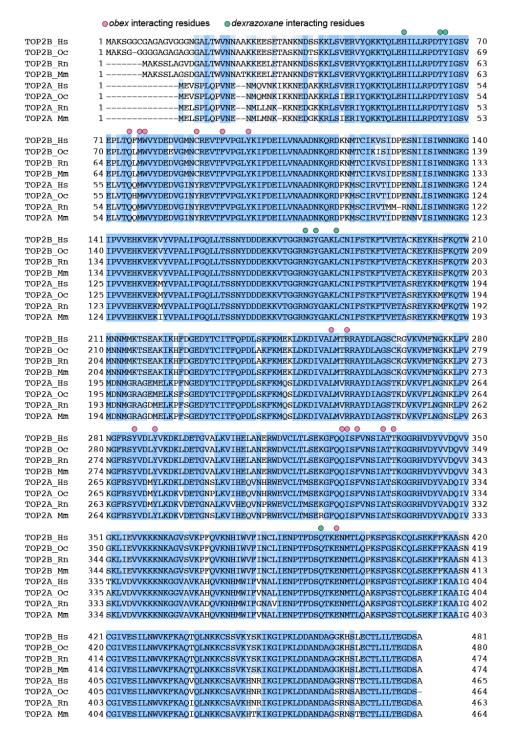
- 1 Supplementary Information for
- 2 Topobexin Targets the Topoisomerase II ATPase Domain for Beta Isoform-
- 3 Selective Inhibition and Anthracycline Cardioprotection
- 5 **Authors:** Jan Kubeš<sup>1</sup>\*, Galina Karabanovich<sup>2</sup>\*, Anh T.Q. Cong<sup>3,4</sup>\*, Iuliia Melnikova<sup>2</sup>, Olga Lenčová<sup>5</sup>, Petra Kollárová<sup>5</sup>,
- 6 Hana Bavlovič Piskáčková<sup>6</sup>, Veronika Keresteš<sup>1</sup>, Lenka Applová<sup>1</sup>, Lise C.M. Arrouye<sup>3</sup>, Julia R. Alvey<sup>3</sup>, Jasmina
- 7 Paluncic<sup>3</sup>, Taylor L. Witter<sup>3,4</sup>, Anna Jirkovská<sup>1</sup>, Jiří Kuneš<sup>2</sup>, Petra Štěrbová-Kovaříková<sup>6</sup>, Caroline A. Austin<sup>7</sup>†, Martin
- 8 Štěrba<sup>5</sup>†, Tomáš Šimůnek<sup>1</sup>†, Jaroslav Roh<sup>2</sup>†, and Matthew J. Schellenberg<sup>3</sup>†
- 10 \*Contributed equally

9

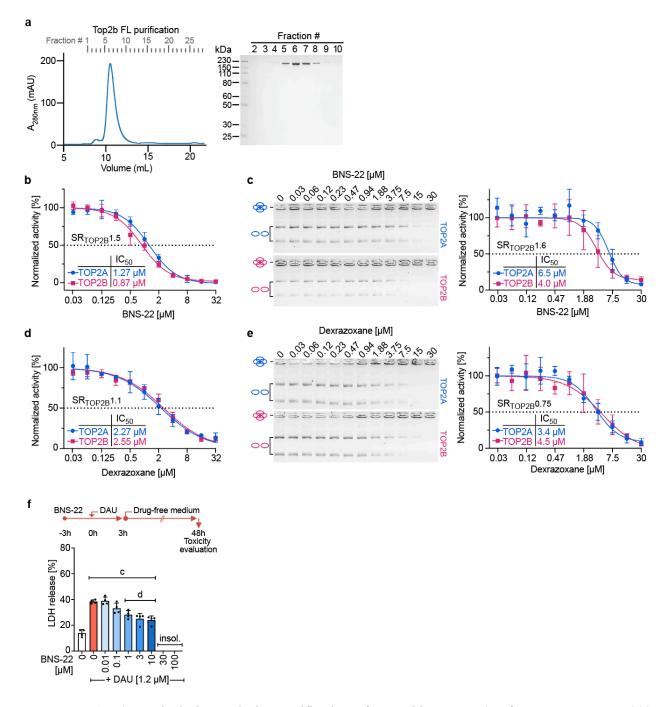
13

14

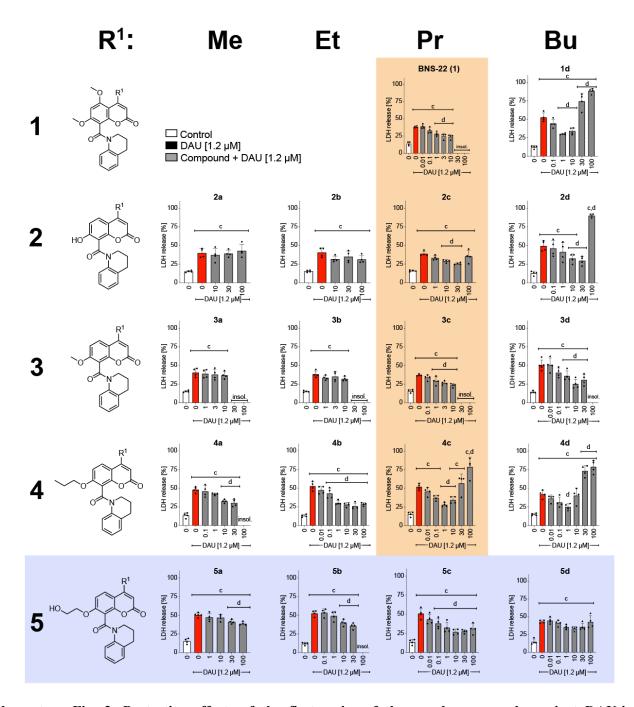
15


19

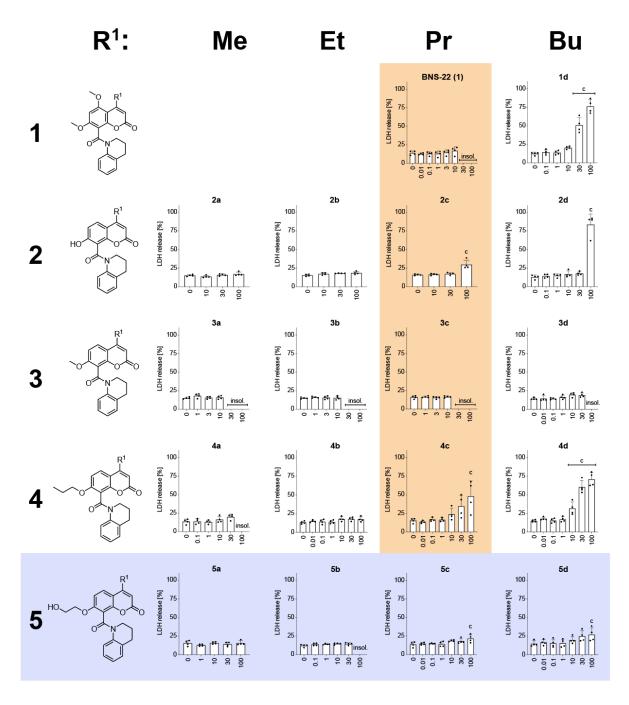
20


- †Correspondence and requests for materials should be addressed to: schellenberg.matthew@mayo.edu,
- 12 rohj@faf.cuni.cz, simunekt@faf.cuni.cz, sterbam@lfhk.cuni.cz or caroline.austin@newcastle.ac.uk

