kind of adjuvant is very effective in removing proteins responsible for haze, it has several drawbacks
like the removal of color and flavor compounds [2–4]. Moreover, the disposal of spent bentonite
requires extra labor costs and, in addition, presents health problems associated with its management.

Due to the negative implications associated with bentonite, several alternatives to its use have been
explored such as flash pasteurization [5,6], ultrafiltration [7,8], addition of proteolytic enzymes [9,10]
silica gel, hydroxyapatite and alumina [11], zirconium oxide [12–15], natural zeolites [16,17], chitin and
chitosan [18–21], carrageenan [22–24], and yeast mannoproteins [25–30]. These last ones have recently
found an increasing interest in the wine industry as a result of the multiple positive effects associated
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with this bio-product: decreasing astringency [31], improving mouth-feel and fullness [32], adding
complexity and aromatic persistence [33], increasing sweetness and roundness [34], and reducing
protein and tartrate instability [35,36].

Mannoproteins are highly glycosylated proteins, containing 1–10% of proteins and 85–90% of
carbohydrates, mainly mannose [37,38]. Because of their high content of carbohydrates, mannoproteins
are normally referred to as polysaccharides. Mannoproteins are present on the outer cell wall layer of
yeast and are released during alcoholic fermentation and wine aging processes [39–42].

A competition between wine proteins and mannoproteins for non-proteinaceous wine components
(responsible for wine protein instability) has been reported as the most likely mechanism to explain the
improved wine stability obtained through mannoproteins [43].

Although some scientific evidence has already emphasized the positive impact on wine protein
stability determined by mannoproteins purified from wine or from yeast cell wall of S. cerevisiae [25–30],
the efficacy of most of the commercial exogenous mannoproteins of Saccharomyces is very limited.
A different impact on the wine protein stability by eleven commercial mannoprotein preparations
was highlighted by Ribeiro et al. [44]. Interestingly, it was found that mannoproteins with a low
mannose-to-glucose ratio were not able to stabilize wine against protein instability, highlighting
that their performances are strictly related to the different chemical composition and the different
degrees of purity, or more practically to the extraction and purification methods adopted by
individual manufacturers.

Various processes for the isolation and purification of mannoproteins can be applied, such as
enzymatic treatments (to release them from the cell wall) and acids or hot alkali usage (to solubilize
proteins). However, these extraction methods can affect the structural features and molecular weight
of these macromolecules and, in turn, can significantly affect their bioactivity [45]. On the other hand,
the extraction of mannoproteins from the cell wall of Saccharomyces yeasts allows a higher yield as
compared to their recovery from the fermentation medium. Indeed, Saccharomyces yeasts, during
alcoholic fermentation, release a rather low quantity of mannoproteins, normally ranging from 50
to 175 mg/L [29,46]. However, yeasts other than Saccharomyces are able to release larger amounts of
polysaccharides (PSs) [47–52]. In particular, Domizio et al. [51] have shown that yeasts belonging to
the species Schizosaccharomyces japonicus were able to release a high quantity of polysaccharides in
the fermentation medium. In particular, the strains Sch. japonicus # UCD2489 released an amount of
PSs ~7 times higher than that released by a commercial Saccharomyces cerevisiae yeast strain under the
same fermentative conditions. Interestingly, Domizio et al. [53], in a study carried out using mixed
fermentation of Sch. japonicus/S. cerevisiae, found that polysaccharides released by Sch. japonicus were
able to protect wine from protein haze.

The possibility of recovering these macromolecules directly from the growth media by
ultrafiltration would overcome the necessity of the extraction of PSs from the cell wall, maintaining
their native structure unaltered. Based on these observations, the aim of this study was to evaluate the
impact of Sch. japonicus # UCD2489 polysaccharides on wine protein stability.

2. Materials and Methods

2.1. Yeast Strains

A yeast strain belonging to the species Sch. japonicus (UCD2489) from the yeast culture collection
of the Department of Viticulture and Enology University of California, Davis, was used.

2.2. Wine

Vernaccia di San Gimignano, a Tuscan white wine, was used in the present study to assess the
impact of Sch. japonicus polysaccharides on wine protein stability. Table 1 shows the main chemical
characteristics of Vernaccia wine, as obtained by Fourier-transform infrared spectroscopy (FT-IR) (FOSS
WineScan, FT 120 Reference Manual, Foss, Hamburg, Germany).
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Table 1. Main analytical parameters of the Vernaccia wine used in the present study.

Chemical Parameters Values

pH 3.33 ± 0.07
Ethanol % (v/v) 12.35 ± 0.14

Residual sugars (g/L) 0.69 ± 0.02
Titratable acidity (as tartaric acid) (g/L) 5.14 ± 0.07

Volatile acidity (as acetic acid) (g/L) 0.23 ± 0.01
∆ * NTU 14.00 ± 0.20

* NTU (Nephelometric Turbidity Units) assessed by the heat test, as reported below (Section 2.7).

2.3. Fermentation Conditions

Fermentations were carried out at 27 ◦C in 500 mL Erlenmeyer flasks containing 330 mL of a
synthetic polysaccharide-free grape juice “Minimal Must Medium” (MMM) [54], with no addition
of Tween 80 and ergosterol. The concentrations of assimilable nitrogen and sugar were 208 mg/L
and 120 g/L, respectively. The medium was sterilized by filtration. The preculture of Sch. japonicus #
UCD2489 was grown in 10 mL of the same modified synthetic medium at 27 ◦C for 72 h, and then
used to inoculate the fermentations at the optical density of 0.1 (OD600 nm). The flasks, closed with a
cotton plug, were continuously agitated at 150 rpm in an orbital shaker. The fermentation kinetic was
monitored by weight loss, due to CO2 production, and was followed for ten days.

2.4. Polysaccharides Recovery and Purification

After ten days of alcoholic fermentation, cells were removed by centrifugation (8000 g, 4 ◦C,
15 min) and the supernatant was filtered through 0.45 µm acetate cellulose membranes. Afterwards,
the filtered supernatant was dialyzed and concentrated using an ultrafiltration unit (Amicon®-stirred
cell 8200, Millipore, Bedford, MA, USA) equipped with a polyethersulphone membrane with a 10 kDa
molecular weight cut-off (PBGC06210, Millipore, Bedford, MA, USA). The ultrafiltration was carried
out using a N2 pressure of around ~30 psi. The retentate was collected and freeze-dried for 48 h
(Edwards Modulyo freeze-dryer, Edwards, Crawley, UK).