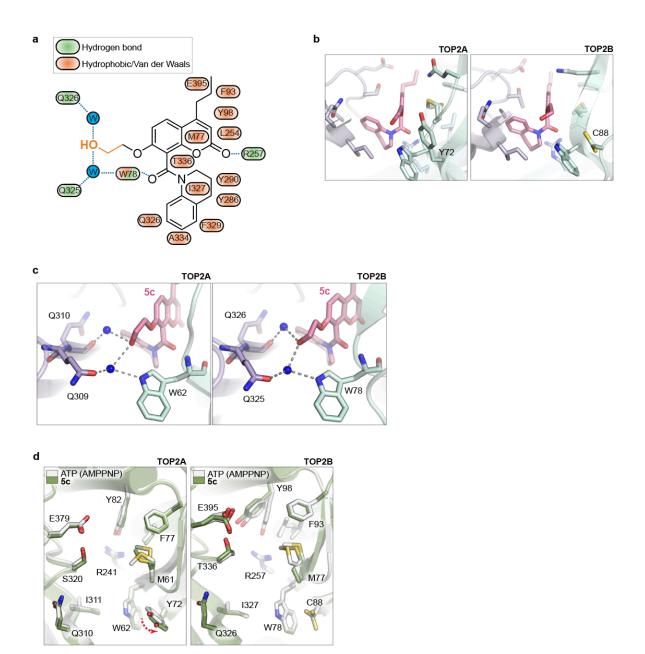
#### The PDF file includes:


- Supplementary Figs. 1 to 8
- 17 Supplementary Tables 1 to 5
- Supplementary Methods Chemistry (Synthetic procedures and characterization of compounds)

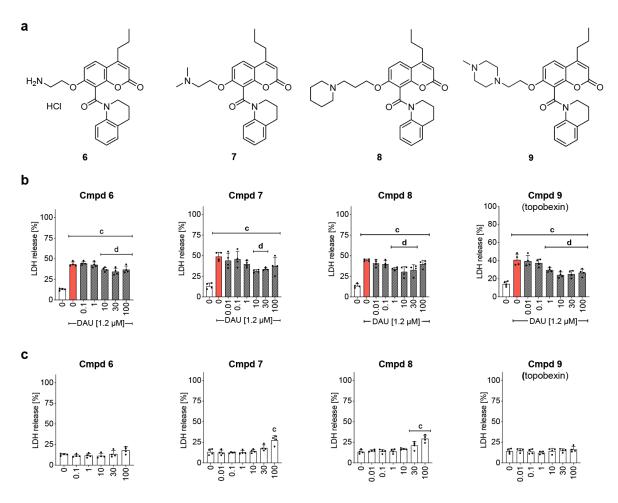



Supplementary Fig. 1. Sequence alignment of TOP2A and TOP2B ATPase domains from species used in this study. Hs, Homo sapiens; Oc, Oryctolagus cuniculus; Rn Rattus norvegicus; Ms, Mus musculus. Residues that comprise the obex (pink) and dexrazoxane (teal) binding sites are indicated.

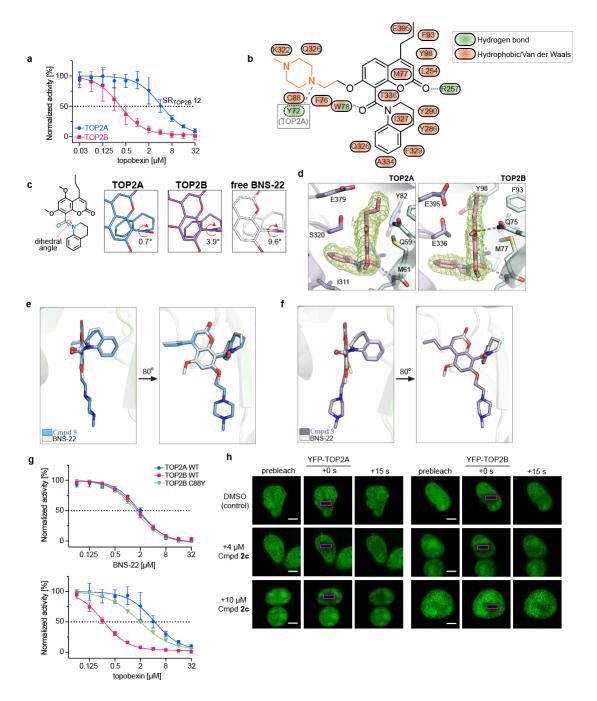



Supplementary Fig. 2. a, Final size-exclusion purification of recombinant TOP2B from YFP-tag HEK293F cell expression system. b, Inhibition of ATPase activity of recombinant human TOP2A and TOP2B by BNS22 (n=3, mean  $\pm$  SD normalized to untreated control). c, Inhibition of decatenation activity of recombinant human TOP2A and TOP2B by BNS22 (n=3, mean  $\pm$  SD normalized to untreated control). Representative agarose gel is shown (right). d, Inhibition of ATPase activity of recombinant human TOP2A and TOP2B by dexrazoxane (n=3, mean  $\pm$  SD normalized to untreated control). e, Inhibition of decatenation activity of recombinant human TOP2A and TOP2B by dexrazoxane (n=3, mean  $\pm$  SD normalized to untreated control). Representative agarose gel is shown (right). f, Protective effects of BNS-22 against toxicity (LDH release) induced by DAU [1.2  $\mu$ M] in isolated rat neonatal ventricular cardiomyocytes (NVCM) 48 h after DAU addition, n = 4, mean  $\pm$  SD. Statistical significance (P  $\leq$  0.05, one-way ANOVA) against untreated cells in column 1 is indicated as (c) or DAU treated cells in column 2 indicated as (d).




Supplementary Fig. 3. Protective effects of the first series of the novel compounds against DAU-induced cytotoxicity in primary cultures of rat cardiomyocytes. Cells were pre-treated with the indicated compound (or vehicle for controls; DMSO 0.1 % final concentration) for 3 h, another 3 h co-incubated with DAU (1.2  $\mu$ M) and then left in drug-free media until evaluation by LDH release, which took place 48 h after DAU, n = 4, mean  $\pm$  SD. Statistical significance (P  $\leq$  0.05, one-way ANOVA) against untreated cells in column 1 is indicated as (c) or DAU treated cells in column 2 indicated as (d). Compounds in colored rectangles were selected for more detailed investigation as representatives of two axes of structural modifications.




Supplementary Fig. 4. Inherent toxicities of the first series of the novel compounds in primary cultures of rat cardiomyocytes in settings corresponding to the cardioprotection model experiments. Cells were treated with the indicated compound (or vehicle for controls; DMSO 0.1 % final concentration) for 6 h, and then left in drug-free media for 45 h. Cellular toxicity was evaluated by LDH release, n = 4, mean  $\pm$  SD. Statistical significance ( $P \le 0.05$ , one-way ANOVA) against untreated cells in column 1 indicated as (c). Compounds in colored rectangles were selected for more detailed investigation as representatives of two axes of structural modifications.



**Supplementary Fig. 5. a,** Diagram depicting residues of TOP2B that interact with compound **5c**. Residues are colored coded according to the type of interaction (hydrogen bonding or hydrophobic/Van der Waals). **b,** The position 7 hydroxyl group of compound **5c** extends towards the non-conserved Y72/C88 residue. **c,** The position 7 hydroxyl group of **5c** forms hydrogen bonds with ordered water molecules in both TOP2A and TOP2B. **d,** Alignment of the structures of TOP2A and TOP2B with or without **5c** showing similarities between the bound and unbound states.



**Supplementary Fig. 6. a,** Chemical structures of analogues containing nitrogen in a side chain in position 7. **b,** Protective effects against DAU-induced cytotoxicity and **c,** corresponding inherent toxicities of derivatives based on **5c** designed for improved solubility and administrability. Cellular toxicity was evaluated by LDH release, n = 4, mean  $\pm$  SD. Statistical significance ( $P \le 0.05$ , one-way ANOVA) against untreated cells indicated as (c) or DAU treated cells indicated as (d). Data shown in panel B and C for topobexin (9) is reproduced from Fig. 4B.



Supplementary Fig. 7. a, Inhibition of ATPase activity of recombinant human TOP2A and TOP2B by topobexin (9) (n=3, mean ± SD normalized to untreated control). b, Diagram depicting residues of TOP2B that interact with topobexin (9). Residues are colored coded according to the type of interaction (hydrogen bonding or hydrophobic/Van der Waals). c, Details of the amide dihedral angle of BNS-22 when bound to TOP2A, TOP2B or in unbound (free) state. d, Molecular architecture of the obex pocket binding BNS-22 in TOP2A and TOP2B. Electron density corresponding to BNS-22 from a composite omit map (green mesh, contoured at 1σ) reveals the location and conformation of BNS-22 (pink) within this pocket. e, Overlay of BNS22 and topobexin (9) bound to TOP2A reveals differences in the conformation of the tetrahydroquinoline ring. f, Overlay of BNS-22 and topobexin (9) bound to TOP2B reveals that the tetrahydroquinoline ring remains unchanged in topobexin (9). g, Inhibition of ATPase of TOP2B WT and C88Y mutants by BNS-22 (upper) and topobexin (9) (lower). TOP2A data from experiments described in Supplementary Data Fig. 7a is also shown for

8 9

10

11 12

13

14

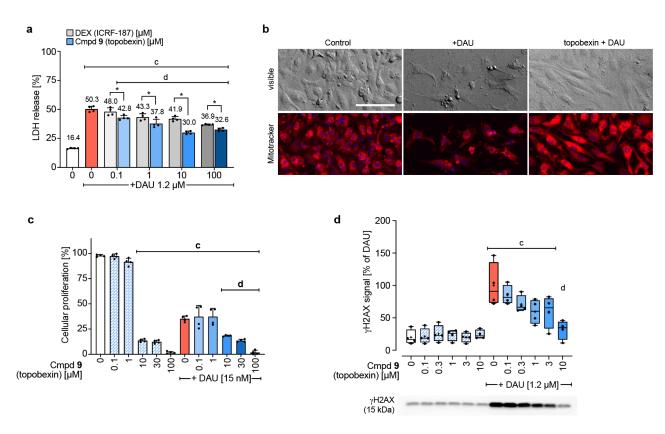
15

16

17

18 19

20


21

22

23

24

comparison. The IC<sub>50</sub> values of TOP2B C88Y mutant were 1.55 μM for BNS-22 and 1.88 μM for topobexin (9). **h,** Fluorescence Recovery After Photobleaching (FRAP) analysis. HEK293F cells that express yellow-fluorescent protein (YFP)-TOP2A or YFP-TOP2B were pre-incubated with or without compound **2c** for 15 min prior to FRAP analysis. YFP-TOP2 in the bleached area (purple box) rapidly mixes throughout the nucleus and the bleached area is no longer visible after 20 seconds in untreated cells. When inhibited by compound **2c** the bleached area is still visible after 20 seconds for both YFP-TOP2B and YFP-TOP2A.



Supplementary Fig. 8. a, Side-by-side comparison of protective effects of dexrazoxane (ICRF-187) and topobexin (9) in isolated rat neonatal ventricular cardiomyocytes (NVCM) against toxicity (LDH release) induced by DAU [1.2 µM] 48 h after DAU addition, n = 4, mean  $\pm$  SD. Statistical significance ( $P \le 0.05$ ): one-way ANOVA against untreated cells in column 1 indicated as (c) or against DAU treated cells in column 2 indicated as (d), or pairwise comparison in same concentrations by two-tailed ratio paired t-test indicated as (\*). b, Live-cell imaging of NVCM cells in the schedule corresponding to the cytotoxicity/protection experiments (48 h after DAU addition). Changes in morphology are shown in visible light microscopy, red is fluorescence from MitoTracker Red CMXRos corresponding to active mitochondria, and blue signal is from staining nuclear DNA with Hoechst 33342. Scale bar = 100  $\mu$ m. c, Antiproliferative activity of topobexin (9) and its effects on antiproliferative activity of DAU were examined on HL-60 promyelocytic leukemia cell line. Cells were incubated for 72 h in the presence of 0.1–100 µM topobexin (9), either alone or in combination with DAU in concentration corresponding to its previously determined IC<sub>50</sub> (15 nM), n = 4, mean  $\pm$  SD. Statistical significance  $(P \le 0.05, one-way ANOVA)$  against untreated cells in column 1 indicated as (c) or against DAU treated cells in column 7 indicated as (d). d, The levels of phosphorylated vH2AX in HL-60 promyelocytic leukemia cell line evaluated by Western blotting (n = 4,  $P \le 0.05$  against untreated control cells (c) or DAU (d) (one-way ANOVA)). For all box and whisker plots, center line represents the median, "+" represents the mean. Bounds of box indicate 25th to 75th percentile, whiskers indicate minimal and maximal value.