2.5. Wine Treatments

Increasing concentrations of freeze-dried polysaccharides (UFS) were added into the Vernaccia
wine. In particular, 1 g/L of UFS was resuspended in the Vernaccia wine (stock solution) and then
diluted (using the same wine) to prepare different aliquots at lower concentrations (100 mg/L; 200 mg/L;
300 mg/L; 400 mg/L and 600 mg/L). Three aliquots of each concentration were prepared. All the
operations were performed in a laminar flow hood to prevent microbial and dust contamination.

2.6. Polysaccharides Characterization

2.6.1. Polysaccharides Quantification

The concentration of PSs was evaluated by high-performance liquid chromatography (HPLC),
according to the method reported in Romani et al. [55]. After filtration through 0.45 µm nitrocellulose
membranes, 20 µL of sample were injected into the HPLC apparatus (Varian Inc., Palo Alto, CA, USA)
equipped with a 410 series autosampler, a 210 series pump, and a 356-LC refractive index detector.
Isocratic separation was performed on a TSK G-OLIGO-PW (808031) column (30 cm × 7.8 mm i.d.)
and a TSK-GEL OLIGO (808034) guard column (4 cm × 6 mm i.d.) (Supelco, Bellefonte, PA, USA).
The mobile phase was 0.2M NaCl, at a flow rate of 0.8 mL/min. Peaks were quantified by comparison
with an external calibration curve of mannan (Sigma-Aldrich, Milan, Italy) from 50 mg/L to 1000 mg/L.
The analysis of the peaks was performed using the software Galaxie Chromatography Data System
(version 1.9.302.530) (Varian Inc., Palo Alto, CA, USA). All the analyses were carried out in duplicate.
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2.6.2. Monosaccharide Composition

Polysaccharides were first hydrolyzed with trifluoroacetic acid (TFA). In particular, 5 mg of UFS
were mixed with 2 mL of a 2 N TFA solution and heated at 120 ◦C for 120 min. TFA was then removed
using a rotary evaporator and the dried extracts were re-solubilized in deionized water. This operation
was repeated three times per sample.

The monosaccharidic composition of the hydrolyzed fraction was analyzed using Ion Exchange
Chromatography (IEC) following the procedures described by Chamizo et al. [56]. A Dionex ICS-2500
ion exchange chromatograph, equipped with an ED50 pulsed amperometric detector operating with
a gold working electrode, was used. Each sample was injected into a Dionex CarboPacPA1 column
(4.6 × 250 mm, Thermo Scientific, Waltham, MA, USA). The eluents HPLC-grade water (A), 0.185 M
NaOH (B), and 0.488 M sodium acetate (C), were mixed as follows: from injection time to 20 min
A:B = 90:10; from 20 to 30 min B:C = 50:50; from 30 to 60 min, A:B = 90:10. The flow rate was kept at a
constant value of 1 mL/min. The different sugars were identified on the basis of the retention time of
known standards. Results were expressed as molar ratio (%).

2.6.3. Protein Quantification

The freeze-dried polysaccharides (UFS) were rehydrated with a known amount of distilled
water for protein quantification. Quantitative determination of proteins was assessed by dye-binding
Bradford assay [57] using bovine serum albumin (BSA) (Sigma-Aldrich, Milan, Italy) and dye reagent
(Bio-Rad Laboratories, Hercules, CA, USA) for the calibration curve.

2.7. Wine Protein Heat Test and Treatment of the Derived Fractions

Protein stability was assessed by determining the induced haze value following the heat test
according to McRae et al. [58]. Briefly, wine aliquots were first filtered (0.45 µm, acetate cellulose
membranes) and then heated at 80 ◦C for 2 h. Successively, these aliquots were cooled at 4 ◦C for 16 h
and left at room temperature for 2 h before measuring the turbidity. Wine turbidity was determined
with a nephelometer (HI88703 turbidimeter, Hanna Instrument Inc., Woonsocket, USA). Data were
analyzed by One-way ANOVA and Tukey’s post-test, setting p value to 0.05.

After the heat test, the wines were centrifuged in order to separate the haze fraction (HF) from the
supernatant fraction (SF). Whereupon, SF was added with four volumes of cold 95% ethanol containing
HCl 0.3 M and kept at 4 ◦C for 24 h to precipitate the polysaccharides. After centrifugation (9000× g,
4 ◦C, 30 min), the supernatant was discarded, and the pellet was washed twice with four volumes
of 96% v/v cold ethanol and finally vacuum-dried at room temperature. The dried pellet was then
rehydrated with distilled water for the successive proteins profiling characterization. Instead, HF was
added to the sodium dodecyl sulfate sample buffer.

2.8. Proteins Profiling by Gel Electrophoresis

Detection of proteins was performed by using 10% sodium dodecyl sulfate-polyacrylamide gel
electrophoresis (SDS-PAGE) [59]. In particular, 20 µL of sample was treated with 6.65 µL of 4X Laemmlli
buffer (Bio-Rad) and 2.75 µL of 1 M dithiothreitol (DTT) (Acros Organics, Geel, Belgium ) and then
heated at 95 ◦C for 5 min. Afterwards, 15 µL of the mixture was loaded onto the gel. Blue precision
plus protein standard (Bio-Rad) was loaded. The SDS-PAGE was performed using a Mini Protean II
apparatus (Bio-Rad) (45 V within the stacking gel and 104 V in the developing gel). The protein bands
in the gels were stained with Bio-Safe Coomassie G-250 stain (Bio-Rad). Instead, glycoproteins were
detected with the periodic acid Schiff’s reagent (Sigma-Aldrich) applying the procedure described by
Packer et al. [60]. Briefly, the SDS gel was fixed in 50% (v/v) ethanol for 30 min, washed in distilled
water for 10 min and then incubated for 30 min in a solution of periodic acid 1% (v/v) and acetic acid 3%
(v/v). Afterwards, the gel was washed in distilled water and then in 0.1% (w/v) sodium metabisulfite
solution (10 mM HCl). The gel was then stained with Schiff’s reagent in the dark for 1 h. Afterwards,
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the gel was incubated for 1 h in 0.1% (w/v) sodium metabisulfite solution (10 mM HCl) and finally
washed several times in 0.5% (w/v) sodium metabisulfite (10 mM HCl) solution. Peroxidase from
horseradish (Sigma-Aldrich, Milan, Italy) was used as a positive control and BSA as a negative control.

2.9. Dynamic Light Scattering (DLS)

Dynamic light scattering (DLS) measurements were carried out on a Brookhaven system. The light
source was the second harmonic of a diode Nd:YAG laser (Torus laser, mpc3000, Laser Quantum,
Cheshire, UK) (λ = 532 nm) and the scattered intensity was detected by an avalanche photodiode
detector (BI-APD) The samples were placed in glass tubes and immersed in a thermostatic unit filled
with decahydronaphthalene to match the glass refractive index. The autocorrelation functions (ACF)
were analyzed through the Laplace inversion according to a CONTIN algorithm [61].