Supplementary Table 1. Inhibitory concentrations and biochemical parameters of selected obex inhibitors. LEC

= lowest effective concentration, LTC = lowest toxic concentration, n.d. = not determined (not cardioprotective at any concentration used).

|                        | NVCM (n=4) TOP2 |       |           | ATPase           | ATPase activity (n=3)  Expressed in Hu |                  |             | -         |                  |             |                  |              |
|------------------------|-----------------|-------|-----------|------------------|----------------------------------------|------------------|-------------|-----------|------------------|-------------|------------------|--------------|
|                        |                 |       | $SR_beta$ | TOP2A            | ١                                      | TOP2             | 3           | $SR_beta$ | TOP2             | A           | TOP2             | 3            |
| compound               | LEC             | LTC   |           | IC <sub>50</sub> | 95% CI                                 | IC <sub>50</sub> | 95% CI      |           | IC <sub>50</sub> | 95% CI      | IC <sub>50</sub> | 95% CI       |
| BNS-22                 | 1               | > 10  | 1.5       | 1.27             | (1.11–1.46)                            | 0.87             | (0.76–1.00) | 1.6       | 6.51             | (5.35–8.16) | 4.00             | (3.09–5.46)  |
| dexrazoxane            |                 |       | 0.89      | 2.27             | (1.91–2.70)                            | 2.55             | (2.14-3.02) | 0.75      | 3.35             | (2.40-5.16) | 4.50             | (2.95-10.93) |
| 1d                     | 1               | 30    |           |                  |                                        |                  |             |           |                  |             |                  |              |
| 2a                     | n.d.            | > 100 |           |                  |                                        |                  |             |           |                  |             |                  |              |
| 2b                     | n.d.            | > 100 |           |                  |                                        |                  |             |           |                  |             |                  |              |
| 2c                     | 10              | 100   | 1.0       | 0.69             | (0.62–0.77)                            | 0.66             | (0.60–0.74) |           |                  |             |                  |              |
| 2d                     | 10              | 100   |           |                  |                                        |                  |             |           |                  |             |                  |              |
| <b>3</b> a             | n.d.            | > 10  |           |                  |                                        |                  |             |           |                  |             |                  |              |
| 3b                     | n.d.            | > 10  |           |                  |                                        |                  |             |           |                  |             |                  |              |
| 3c                     | 1               | > 10  | 1.6       | 1.27             | (1.15–1.40)                            | 0.78             | (0.70–0.86) |           |                  |             |                  |              |
| 3d                     | 1               | > 30  |           |                  |                                        |                  |             |           |                  |             |                  |              |
| 4a                     | 10              | > 30  |           |                  |                                        |                  |             |           |                  |             |                  |              |
| 4b                     | 0.1             | > 100 |           |                  |                                        |                  |             |           |                  |             |                  |              |
| 4c                     | 0.1             | 100   | 2.2       | 1.87             | (1.25–2.72)                            | 0.85             | (0.66–1.13) |           |                  |             |                  |              |
| 4d                     | 1               | 10    |           |                  |                                        |                  |             |           |                  |             |                  |              |
| 5a                     | 30              | > 100 |           |                  |                                        |                  |             |           |                  |             |                  |              |
| 5b                     | 10              | > 30  | 1.0       | 1.42             | (0.90–2.50)                            | 1.46             | (0.88–2.79) |           |                  |             |                  |              |
| 5c                     | 0.1             | 100   | 3.8       | 1.54             | (1.45–1.64)                            | 0.41             | (0.39–0.43) | 2.2       | 3.21             | (2.52–4.19) | 1.43             | (1.23–1.67)  |
| 5d                     | n.d.            | 100   |           |                  |                                        |                  |             |           |                  |             |                  |              |
| 6                      | 10              | > 100 |           |                  |                                        |                  |             |           |                  |             |                  |              |
| 7                      | 10              | 100   |           |                  |                                        |                  |             |           |                  |             |                  |              |
| 8                      | 1               | 30    |           |                  |                                        |                  |             |           |                  |             |                  |              |
| topobexin ( <b>9</b> ) | 1               | > 100 | 12        | 4.09             | (2.89–6.29)                            | 0.35             | (0.27–0.46) | 25        | 4.80             | (4.08–5.71) | 0.19             | (0.16-0.23)  |

1

Supplementary Table 2. Macromolecular X-ray crystallography data collection and refinement statistics.

| ATPase Protein                | TOP2A                                         | TOP2A                                         | TOP2A                                         | TOP2A                                         | TOP2B                            | TOP2B                            | TOP2B                            | TOP2B                            |
|-------------------------------|-----------------------------------------------|-----------------------------------------------|-----------------------------------------------|-----------------------------------------------|----------------------------------|----------------------------------|----------------------------------|----------------------------------|
| Compound                      | -                                             | BNS-22                                        | 5c                                            | Topobexin (9)                                 | -                                | BNS-22                           | 5c                               | Topobexin (9)                    |
| PDB entry ID                  | 9BQ6                                          | 9BQ7                                          | 9BQ9                                          | 9BQB                                          | 9BQ8                             | 9BQA                             | 9BQC                             | 9BQD                             |
| Data collection               |                                               |                                               |                                               |                                               |                                  |                                  |                                  |                                  |
| Space group                   | P2 <sub>1</sub> 2 <sub>1</sub> 2 <sub>1</sub> | P4 <sub>1</sub> 2 <sub>1</sub> 2 |
| Cell dimensions               |                                               |                                               |                                               |                                               |                                  |                                  |                                  |                                  |
| a,b,c (Å)                     | 69.78, 92.70,<br>125.46                       | 69.93, 92.85,<br>126.95                       | 70.10, 92.62,<br>126.90                       | 69.80, 92.54,<br>125.58                       | 83.76, 83.76,<br>127.1           | 84.00, 84.00,<br>126.69          | 84.15, 84.15,<br>127.75          | 83.94, 83.94,<br>127.12          |
| $\alpha, \beta, \gamma$ (°)   | 90, 90, 90                                    | 90, 90, 90                                    | 90, 90, 90                                    | 90, 90, 90                                    | 90, 90, 90                       | 90, 90, 90                       | 90, 90, 90                       | 90, 90, 90                       |
| Resolution (Å)                | 50-1.90<br>(1.97-1.90)                        | 50-2.05<br>(2.12-2.05)                        | 50-1.95<br>(2.02-1.95)                        | 50-1.50<br>(1.55-1.50)                        | 50-1.25<br>(1.29-1.25)           | 50.00-1.90<br>(1.97-1.90)        | 50-1.45<br>(1.50-1.45)           | 50-1.50<br>(1.55-1.50)           |
| $R_{ m merge}$                | 0.095 (1.40)                                  | 0.118 (2.04)                                  | 0.118 (1.74)                                  | 0.072 (1.54)                                  | 0.081 (2.13)                     | 0.118 (1.78)                     | 0.047 (1.23)                     | 0.078 (2.22)                     |
| $I / \sigma I$                | 18.7 (1.6)                                    | 19.4 (1.2)                                    | 16.4 (1.1)                                    | 32.5 (1.85)                                   | 34.8 (1.3)                       | 23.5 (1.7)                       | 36.6 (1.6)                       | 34.3 (1.25)                      |
| $CC_{1/2}$                    | 0.99 (0.53)                                   | 1.00 (0.50)                                   | 1.00 (0.49)                                   | 1.00 (0.61)                                   | 1.00 (0.49)                      | 0.99 (0.60)                      | 1.00 (0.57)                      | 0.99 (0.43)                      |
| Completeness (%)              | 99.9 (99.6)                                   | 100 (100)                                     | 99.3 (99.7)                                   | 99.9 (100)                                    | 100 (99.9)                       | 99.9 (99.9)                      | 99.9 (99.9)                      | 100 (100)                        |
| Redundancy                    | 6.8 (6.8)                                     | 6.8 (7.0)                                     | 6.8 (6.8)                                     | 13.2 (12.9)                                   | 13.2 (12.3)                      | 12.7 (12.4)                      | 7.4 (7.5)                        | 13.1 (13.1)                      |
| Refinement                    |                                               |                                               |                                               |                                               |                                  |                                  |                                  |                                  |
| Resolution (Å)                | 50-1.90                                       | 47-2.05                                       | 47.05-1.95                                    | 46.68-1.50                                    | 43.33-1.25                       | 43.33-1.90                       | 43.5-1.45                        | 43.4-1.50                        |
| No. reflections               | 64689                                         | 52588                                         | 60669                                         | 130275                                        | 122574                           | 36224                            | 81098                            | 72408                            |
| $R_{ m work}$ / $R_{ m free}$ | 0.176/0.196                                   | 0.225/0.263                                   | 0.199/0.221                                   | 0.140/0.176                                   | 0.130/0.159                      | 0.167/0.194                      | 0.156/0.172                      | 0.131/0.162                      |
| Non-H atoms                   |                                               |                                               |                                               |                                               |                                  |                                  |                                  |                                  |
| Protein                       | 6208                                          | 6150                                          | 6194                                          | 6274                                          | 3223                             | 3132                             | 3150                             | 3169                             |
| Ligand/ion                    | 64                                            | 132                                           | 132                                           | 144                                           | 32                               | 68                               | 62                               | 68                               |
| Water                         | 400                                           | 293                                           | 355                                           | 641                                           | 519                              | 215                              | 398                              | 383                              |
| <i>B</i> -factors ( $Å^2$ )   |                                               |                                               |                                               |                                               |                                  |                                  |                                  |                                  |
| Protein                       | 57.6                                          | 80.3                                          | 72.6                                          | 34.6                                          | 21.8                             | 40.3                             | 30.0                             | 28.9                             |
| Ligand/ion                    | 34.0                                          | 51.4                                          | 46.7                                          | 23.1                                          | 12.5                             | 30.5                             | 20.2                             | 21.1                             |
| Water                         | 47.7                                          | 53.4                                          | 53.3                                          | 42.0                                          | 36.4                             | 40.3                             | 40.4                             | 40.7                             |
| Ramachandran:                 |                                               |                                               |                                               |                                               |                                  |                                  |                                  |                                  |
| Favoured (%)                  | 97.0                                          | 97.1                                          | 97.9                                          | 97.6                                          | 98.2                             | 98.4                             | 98.4                             | 98.4                             |
| Allowed (%)                   | 3.0                                           | 2.9                                           | 2.1                                           | 2.4                                           | 1.83                             | 1.57                             | 1.57                             | 1.56                             |
| Outliers (%)                  | 0                                             | 0                                             | 0                                             | 0                                             | 0                                | 0                                | 0                                | 0                                |
| R.m.s. deviations             |                                               |                                               |                                               |                                               |                                  |                                  |                                  |                                  |
| Bond lengths (Å)              | 0.007                                         | 0.002                                         | 0.004                                         | 0.007                                         | 0.005                            | 0.005                            | 0.007                            | 0.008                            |
| Bond angles (°)               | 1.03                                          | 0.538                                         | 0.690                                         | 1.01                                          | 0.875                            | 0.838                            | 1.01                             | 1.13                             |

<sup>\*</sup>Each dataset was collected from a single crystal. Values in parentheses are for highest-resolution shell (10% of reflections).

Supplementary Table 3: Small molecule X-ray crystallography data collection and refinement statistics

| Compound                      | BNS-22                                          | Topobexin (9)                                                                 |
|-------------------------------|-------------------------------------------------|-------------------------------------------------------------------------------|
| CCDC #                        | 2354203                                         | 2354347                                                                       |
| Formula                       | C <sub>24</sub> H <sub>25</sub> NO <sub>5</sub> | C <sub>29</sub> H <sub>37</sub> Cl <sub>2</sub> N <sub>3</sub> O <sub>4</sub> |
| Formula Weight                | 407.47                                          | 513.24                                                                        |
| Space Group                   | P-1                                             | P2 <sub>1</sub> /n                                                            |
| Flack Parameter               | n/a                                             | n/a                                                                           |
| Cell Dimensions:              |                                                 |                                                                               |
| $a/ m \AA$                    | 9.6814                                          | 17.560                                                                        |
| b/Å                           | 9.7569                                          | 7.3543                                                                        |
| c/Å                           | 11.232                                          | 21.712                                                                        |
| $a/^{\circ}$                  | 78.836                                          | 90                                                                            |
| $b/^{\circ}$                  | 87.650                                          | 95.231                                                                        |
| $g^{/^{\circ}}$               | 72.619                                          | 90                                                                            |
| Volume/Å <sup>3</sup>         | 993.25                                          | 2792.5                                                                        |
| Z (molecules per unit         |                                                 |                                                                               |
| cell)                         | 2                                               | 4                                                                             |
| Wavelength/Å                  | 1.5418                                          | 1.5418                                                                        |
| Radiation type                | Cu Kα                                           | Cu Kα                                                                         |
| Measured Refl's.              | 31793                                           | 88959                                                                         |
| Indep't Refl's                | 4010                                            | 5753                                                                          |
| Resolution rage/Å             | 9.20-0.80                                       | 14.25-0.80                                                                    |
| $R_{ m int}$                  | 0.0213                                          | 0.0447                                                                        |
| Parameters                    | 274                                             | 349                                                                           |
| Restraints                    | 0                                               | 0                                                                             |
| Largest Peak/eÅ <sup>-3</sup> | 0.27                                            | 0.52                                                                          |
| Deepest Hole/eÅ <sup>-3</sup> | -0.34                                           | -0.43                                                                         |
| $wR_2$ (all data)             | 0.1112                                          | 0.1100                                                                        |
| $wR_2$                        | 0.1110                                          | 0.1076                                                                        |
| $R_I$ (all data)              | 0.0417                                          | 0.0443                                                                        |
| $R_I$                         | 0.0414                                          | 0.0405                                                                        |
| Structure                     | 3                                               |                                                                               |
|                               | 9                                               | 2 9                                                                           |
|                               |                                                 | See and seed and                                                              |
|                               |                                                 |                                                                               |
|                               |                                                 |                                                                               |
|                               |                                                 |                                                                               |
|                               | 2                                               |                                                                               |
|                               | O H                                             | C1<br>N                                                                       |
|                               | H H                                             | ••                                                                            |
|                               |                                                 |                                                                               |
|                               |                                                 | I                                                                             |

# Supplementary Table 4: Summary of gene expression assays used for qPCR

| Gene         | Protein name                 | Producer | qPCR assay    | Sequence for design |
|--------------|------------------------------|----------|---------------|---------------------|
| symbol       |                              |          |               | (Gene accession     |
|              |                              |          |               | number)             |
| Collal       | Collagen type I α 1          | GB       | ocCOL1A1_Q1   | AY633663            |
| Fn1          | Fibronectin 1                | AB       | Oc06726463_m1 | XM_002712573.1      |
| <i>Hprt1</i> | Hypoxanthine guan            | ine GB   | ocHPRT1_Q3    | NM_001105671        |
|              | phosphoribosyl transferase 1 |          |               |                     |
| Nppb         | Natriuretic peptide B (ANP)  | GB       | ocNPPB_Q1     | XM_008275383.2      |

<sup>#</sup> Individual gene expression assays were obtained from Generi Biotech (GB) or Applied Biosystems (ABI).