3. Results and Discussion

3.1. Fermentation Performance

Sch. japonicus # UCD2489 showed a low fermentative activity. After five days of alcoholic
fermentation, it reached the maximum quantity of CO2 produced (~ 4.2 g/100 mL) (data not shown).
These results are in agreement with those previously observed with Sch. japonicus # UCD2489 during
the alcoholic fermentation carried out using the same synthetic grape juice but containing a higher
sugar concentration (220 g/L) [51].

3.2. Polysaccharides Quantification and Characterization

After ten days of alcoholic fermentation, the quantity of PSs released by Sch. japonicus in the
medium was 1.23 ± 0.06 g/L. Figure 1 shows the monosaccharidic composition of the freeze-dried
polysaccharide (UFS). The experimental data highlighted a high percentage of mannose (53.8 ± 1.5%)
and similar percentages of galactose (21.1 ± 1.7%) and glucose (23.9 ± 0.7%). Instead, the percentages
of glucosamine (0.6 ± 0.1%) and proteins (0.8 ± 0.1%) were very low. These results confirm the ability
of Sch. japonicus yeast to release a high quantity of polysaccharides in the growth medium [51] as
compared to 0.05–0.175 g/L usually obtained by Saccharomyces yeasts [16,20]. Domizio et al. [51] found
a similar composition of monosaccharides and proteins in the PSs released by the same strain of
Sch. japonicus during the alcoholic fermentation in the same type of synthetic grape juice, but containing
Tween 80, ergosterol and a higher sugar concentration. These results are also consistent with the
chemical composition of the cell wall of Schizosaccharomyces genus, containing galactomannans in the
outer layer [62].

The pattern of the UFS proteins, as analyzed by SDS PAGE, is reported in Figure 2. Total protein
profiles were displayed using the Bio-Safe Coomassie G-250 stain (Figure 2a). This analysis revealed a
band centered around 32 kDa and bands with molecular-mass greater than 250 kDa. The gel staining
with Schiff’s reagent (PAS) (Figure 2b) highlights that the high molecular bands corresponded to
glycosylated proteins. Instead, the band around 32 kDa, present in the gel stained with Coomassie,
was not evident in the one stained with PAS. In a previous paper, Domizio et al. [51], analyzing the
protein profile of the polysaccharides released in the medium by Sch. japonicus #UCD2489, showed that
the band around 32 kDa corresponded to a glycosylated protein, as demonstrated after gel staining
with the Pro-Q Emerald 488 gel stain kit specific for glycoproteins. Considering that Pro-Q Emerald
488 is roughly 8–16-fold more sensitive than the Schiff’s reagent [63], the band around 32 kDa, even if
it is not evidenced by PAS (Figure 2b), could be associated to a glycoprotein.
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Figure 1. Monosaccharidic composition (expressed as mol %) and proteins content of the freeze-dried
polysaccharides (UFS). Error bars represent standard deviation of three analytical replicates,
each referred to as experimental duplicates.
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Figure 2. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) of the freeze-dried
polysaccharides (UFS). The glycoproteins were stained on the electrophoretic gel with Bio safe Coomassie
(a) and with Schiff’s reagent (b). Std: Blue precision plus molecular weight standards.

3.3. Impact of PSs on Wine Protein Stability

The impact of increasing concentrations of Sch. japonicus polysaccharides (UFS) on heat-induced
protein haze formation in the Vernaccia wine was assessed by nephelometry and dynamic light
scattering. All the measurements were also performed on a control sample (i.e., an aliquot of wine
where UFS was not added). Figure 3 shows the difference in nephelometric turbidity units (∆NTU)
between heated and unheated samples as a function of the different amounts of UFS added. One-way
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ANOVA and Tukey’s post-test showed significant differences for all samples, except for 300, 400,
and 600 mg treatments (p = 0.05). The control sample showed a ∆NTU of 14.4 ± 0.3. The visible
haziness induced by heating, due to the destabilization/aggregation of proteins naturally present in
the wine, decreases as the concentration of added PSs increases, revealing an inverse exponential
relationship between the level of haze protection and the concentration of the additive. In particular,
the addition of 100 mg/L of UFS resulted in a 14% reduction in haziness compared to untreated
wine (control). A further 20% decrease was observed following the addition of an extra 100 mg/L of
UFS. Further additions of UFS result in lesser percentage decrease in haziness, reaching a 50% total
reduction compared to the control with the addition of 600 mg/L of UFS. A similar relationship between
turbidity and concentration of macromolecules with haze protective activity was observed also by
other authors [26,29,64].
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Figure 3. Haziness of Vernaccia wine added with increasing amounts of UFS (from 100 mg/L to
600 mg/L) as obtained by nephelometry after heating treatment. Control: Vernaccia wine without
UFS. Error bars represent standard deviation of three independent experiments, each carried out in
duplicate. Values displaying different letters (a, b, c, d) are significantly different (One-way ANOVA,
Tukey’s post-test, p = 0.05).

Taking into account that wines are usually considered protein stable when the difference in
turbidity between heated and unheated controls are less than 2 ∆NTU [65], these results show that the
addition of 300 mg/L of PSs into a wine is able to reduce protein haze to around 50% of the initial value.

Figure 4a–d show the electrophoretic profiles of Vernaccia wine (before the heat test) and of the
two fractions (HF and SF) obtained after centrifugation of the heat-treated wines added with increasing
amount of UFS. The bands around 20–28 kDa, present in the protein profile of Vernaccia wine before
the heat test (Figure 4a), could be assigned to grape-derived proteins (PR-proteins), such as chitinase
and thaumatin-like proteins (TLPs) [66–68]. PR-proteins are considered the main cause of protein haze
in white wine, which can occur with extended storage at elevated temperatures [68,69].
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Figure 4. SDS-PAGE electrophoresis of Vernaccia wine proteins before the heat stability test (a) and of
the two fractions, haze (HF) (b–d) and supernatant (SF) (c–e), obtained after centrifugation of the wines
added with increasing amount (mg/L) of freeze-dried polysaccharides (UFS) and heat treated. Control:
Vernaccia wine with no UFS addition. The proteins were stained on the electrophoretic gel with Bio safe
Coomassie (b,c) and with Schiff’s reagent (d,e). Std: Blue precision plus molecular weight standards.