# Supplementary Table 5: P values and statistical tests from this study

Ctr = untreated control, ANOVA = One-way ANOVA with the Holm-Sidak post hoc test, Supp = Supplementary Figure, N = number of independent replicates. For results in Fig. 5 the numbers of animals in each experimental group were as follows: Ctr (n=9), topobexin (n=7), DAU (n=10), topobexin + DAU (n=11).

| Figure | Test  | N                                          | Comparison                                                         | P value | Summary |
|--------|-------|--------------------------------------------|--------------------------------------------------------------------|---------|---------|
| 1c     | ANOVA | 4                                          | Ctr vs. DAU [1.2 μM]                                               | <0.0001 | ****    |
|        |       |                                            | Ctr vs. 5c [0.01 μM] + DAU [1.2 μM]                                | <0.0001 | ****    |
|        |       |                                            | Ctr vs. 5c [0.1 μM] + DAU [1.2 μM]                                 | <0.0001 | ****    |
|        |       |                                            | Ctr vs. 5c [1 μM] + DAU [1.2 μM]                                   | <0.0001 | ****    |
|        |       |                                            | Ctr vs. 5c [10 μM] + DAU [1.2 μM]                                  | 0.0019  | **      |
|        |       |                                            | Ctr vs. 5c [30 μM] + DAU [1.2 μM]                                  | 0.0012  | **      |
|        |       |                                            | Ctr vs. 5c [100 μM] + DAU [1.2 μM]                                 | <0.0001 | ****    |
|        |       |                                            | DAU [1.2 μM] vs. 5c [0.01 μM] + DAU [1.2 μM]                       | 0.0825  | ns      |
|        |       |                                            | DAU [1.2 μM] vs. 5c [0.1 μM] + DAU [1.2 μM]                        | 0.0102  | *       |
|        |       |                                            | DAU [1.2 μM] vs. 5c [1 μM] + DAU [1.2 μM]                          | 0.0007  | ***     |
|        |       | DAU [1.2 μM] vs. 5c [10 μM] + DAU [1.2 μM] | DAU [1.2 μM] vs. 5c [10 μM] + DAU [1.2 μM]                         | <0.0001 | ****    |
|        |       |                                            | DAU [1.2 μM] vs. 5c [30 μM] + DAU [1.2 μM]                         | <0.0001 | ****    |
|        |       | Di                                         | DAU [1.2 μM] vs. 5c [100 μM] + DAU [1.2 μM]                        | 0.0004  | ***     |
| 4b     | ANOVA |                                            | TOP2A: Ctr vs. topobexin (9) [10 μM]                               | 0.9806  | ns      |
|        |       |                                            | TOP2A: Ctr vs. etoposide [5 μM]                                    | <0.0001 | ****    |
|        |       |                                            | TOP2A: Ctr vs. topobexin (9) [0.1 $\mu$ M] + etoposide [5 $\mu$ M] | <0.0001 | ****    |

| Figure | Test                          | N | Comparison                                                                           | P value | Summary |
|--------|-------------------------------|---|--------------------------------------------------------------------------------------|---------|---------|
|        |                               |   | TOP2A: Ctr vs. topobexin (9) [1 μM] + etoposide [5 μM]                               | 0.0001  | ***     |
|        |                               |   | TOP2A: Ctr vs. topobexin (9) [10 μM] + etoposide [5 μM]                              | 0.4735  | ns      |
|        |                               |   | TOP2A: etoposide [5 μM] vs. topobexin (9) [0.1 μM] +                                 |         |         |
|        |                               |   | etoposide [5 μM]                                                                     | 0.9509  | ns      |
|        |                               |   | TOP2A: etoposide [5 $\mu$ M] vs. topobexin (9) [1 $\mu$ M] + etoposide [5 $\mu$ M]   | 0.3483  | ns      |
|        |                               |   | TOP2A: etoposide [5 $\mu$ M] vs. topobexin (9) [10 $\mu$ M] + etoposide [5 $\mu$ M]  | <0.0001 | ***     |
|        |                               |   | TOP2B: Ctr vs. topobexin (9) [10 μM]                                                 | 0.9883  | ns      |
|        |                               |   | TOP2B: Ctr vs. etoposide [5 μM]                                                      | <0.0001 | ****    |
|        |                               |   | TOP2B: Ctr vs. topobexin (9) [0.1 μM] + etoposide [5 μM]                             | 0.0006  | ***     |
|        |                               |   | TOP2B: Ctr vs. topobexin (9) [1 μM] + etoposide [5 μM]                               | 0.3078  | ns      |
|        |                               |   | TOP2B: Ctr vs. topobexin (9) [10 μM] + etoposide [5 μM]                              | 0.9822  | ns      |
|        |                               |   | TOP2B: etoposide [5 $\mu$ M] vs. topobexin (9) [0.1 $\mu$ M] + etoposide [5 $\mu$ M] | 0.1431  | ns      |
|        |                               |   | TOP2B: etoposide [5 $\mu$ M] vs. topobexin (9) [1 $\mu$ M] + etoposide [5 $\mu$ M]   | 0.0004  | ***     |
|        |                               |   | TOP2B: etoposide [5 $\mu$ M] vs. topobexin (9) [10 $\mu$ M] + etoposide [5 $\mu$ M]  | <0.0001 | ***     |
|        | Unpaired t                    |   | etoposide [5 μM]: TOP2A vs. TOP2B                                                    | >0.9999 | ns      |
|        | test with Welch's correction, |   | topobexin (9) [0.1 $\mu$ M] + etoposide [5 $\mu$ M]: TOP2A vs. TOP2B                 | 0.2668  | ns      |
|        | two-tailed                    |   | topobexin (9) [1 μM] + etoposide [5 μM]: TOP2A vs. TOP2B                             | 0.0191  | *       |
|        |                               |   | topobexin (9) [10 μM] + etoposide [5 μM]: TOP2A vs.<br>TOP2B                         | 0.0315  | *       |
| 4c     | ANOVA                         | 4 | Ctr vs. topobexin (9) [100 μM]                                                       | 0.9642  | ns      |
|        |                               |   | Ctr vs. DAU [1.2 μM]                                                                 | <0.0001 | ****    |
|        |                               |   | Ctr vs. topobexin (9) [0.01 μM] + DAU [1.2 μM]                                       | <0.0001 | ****    |
|        |                               |   | Ctr vs. topobexin (9) [0.1 μM] + DAU [1.2 μM]                                        | <0.0001 | ****    |
|        |                               |   | Ctr vs. topobexin (9) [1 μM] + DAU [1.2 μM]                                          | <0.0001 | ***     |
|        |                               |   | Ctr vs. topobexin (9) [10 μM] + DAU [1.2 μM]                                         | 0.0037  | **      |
|        |                               |   | Ctr vs. topobexin (9) [30 μM] + DAU [1.2 μM]                                         | 0.0014  | **      |
|        |                               |   | Ctr vs. topobexin (9) [100 μM] + DAU [1.2 μM]                                        | 0.0003  | ***     |
|        |                               |   | DAU [1.2 μM] vs. topobexin (9) [0.01 μM] + DAU [1.2 μM]                              | 0.6901  | ns      |