SDS-PAGE analysis of the haze fraction (HF) (Figure 4b), showed the presence of proteins bands
only within the range of 20–28 kDa. This result emphasizes the heat instability of these proteins,
in agreement with their supposed nature as PR proteins. Moreover, as the level of PSs addition
increased, a small decrease of the intensities of these bands was observed. In contrast, the added PSs
appeared to remain soluble and stable after heating. Indeed, the bands with a molecular-mass greater
than 250 kDa, corresponding to those of the added PSs, were clearly lacking in the haze fractions
(HF) (Figure 4b) and present in the supernatant fractions (SF) (Figure 4c). Interestingly, an increase
in the level of added PSs generates an increase in the intensities of the relevant bands and of those
corresponding to 20–28 kDa (Figure 4c). These findings highlight the heat stability of Sch. japonicus
PSs and their ability to maintain partially the other proteins dispersed, even at elevated temperatures.
In contrast, other authors found that, regardless of the addition of invertase or mannoproteins purified
from wine, all the grape-derived protein precipitated after heating [26,29].

Instead, the band at 32 kDa, ascribable to the UFS polysaccharides (Figure 2a), was not evident
in the gels of both fractions (HF and SF) of the heated wine. This could be due to an interaction of
denatured proteins with soluble proteins in a co-precipitation mechanism.
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The haze and supernatant fractions analyzed by SDS-PAGE were also visualized using the PAS
carbohydrate stain (Figure 4 d,e). While in the gel of the haze fractions no evident bands were present,
the supernatant fractions showed a positive response to the carbohydrate stain, with an increase of the
band intensities related to the proteins with molecular-mass greater than 250 kDa as the concentrations
of UFS increased. These results confirm that no glycoproteins were present in the haze fraction and
that the proteins present in UFS fraction were glycosylated.

Although wine protein solubility likely increased as the concentration of added PSs increased,
a plateau in the haziness reduction was observed for UFS doses higher than 300 mg/L. Indeed, similar
residual haze values in the heated wine were detected by the nephelometer at UFS concentrations
higher than 300 mg/L. Thus, the heat-induced aggregation process of a portion of proteins seems to
be independent from the added PSs. On the other hand, other physico-chemical factors might be
involved in the protein aggregation process [68]. Among these, pH can strongly affect the stability of
wine proteins [70,71] since wine proteins are positively charged at wine pH and electrostatic attractions
with negative charged compounds might determine colloidal instability (protein aggregation and
precipitation) [71]. Yeast mannoproteins are reported to be neutral or negatively charged and their
density was directly correlated to their phosphorus content [72]. Considering that pH can also affect
the charge of some polysaccharides [71,72], further studies are still needed to evaluate the charge
density profile of the Schizosaccharomyces’ galactomannoproteins in the wine to better understand the
mechanism at the base of their interference with wine proteins.

Dynamic light scattering (DLS) was also performed on the heat-treated samples of wine to
determine the size distribution of the suspended aggregated proteins. DLS measures the Brownian
motion of the objects in the sample and relates this to the size of the particles [73]. Figure 5a reports
the correlation functions for all the investigated samples, while Figure 5b shows the mean diameters
obtained from the fitting of the curves with the CONTIN algorithm together with the number of
scattered photons expressed as kilocounts per second (kcps). The comparison between the number of
scattered photons in the heated and not-heated samples is shown in Figure 5c.

The presence of scattering objects in the heated samples can be ascribed to the formation of
protein aggregates induced by thermal treatment. Indeed, the comparison between the number of
scattered photons in the wine aliquots before and after heating (Figure 5c) confirms the lower number
of aggregates in the as-prepared wine samples. Interestingly, the size of the haze particles decreased
as the concentration of added polysaccharides increased (Figure 5b). The relationship between the
haze particle size and PSs concentration is similar to that found for the turbidity (i.e., exponential
function), with the decrease in particle size of the aggregate diminishing to less than 0.3 µm at the
highest addition of PSs. As a consequence of this reduction, the haze was barely detectable with the
naked eye. Variation of ∆NTU, kcps and mean diameter of the aggregate could be modeled by the
function: y(C) = y0 + Aexp-(C/C*), where the y0 is the baseline of the exponential, A is its amplitude
and C* represents the critical concentration of additive able to reduce the destabilization phenomenon
by a factor 1/e. C*, resulting from the fits of three curves, is in the range 100–200 mg/L.

These findings are in good agreement with the evidence found by Waters et al. [26] that reported
an exponential relationship between haze particle size and the concentration of a crude haze protective
factor, with a particle size reduction from 30 µm to 5 µm.

The release of a high quantity of polysaccharides in the media makes this non-Saccharomyces yeast
particularly interesting for the industrial production of exogenous polysaccharide preparations that
could be then easily purified by ultrafiltration and used for winemaking purposes such as protein
stability. Indeed, the possibility to recover high amounts of these compounds directly from the
fermentation medium, without using enzymatic treatments or other processes to separate the PSs from
the cell wall, could make these yeasts convenient from a production perspective.
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Figure 5. Panel (a): correlation functions of the heated samples (dots) along with the CONTIN fit
(black lines) vs. the delay time (τ). Panel (b): mean diameters (blue) obtained from the fitting of the
curves with the CONTIN algorithm together with the number of scattered photons (kilo counts per
second (kcps), red). Lines are the best fit according to the exponential function reported in the text.
Panel (c): comparison between the number of scattered photons in the heated (red) and not heated
(black) samples.
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4. Conclusions

According to our knowledge, this is the first time that Sch. japonicus PSs, after being recovered
from the growth media by ultrafiltration, have been tested to assess their efficiency on wine protein
stability. The results obtained in the present study have clearly shown that these PSs are able to
improve wine protein heat stability. In particular, they are able to reduce the protein haze to around
half of the initial values.

The reduction of the haze particles’ size together with the solubility persistence of the heat instable
wine proteins following the heat treatment confirm that an addition of these macromolecules into
instable wine interferes with the protein aggregation process. To a certain extent, these PSs are able
to protect wine from protein haze in a dose-dependent manner. However, further studies are still
necessary to characterize and identify the active components of the pool of macromolecules released
into the media, to understand their role in the protein haze protection and to evaluate their impact on
other chemical, physical, and organoleptic wine features.