| Figure | Test                   | N        | Comparison                                             | P value | Summary |
|--------|------------------------|----------|--------------------------------------------------------|---------|---------|
|        |                        |          | DAU [1.2 μM] vs. topobexin (9) [0.1 μM] + DAU [1.2 μM] | 0.5031  | ns      |
|        |                        |          | DAU [1.2 μM] vs. topobexin (9) [1 μM] + DAU [1.2 μM]   | 0.0062  | **      |
|        |                        |          | DAU [1.2 μM] vs. topobexin (9) [10 μM] + DAU [1.2 μM]  | 0.0002  | ***     |
|        |                        |          | DAU [1.2 μM] vs. topobexin (9) [30 μM] + DAU [1.2 μM]  | 0.0003  | ***     |
|        |                        |          | DAU [1.2 μM] vs. topobexin (9) [100 μM] + DAU [1.2 μM] | 0.0009  | ***     |
| 4d     | ANOVA                  | 3        | Ctr vs. topobexin (9) [0.1 μM]                         | 0.0002  | ***     |
|        |                        |          | Ctr vs. topobexin (9) [1 μM]                           | 0.0001  | ***     |
|        |                        |          | Ctr vs. topobexin (9) [10 μM]                          | 0.0001  | ***     |
| 4e     | ANOVA                  | 3        | Ctr vs. topobexin (9) [0.1 μM]                         | 0.9998  | ns      |
|        |                        |          | Ctr vs. topobexin (9) [1 μM]                           | 0.9998  | ns      |
|        |                        |          | Ctr vs. topobexin (9) [10 μM]                          | 0.9998  | ns      |
|        |                        |          | Ctr vs. DAU [1.2 μM]                                   | <0.0001 | ***     |
|        |                        |          | Ctr vs. topobexin (9) [0.1 μM] + DAU [1.2 μM]          | <0.0001 | ***     |
|        |                        |          | Ctr vs. topobexin (9) [1 μM] + DAU [1.2 μM]            | 0.9482  | ns      |
|        |                        |          | Ctr vs. topobexin (9) [10 μM] + DAU [1.2 μM]           | 0.9998  | ns      |
|        |                        |          | DAU [1.2 μM] vs. topobexin (9) [0.1 μM] + DAU [1.2 μM] | <0.0001 | ***     |
|        |                        |          | DAU [1.2 μM] vs. topobexin (9) [1 μM] + DAU [1.2 μM]   | <0.0001 | ***     |
|        |                        |          | DAU [1.2 μM] vs. topobexin (9) [10 μM] + DAU [1.2 μM]  | <0.0001 | ***     |
| 4f     | Ratio paired           | 6        | Csp3/7: Cmpd 9 + DAU vs. DAU                           | <0.0001 | ***     |
|        | t-test, two-<br>tailed |          | Csp8: Cmpd 9 + DAU vs. DAU                             | 0.0387  | *       |
|        |                        |          | Csp9: Cmpd 9 + DAU vs. DAU                             | 0.0001  | ***     |
| 5b     | ANOVA                  | 6        | topobexin+DAU vs. DAU                                  | <0.001  | ***     |
|        |                        |          | CTR vs. DAU                                            | <0.001  | ***     |
|        |                        |          | topobexin vs. DAU                                      | <0.001  | ***     |
|        |                        |          | topobexin+DAU vs. CTR                                  | 0.947   | No      |
|        |                        |          | topobexin+DAU vs. topobexin                            | 0.902   | No      |
|        |                        |          | topobexin vs. CTR                                      | 0.932   | No      |
| 5d     | ANOVA                  | 7–<br>11 | topobexin vs. DAU                                      | <0.001  | ***     |
|        |                        |          | topobexin vs. topobexin+DAU                            | 0.004   | **      |
|        |                        |          | CTR vs. DAU                                            | 0.024   | *       |

| Figure | Test                    | N        | Comparison                  | P value | Summary |
|--------|-------------------------|----------|-----------------------------|---------|---------|
|        |                         |          | topobexin vs. CTR           | 0.164   | ns      |
|        |                         |          | CTR vs. topobexin+DAU       | 0.267   | ns      |
|        |                         |          | topobexin+DAU vs. DAU       | 0.221   | ns      |
| 5e     | ANOVA                   | 7–<br>11 | topobexin+DAU vs. DAU       | <0.001  | ***     |
|        |                         |          | CTR vs. DAU                 | <0.001  | ***     |
|        |                         |          | topobexin vs. DAU           | <0.001  | ***     |
|        |                         |          | topobexin+DAU vs. CTR       | 0.953   | ns      |
|        |                         |          | topobexin vs. CTR           | 0.906   | ns      |
|        |                         |          | topobexin+DAU vs. topobexin | 0.979   | ns      |
| 5f     | ANOVA                   | 7–<br>11 | topobexin+DAU vs. DAU       | <0.001  | ***     |
|        |                         |          | CTR vs. DAU                 | <0.001  | ***     |
|        |                         |          | topobexin vs. DAU           | <0.001  | ***     |
|        |                         |          | topobexin+DAU vs. topobexin | 0.982   | ns      |
|        |                         |          | topobexin+DAU vs. CTR       | 0.952   | ns      |
|        |                         |          | CTR vs. topobexin           | 0.943   | ns      |
| 5g     | ANOVA                   | 7–<br>11 | topobexin+DAU vs. DAU       | <0.001  | ***     |
|        |                         |          | CTR vs. DAU                 | <0.001  | ***     |
|        |                         |          | topobexin vs. DAU           | <0.001  | ***     |
|        |                         |          | CTR vs. topobexin+DAU       | 0.453   | ns      |
|        |                         |          | topobexin vs. topobexin+DAU | 0.669   | ns      |
|        |                         |          | CTR vs. topobexin           | 0.672   | ns      |
| 5h     | Kruskal-<br>Wallis with | 7–<br>11 | topobexin vs DAU            | 0.003   | **      |
|        | the Dunn's post hoc     |          | CTR vs DAU                  | 0.002   | **      |
|        | test                    |          | topobexin+DAU vs DAU        | 0.017   | *       |
|        |                         |          | topobexin+DAU vs topobexin  | 1       | ns      |
|        |                         |          | topobexin+DAU vs CTR        | 1       | ns      |
|        |                         |          | CTR vs topobexin            | 1       | ns      |
| 5i     | ANOVA                   | 7–<br>11 | CTR vs. DAU                 | <0.001  | ***     |