Author Contributions: Conceptualization, P.D.; Data curation, V.M., G.F., A.A. and P.D.; Formal analysis, V.M.,
S.I., S.C., G.F., A.A. and P.D.; Funding acquisition, E.F. and P.D.; Methodology, E.F. and P.D.; Supervision,
P.D.; Visualization, P.D.; Writing—original draft, P.D.; Writing—review & editing, V.M., G.F., B.Z., E.F. and P.D.
All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Acknowledgments: P.D. acknowledges partial financial support from Enartis-Esseco srl, (Via S. Cassiano 99, 28069
Trecate, Italy) and Giovanni Cappelli (Castello di Querceto, Via Alessandro François, 2—50022 Firenze—Italy)
for providing the wines. G.F. and E.F. acknowledge partial financial support from Consorzio per lo sviluppo
dei Sistemi a Grande Interfase (CSGI) and MIUR (“Progetto Dipartimenti di Eccellenza 2018–2022” allocated to
Department of Chemistry “Ugo Schiff”).

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Dordoni, R.; Colangelo, D.; Giribaldi, M.; Giuffrida, M.G.; De Faveri, D.M.; Lambri, M. Effect of Bentonite
Characteristics on Wine Proteins, Polyphenols, and Metals under Different pH Conditions. Am. J. Enol. Vitic.
2015, 66, 518–530. [CrossRef]

2. Making Good Wine. Available online: https://www.panmacmillan.com.au/9781405036016/ (accessed on
1 May 2004).

3. Høj, P.B.; Tattersall, D.B.; Adams, K.; Pocock, K.F.; Hayasaka, Y.; van Heeswijck, R.; Waters, E. The ‘haze
proteins’ of wine—A summary of properties, factors affecting their accumulation in grapes, and the amount
of bentonite required for their removal from wine. In Proceedings of the ASEV 50th Anniversary Meeting,
Seattle, WA, USA, 19–23 June 2000.

4. Lambri, M.; Dordoni, R.; Silva, A.; De Faveri, D.M. Odor-active compound adsorption onto bentonite in a
model white wine solution. Chem. Eng. Trans. 2013, 32, 1741–1746.

5. Francis, I.L.; Sefton, M.A.; Williams, P.J. The sensory effects of pre- or post-fermentation thermal processing
on Chardonnay and Semillon wines. Am. J. Enol. Vitic. 1994, 45, 243–251.

6. Pocock, K.; Høj, P.; Adams, K.; Kwiatkowski, M.; Waters, E. Combined heat and proteolytic enzyme treatment
of white wines reduces haze forming protein content without detrimental effect. Aust. J. Grape Wine Res.
2003, 9, 56–63. [CrossRef]

7. Hsu, J.-C.; Heatherbell, D.A.; Flores, J.H.; Watson, B.T. Heat-unstable proteins in grape juice and wine. II.
Characterization and removal by ultrafiltration. Am. J. Enol. Vitic. 1987, 38, 17–22.

8. Flores, J.H.; Heatherbell, D.A.; McDaniel, M.R. Ultrafiltration of wine: Effect of ultrafiltration on white
Riesling and Gewürztraminer wine composition and stability. Am. J. Enol. Vitic. 1990, 41, 207–214.

9. Marangon, M.; Van Sluyter, S.C.; Robinson, E.M.; Muhlack, R.A.; Holt, H.E.; Haynes, P.A.; Godden, P.W.;
Smith, P.; Waters, E. Degradation of white wine haze proteins by Aspergillopepsin I and II during juice flash
pasteurization. Food Chem. 2012, 135, 1157–1165. [CrossRef]

http://dx.doi.org/10.5344/ajev.2015.15009
https://www.panmacmillan.com.au/9781405036016/
http://dx.doi.org/10.1111/j.1755-0238.2003.tb00232.x
http://dx.doi.org/10.1016/j.foodchem.2012.05.042


Foods 2020, 9, 1407 12 of 14

10. Van Sluyter, S.C.; Warnock, N.I.; Schmidt, S.A.; Anderson, P.A.; Van Kan, J.A.L.; Bacic, A.; Waters, E.J.
Aspartic Acid Protease from Botrytis cinerea Removes Haze-Forming Proteins during White Winemaking.
J. Agric. Food Chem. 2013, 61, 9705–9711. [CrossRef]

11. Sarmento, M.R.; Boulton, R.B.; Oliveira, J.C. Selection of low swelling materials for protein adsorption from
white wines. Int. J. Food Sci. Technol. 2000, 35, 41–47. [CrossRef]

12. Pashova, V.; Güell, C.; López, F. White Wine Continuous Protein Stabilization by Packed Column. J. Agric.
Food Chem. 2004, 52, 1558–1563. [CrossRef]

13. Salazar, F.N.; Achaerandio, I.; Labbé, M.A.; Güell, C.; López, F. Comparative study of protein stabilization in
white wine using zirconia and bentonite: Physiochemical and wine sensory analysis. J. Agric. Food Chem.
2006, 54, 9955–9958. [CrossRef] [PubMed]

14. Marangon, M.; Lucchetta, M.; Waters, E. Protein stabilization of white wines using zirconium dioxide
enclosed in a metallic cage. Aust. J. Grape Wine Res. 2010, 17, 28–35. [CrossRef]

15. Lucchetta, M.; Pocock, K.F.; Waters, E.; Marangon, M. Use of Zirconium Dioxide during Fermentation as an
Alternative to Protein Fining with Bentonite for White Wines. Am. J. Enol. Vitic. 2013, 64, 400–404. [CrossRef]

16. Mercurio, M.; Mercurio, V.; Gennaro, B.; Gennaro, M.; Grifra, C.; Langella, A.; Morra, V. Natural zeolites
and white wines from Campania region (Southern Italy): A new contribution for solving some oenological
problems. Period Miner. 2010, 79, 95–112.

17. Mierczynska-Vasilev, A.; Wahono, S.K.; Smith, P.A.; Bindon, K.; Vasilev, K. Using Zeolites To Protein Stabilize
White Wines. ACS Sustain. Chem. Eng. 2019, 7, 12240–12247. [CrossRef]

18. Vincenzi, S.; Mosconi, S.; Zoccatelli, G.; Pellegrina, C.D.; Veneri, G.; Chignola, R.; Peruo, A.; Curioni, A.;
Rizzi, C. Development of a new procedure for protein recovery and quantification in wine. Am. J. Enol. Vitic.
2005, 56, 182–187.

19. Colangelo, D.; Torchio, F.; De Faveri, D.M.; Lambri, M. The use of chitosan as alternative to bentonite for
wine fining: Effects on heat-stability, proteins, organic acids, colour, and volatile compounds in an aromatic
white wine. Food Chem. 2018, 264, 301–309. [CrossRef]

20. Vincenzi, S.; Polesani, M.; Curioni, A. Removal of specific protein components by chitin enhances protein
stability in a white wine. Am. J. Enol. Vitic. 2005, 56, 246–254.

21. Spagna, G.; Pifferi, P.G.; Rangoni, C.; Mattivi, F.; Nicolini, G.; Palmonari, R. The stabilization of white wines
by adsorption of phenolic compounds on chitin and chitosan. Food Res. Int. 1996, 29, 241–248. [CrossRef]

22. Ratnayake, S.; Stockdale, V.; Grafton, S.; Munro, P.; Robinson, A.L.; Pearson, W.; McRae, J.M.; Bacic, A.
Carrageenans as heat stabilizers of white wine. Aust. J. Grape Wine Res. 2019, 25, 439–450. [CrossRef]

23. Marangon, M.; Stockdale, V.J.; Munro, P.; Trethewey, T.; Schulkin, A.; Holt, H.E.; Smith, P. Addition of
Carrageenan at Different Stages of Winemaking for White Wine Protein Stabilization. J. Agric. Food Chem.
2013, 61, 6516–6524. [CrossRef] [PubMed]

24. Marangon, M.; Lucchetta, M.; Duan, D.; Stockdale, V.; Hart, A.; Rogers, P.; Waters, E. Protein removal from a
Chardonnay juice by addition of carrageenan and pectin. Aust. J. Grape Wine Res. 2012, 18, 194–202. [CrossRef]

25. LeDoux, V.; Dulau, L.; Dubourdieu, D. Interprétation de l’amélioration de la stabilité protéique des vins au
cours de l’élevage sur lies. J. Int. Sci. Vigne Vin. 1992, 26, 239. [CrossRef]

26. Waters, E.J.; Wallace, W.; Tate, M.E.; Williams, P.J. Isolation and partial characterization of a natural haze
protective factor from wine. J. Agric. Food Chem. 1993, 41, 724–730. [CrossRef]

27. Waters, E.J.; Pellerin, P.; Brillouet, J.-M. A Saccharomyces mannoprotein that protects wine from protein haze.
Carbohydr. Polym. 1994, 23, 185–191. [CrossRef]

28. Moine-Ledoux, V.; Dubourdieu, D. An invertase fragment responsible for improving the protein stability of
dry white wines. J. Sci. Food Agric. 1999, 79, 537–543. [CrossRef]

29. Dupin, I.V.; McKinnon, B.M.; Ryan, C.; Boulay, M.; Markides, A.J.; Jones, G.P.; Williams, P.J.; Waters, E.
Saccharomyces cerevisiae mannoproteins that protect wine from protein haze: Their release during fermentation
and lees contact and a proposal for their mechanism of action. J. Agric. Food Chem. 2000, 48, 3098–3105. [CrossRef]

30. Brown, S.L.; Stockdale, V.J.; Pettolino, F.; Pocock, K.F.; Lopes, M.D.B.; Williams, P.J.; Bacic, A.; Fincher, G.B.;
Høj, P.B.; Waters, E. Reducing haziness in white wine by overexpression of Saccharomyces cerevisiae genes
YOL155c and YDR055w. Appl. Microbiol. Biotechnol. 2007, 73, 1363–1376. [CrossRef]

31. Carvalho, E.; Mateus, N.; Plet, B.; Pianet, I.; Dufourc, E.; De Freitas, V. Influence of Wine Pectic Polysaccharides
on the Interactions between Condensed Tannins and Salivary Proteins. J. Agric. Food Chem. 2006, 54, 8936–8944.
[CrossRef]

http://dx.doi.org/10.1021/jf402762k
http://dx.doi.org/10.1046/j.1365-2621.2000.00340.x
http://dx.doi.org/10.1021/jf034966g
http://dx.doi.org/10.1021/jf062632w
http://www.ncbi.nlm.nih.gov/pubmed/17177527
http://dx.doi.org/10.1111/j.1755-0238.2010.00112.x
http://dx.doi.org/10.5344/ajev.2013.12143
http://dx.doi.org/10.1021/acssuschemeng.9b01583
http://dx.doi.org/10.1016/j.foodchem.2018.05.005
http://dx.doi.org/10.1016/0963-9969(96)00025-7
http://dx.doi.org/10.1111/ajgw.12411
http://dx.doi.org/10.1021/jf401712d
http://www.ncbi.nlm.nih.gov/pubmed/23756713
http://dx.doi.org/10.1111/j.1755-0238.2012.00187.x
http://dx.doi.org/10.20870/oeno-one.1992.26.4.1188
http://dx.doi.org/10.1021/jf00029a009
http://dx.doi.org/10.1016/0144-8617(94)90101-5
http://dx.doi.org/10.1002/(SICI)1097-0010(19990315)79:4&lt;537::AID-JSFA214&gt;3.0.CO;2-B
http://dx.doi.org/10.1021/jf0002443
http://dx.doi.org/10.1007/s00253-006-0606-0
http://dx.doi.org/10.1021/jf061835h


Foods 2020, 9, 1407 13 of 14

32. Vidal, S.; Francis, I.; Williams, P.; Kwiatkowski, M.; Gawel, R.; Cheynier, V.; Waters, E. The mouth-feel properties
of polysaccharides and anthocyanins in a wine like medium. Food Chem. 2004, 85, 519–525. [CrossRef]

33. Chalier, P.; Angot, B.; Delteil, D.; Doco, T.; Günata, Z. Interactions between aroma compounds and whole
mannoprotein isolated from Saccharomyces cerevisiae strains. Food Chem. 2007, 100, 22–30. [CrossRef]

34. Guadalupe, Z.; Ayestarán, B. Polysaccharide Profile and Content during the Vinification and Aging of
Tempranillo Red Wines. J. Agric. Food Chem. 2007, 55, 10720–10728. [CrossRef] [PubMed]

35. Gonzalez-Ramos, D.; Cebollero, E.; Gonzalez, R. A Recombinant Saccharomyces cerevisiae Strain Overproducing
Mannoproteins Stabilizes Wine against Protein Haze. Appl. Environ. Microbiol. 2008, 74, 5533–5540. [CrossRef]
[PubMed]

36. Lubbers, S.; Léger, B.; Charpentier, C.; Feuillat, M. Effet colloïdes protecteurs d’extraits de parois de levures
sur la stabilité tartrique d’un vin modèle. J. Int. Sci. Vigne Vin 1993, 27, 13–22.

37. Vidal, S.; Williams, P.; Doco, T.; Moutounet, M.; Pellerin, P. The polysaccharides of red wine: Total fractionation
and characterization. Carbohydr. Polym. 2003, 54, 439–447. [CrossRef]

38. Klis, F.M.; Boorsma, A.; Grootab, P.W. Cell wall construction in Saccharomyces cerevisiae. Yeast 2006, 23,
185–202. [CrossRef] [PubMed]

39. Llaubères, R.M.; Dubourdieu, D.; Villetaz, J.C. Exocellular polysaccharides from Saccharomyces cerevisiae in
wine. J. Sci. Food Agric. 1987, 41, 277–286. [CrossRef]

40. Charpentier, C.; Feuillat, M. Wine Microbiology and Biotechnology; Harwood Academic Publishers: Chur,
Switzerland, 1993; pp. 225–242.

41. Boivin, S.; Feuillat, M.; Alexandre, H.; Charpentier, C. Effect of must turbidity on cell wall porosity and
macromolecules excretion of Saccharomyces cerevisiae cultivated on grape juice. Am. J. Enol. Vitic. 1998, 49,
325–332.

42. Charpentier, C.; Dos Santos, A.; Feuillat, M. Release of macromolecules by Saccharomyces cerevisiae during
ageing of French flor sherry wine “Vin jaune”. Int. J. Food Microbiol. 2004, 96, 253–262. [CrossRef]

43. Waters, E.; Alexander, G.; Muhlack, R.; Pocock, K.; Colby, C.; O’Neill, B.; Høj, P.; Jones, P. Preventing protein
haze in bottled white wine. Aust. J. Grape Wine Res. 2005, 11, 215–225. [CrossRef]

44. Ribeiro, T.; Fernandes, C.; Nunes, F.M.; Filipe-Ribeiro, L.; Cosme, F. Influence of the structural features
of commercial mannoproteins in white wine protein stabilization and chemical and sensory properties.
Food Chem. 2014, 159, 47–54. [CrossRef] [PubMed]

45. Young, M.; Davies, M.J.; Bailey, D.; Gradwell, M.J.; Smestad-Paulsen, B.; Wold, J.K.; Barnes, R.M.; Hounsell, E.F.
Characterization of oligosaccharides from an antigenic mannan of Saccharomyces cerevisiae. Glycoconj. J. 1998,
15, 815–822. [CrossRef] [PubMed]

46. Rosi, I.; Gheri, A.; Domizio, P.; Fia, G. Production de macromolecules parietals de Saccharomyces cerevisiae au
cours de la fermentation et leur influence sur la fermentation malolactique. Rev. Des. Oenol. 2000, 94, 18–20.

47. Romani, C.; Domizio, P.; Lencioni, L.; Gobbi, M.; Comitini, F.; Ciani, M.; Mannazzu, I. Polysaccharides and
glycerol production by non-Saccharomyces wine yeasts in mixed fermentation. Quad. Vitic. Enol. Univ. Torino
2010, 31, 185–189.

48. Domizio, P.; Romani, C.; Lencioni, L.; Comitini, F.; Gobbi, M.; Mannazzu, I.; Ciani, M. Outlining a future
for non-Saccharomyces yeasts: Selection of putative spoilage wine strains to be used in association with
Saccharomyces cerevisiae for grape juice fermentation. Int. J. Food Microbiol. 2011, 147, 170–180. [CrossRef]

49. Domizio, P.; Romani, C.; Comitini, F.; Gobbi, M.; Lencioni, L.; Mannazzu, I.; Ciani, M. Potential spoilage
non-Saccharomyces yeasts in mixed cultures with Saccharomyces cerevisiae. Ann. Microbiol. 2010, 61, 137–144.
[CrossRef]

50. Domizio, P.; Liu, Y.; Bisson, L.; Barile, D. Use of non-Saccharomyces wine yeasts as novel sources of
mannoproteins in wine. Food Microbiol. 2014, 43, 5–15. [CrossRef] [PubMed]

51. Domizio, P.; Liu, Y.; Bisson, L.; Barile, D. Cell wall polysaccharides released during the alcoholic fermentation
by Schizosaccharomyces pombe and S. japonicus: Quantification and characterization. Food Microbiol. 2016, 61,
136–149. [CrossRef]

52. Comitini, F.; Gobbi, M.; Domizio, P.; Romani, C.; Lencioni, L.; Mannazzu, I.; Ciani, M. Selected
non-Saccharomyces wine yeasts in controlled multistarter fermentations with Saccharomyces cerevisiae.
Food Microbiol. 2011, 28, 873–882. [CrossRef]

53. Domizio, P.; Lencioni, L.; Calamai, L.; Portaro, L.; Bisson, L. Evaluation of the Yeast Schizosaccharomyces
japonicus for Use in Wine Production. Am. J. Enol. Vitic. 2018, 69, 266–277. [CrossRef]

http://dx.doi.org/10.1016/S0308-8146(03)00084-0
http://dx.doi.org/10.1016/j.foodchem.2005.09.004
http://dx.doi.org/10.1021/jf0716782
http://www.ncbi.nlm.nih.gov/pubmed/18001031
http://dx.doi.org/10.1128/AEM.00302-08
http://www.ncbi.nlm.nih.gov/pubmed/18606802
http://dx.doi.org/10.1016/S0144-8617(03)00152-8
http://dx.doi.org/10.1002/yea.1349
http://www.ncbi.nlm.nih.gov/pubmed/16498706
http://dx.doi.org/10.1002/jsfa.2740410310
http://dx.doi.org/10.1016/j.ijfoodmicro.2004.03.019
http://dx.doi.org/10.1111/j.1755-0238.2005.tb00289.x
http://dx.doi.org/10.1016/j.foodchem.2014.02.149
http://www.ncbi.nlm.nih.gov/pubmed/24767025
http://dx.doi.org/10.1023/A:1006968117252
http://www.ncbi.nlm.nih.gov/pubmed/9870358
http://dx.doi.org/10.1016/j.ijfoodmicro.2011.03.020
http://dx.doi.org/10.1007/s13213-010-0125-1
http://dx.doi.org/10.1016/j.fm.2014.04.005
http://www.ncbi.nlm.nih.gov/pubmed/24929876
http://dx.doi.org/10.1016/j.fm.2016.08.010
http://dx.doi.org/10.1016/j.fm.2010.12.001
http://dx.doi.org/10.5344/ajev.2018.18004


Foods 2020, 9, 1407 14 of 14

54. Spiropoulos, A.; Tanaka, J.; Flerianos, I.; Bisson, L.F. Characterization of hydrogen sulfide formation in
commercial and natural wine isolates of Saccharomyces. Am. J. Enol. Vitic. 2000, 51, 233–248.

55. Romani, C.; Lencioni, L.; Bartolini, A.B.; Ciani, M.; Mannazzu, I.; Domizio, P. Pilot Scale Fermentations of
Sangiovese: An Overview on the Impact of Saccharomyces and Non-Saccharomyces Wine Yeasts. Fermentation
2020, 6, 63. [CrossRef]

56. Chamizo, S.; Adessi, A.; Mugnai, G.; Simiani, A.; De Philippis, R. Soil Type and Cyanobacteria Species
Influence the Macromolecular and Chemical Characteristics of the Polysaccharidic Matrix in Induced
Biocrusts. Microb. Ecol. 2018, 78, 482–493. [CrossRef] [PubMed]

57. Bradford, M.M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing
the principle of protein-dye binding. Anal. Biochem. 1976, 72, 248–254. [CrossRef]

58. McRae, J.M.; Barricklow, V.; Pocock, K.; Smith, P. Predicting protein haze formation in white wines. Aust. J.
Grape Wine Res. 2018, 24, 504–511. [CrossRef]

59. Laemmli, U.K. Cleavage of Structural Proteins during the Assembly of the Head of Bacteriophage T4. Nature
1970, 227, 680–685. [CrossRef] [PubMed]

60. Packer, N.H.; Ball, M.S.; Devine, P.L.; Patton, W.F. The Protein Protocols Handbook Walker. In Detection of
Glycoproteins in Gels and Blots; Humana Press: Totowa, NJ, USA, 2002; pp. 761–772.

61. Ju, R.T.C.; Frank, C.W.; Gast, A.P. CONTIN analysis of colloidal aggregates. Langmuir 1992, 8, 2165–2171.
[CrossRef]

62. Manners, D.J.; Meyer, M.T. The molecular structures of some glucans from the cell walls of Schizosaccharomyces
pombe. Carbohydr. Res. 1977, 57, 189–203. [CrossRef]

63. Hart, C.; Schulenberg, B.; Steinberg, T.H.; Leung, W.-Y.; Patton, W.F. Detection of glycoproteins in
polyacrylamide gels and on electroblots using Pro-Q Emerald 488 dye, a fluorescent periodate Schiff-base
stain. Electrophoresis 2003, 24, 588–598. [CrossRef]

64. Pellerin, P.; Waters, E.; Brillouet, J.-M.; Moutounet, M. Effet de polysaccharides sur la formation de trouble
protéique dans un vin blanc. J. Int. Sci. Vigne Vin 1994, 28, 213. [CrossRef]

65. Iland, P.G.; Ewart, A.J.W.; Sitters, J.H.; Markides, A.J.; Bruer, N.G.C. Techniques for Chemical Analysis and
Quality Monitoring During Winemaking; Patrick Iland Wine Promotions: Campbelltown, Australia, 2000.

66. Robinson, S.P.; Davies, C. Molecular biology of grape berry ripening. Aust. J. Grape Wine Res. 2000, 6, 175–188.
[CrossRef]

67. Ferreira, R.B.; A Piçarra-Pereira, M.; Monteiro, S.A.; Loureiro, V.B.; Teixeira, A.R. The wine proteins.
Trends Food Sci. Technol. 2001, 12, 230–239. [CrossRef]

68. Van Sluyter, S.C.; McRae, J.M.; Falconer, R.J.; Smith, P.; Bacic, A.; Waters, E.J.; Marangon, M. Wine Protein
Haze: Mechanisms of Formation and Advances in Prevention. J. Agric. Food Chem. 2015, 63, 4020–4030.
[CrossRef] [PubMed]

69. Cosme, F.; Fernandes, C.; Ribeiro, T.; Filipe-Ribeiro, L.; Nunes, F.M. White Wine Protein Instability:
Mechanism, Quality Control and Technological Alternatives for Wine Stabilization—An Overview. Beverages
2020, 6, 19. [CrossRef]

70. Dufrechou, M.; Vernhet, A.; Roblin, P.; Sauvage, F.-X.; Poncet-Legrand, C. White Wine Proteins: How Does
the pH Affect Their Conformation at Room Temperature? Langmuir 2013, 29, 10475–10482. [CrossRef]
[PubMed]

71. Dufrechou, M.; Doco, T.; Poncet-Legrand, C.; Sauvage, F.-X.; Vernhet, A. Protein/Polysaccharide Interactions
and Their Impact on Haze Formation in White Wines. J. Agric. Food Chem. 2015, 63, 10042–10053. [CrossRef]
[PubMed]

72. Vernhet, A.; Pellerin, P.; Prieur, C.; Osmianski, J.; Moutounet, M. Charge properties of some grape and wine
polysaccharide and polyphenolic fractions. Am. J. Enol. Vitic. 1996, 47, 25–30.

73. Hassan, P.A.; Rana, S.; Verma, G. Making Sense of Brownian Motion: Colloid Characterization by Dynamic
Light Scattering. Langmuir 2014, 31, 3–12. [CrossRef]

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.3390/fermentation6030063
http://dx.doi.org/10.1007/s00248-018-1305-y
http://www.ncbi.nlm.nih.gov/pubmed/30535915
http://dx.doi.org/10.1016/0003-2697(76)90527-3
http://dx.doi.org/10.1111/ajgw.12354
http://dx.doi.org/10.1038/227680a0
http://www.ncbi.nlm.nih.gov/pubmed/5432063
http://dx.doi.org/10.1021/la00045a016
http://dx.doi.org/10.1016/S0008-6215(00)81930-8
http://dx.doi.org/10.1002/elps.200390069
http://dx.doi.org/10.20870/oeno-one.1994.28.3.1144
http://dx.doi.org/10.1111/j.1755-0238.2000.tb00177.x
http://dx.doi.org/10.1016/S0924-2244(01)00080-2
http://dx.doi.org/10.1021/acs.jafc.5b00047
http://www.ncbi.nlm.nih.gov/pubmed/25847216
http://dx.doi.org/10.3390/beverages6010019
http://dx.doi.org/10.1021/la401524w
http://www.ncbi.nlm.nih.gov/pubmed/23869753
http://dx.doi.org/10.1021/acs.jafc.5b02546
http://www.ncbi.nlm.nih.gov/pubmed/26477433
http://dx.doi.org/10.1021/la501789z
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Materials and Methods 
	Yeast Strains 
	Wine 
	Fermentation Conditions 
	Polysaccharides Recovery and Purification 
	Wine Treatments 
	Polysaccharides Characterization 
	Polysaccharides Quantification 
	Monosaccharide Composition 
	Protein Quantification 

	Wine Protein Heat Test and Treatment of the Derived Fractions 
	Proteins Profiling by Gel Electrophoresis 
	Dynamic Light Scattering (DLS) 

	Results and Discussion 
	Fermentation Performance 
	Polysaccharides Quantification and Characterization 
	Impact of PSs on Wine Protein Stability 

	Conclusions 
	References