| Figure     | Test  | N        | Comparison                                       | P value | Summary |
|------------|-------|----------|--------------------------------------------------|---------|---------|
|            |       |          | topobexin vs. DAU                                | 0.002   | **      |
|            |       |          | topobexin+DAU vs. DAU                            | 0.025   | *       |
|            |       |          | topobexin+DAU vs. CTR                            | 0.122   | ns      |
|            |       |          | topobexin+DAU vs. topobexin                      | 0.229   | ns      |
|            |       |          | topobexin vs. CTR                                | 0.638   | ns      |
| 5j         | ANOVA | 7–<br>11 | topobexin vs DAU                                 | <0.001  | ***     |
|            |       |          | CTR vs DAU                                       | <0.001  | ***     |
|            |       |          | topobexin+DAU vs DAU                             | <0.001  | ***     |
|            |       |          | topobexin+DAU vs. CTR                            | 0.992   | ns      |
|            |       |          | topobexin vs. CTR                                | 0.988   | ns      |
|            |       |          | topobexin+DAU vs. topobexin                      | 0.928   | ns      |
| 5k         | ANOVA | 7–<br>11 | topobexin vs DAU                                 | <0.001  | ***     |
|            |       |          | CTR vs DAU                                       | <0.001  | ***     |
|            |       |          | topobexin+DAU vs DAU                             | <0.001  | ***     |
|            |       |          | topobexin+DAU vs. CTR                            | 0.859   | ns      |
|            |       |          | topobexin+DAU vs. topobexin                      | 0.886   | ns      |
|            |       |          | topobexin vs. CTR                                | 0.831   | ns      |
| SI         |       |          |                                                  |         |         |
| Supp<br>2f | ANOVA | 4        | Ctr vs. DAU [1.2 μM]                             | <0.0001 | ***     |
|            |       |          | Ctr vs. BNS-22 [0.01 μM] + DAU [1.2 μM]          | <0.0001 | ****    |
|            |       |          | Ctr vs. BNS-22 [0.1 μM] + DAU [1.2 μM]           | <0.0001 | ****    |
|            |       |          | Ctr vs. BNS-22 [1 μM] + DAU [1.2 μM]             | <0.0001 | ****    |
|            |       |          | Ctr vs. BNS-22 [3 μM] + DAU [1.2 μM]             | 0.0005  | ***     |
|            |       |          | Ctr vs. BNS-22 [10 μM] + DAU [1.2 μM]            | 0.0015  | **      |
|            |       |          | DAU [1.2 μM] vs. BNS-22 [0.01 μM] + DAU [1.2 μM] | 0.8002  | ns      |
|            |       |          | DAU [1.2 μM] vs. BNS-22 [0.1 μM] + DAU [1.2 μM]  | 0.0755  | ns      |
|            |       |          | DAU [1.2 μM] vs. BNS-22 [1 μM] + DAU [1.2 μM]    | 0.0012  | **      |
|            |       |          | DAU [1.2 μM] vs. BNS-22 [3 μM] + DAU [1.2 μM]    | <0.0001 | ****    |
|            |       |          | DAU [1.2 μM] vs. BNS-22 [10 μM] + DAU [1.2 μM]   | <0.0001 | ****    |

| Figure | Test        | N   | Comparison                                          | P value | Summary |
|--------|-------------|-----|-----------------------------------------------------|---------|---------|
| Supp 3 | upp 3 ANOVA | 4   | 1: Ctr vs. DAU [1.2 μM]                             | <0.0001 | ****    |
|        |             |     | 1: Ctr vs. BNS-22 [0.01 μM] + DAU [1.2 μM]          | <0.0001 | ****    |
|        |             |     | 1: Ctr vs. BNS-22 [0.1 μM] + DAU [1.2 μM]           | <0.0001 | ****    |
|        |             |     | 1: Ctr vs. BNS-22 [1 μM] + DAU [1.2 μM]             | <0.0001 | ****    |
|        |             |     | 1: Ctr vs. BNS-22 [3 μM] + DAU [1.2 μM]             | 0.0003  | ***     |
|        |             |     | 1: Ctr vs. BNS-22 [10 μM] + DAU [1.2 μM]            | 0.0009  | ***     |
|        | ANOVA       | A 4 | 1: DAU [1.2 μM] vs. BNS-22 [0.01 μM] + DAU [1.2 μM] | 0.8002  | ns      |
|        |             |     | 1: DAU [1.2 μM] vs. BNS-22 [0.1 μM] + DAU [1.2 μM]  | 0.0755  | ns      |
|        |             |     | 1: DAU [1.2 μM] vs. BNS-22 [1 μM] + DAU [1.2 μM]    | 0.0012  | **      |
|        |             |     | 1: DAU [1.2 μM] vs. BNS-22 [3 μM] + DAU [1.2 μM]    | <0.0001 | ***     |
|        |             |     | 1: DAU [1.2 μM] vs. BNS-22 [10 μM] + DAU [1.2 μM]   | <0.0001 | ****    |
|        | ANOVA       | 4   | 1d: Ctr vs. DAU [1.2 μM]                            | <0.0001 | ***     |
|        |             |     | 1d: Ctr vs. 1d [0.1 μM] + DAU [1.2 μM]              | <0.0001 | ***     |
|        |             |     | 1d: Ctr vs. 1d [1 μM] + DAU [1.2 μM]                | 0.0007  | ***     |
|        |             |     | 1d: Ctr vs. 1d [10 μM] + DAU [1.2 μM]               | <0.0001 | ****    |
|        |             |     | 1d: Ctr vs. 1d [30 μM] + DAU [1.2 μM]               | <0.0001 | ****    |
|        |             |     | 1d: Ctr vs. 1d [100 μM] + DAU [1.2 μM]              | <0.0001 | ***     |
|        | ANOVA       | 4   | 1d: DAU [1.2 μM] vs. 1d [0.1 μM] + DAU [1.2 μM]     | 0.0638  | ns      |
|        |             |     | 1d: DAU [1.2 μM] vs. 1d [1 μM] + DAU [1.2 μM]       | 0.0002  | ***     |
|        |             |     | 1d: DAU [1.2 μM] vs. 1d [10 μM] + DAU [1.2 μM]      | 0.0009  | ***     |
|        |             |     | 1d: DAU [1.2 μM] vs. 1d [30 μM] + DAU [1.2 μM]      | 0.0003  | ***     |
|        |             |     | 1d: DAU [1.2 μM] vs. 1d [100 μM] + DAU [1.2 μM]     | <0.0001 | ***     |
|        | ANOVA       | 4   | 2a: Ctr vs. DAU [1.2 μM]                            | <0.0001 | ***     |
|        |             |     | 2a: Ctr vs. 2a [10 μM] + DAU [1.2 μM]               | <0.0001 | ***     |
|        |             |     | 2a: Ctr vs. 2a [30 μM] + DAU [1.2 μM]               | <0.0001 | ****    |
|        |             |     | 2a: Ctr vs. 2a [100 μM] + DAU [1.2 μM]              | <0.0001 | ****    |
|        | ANOVA       | 4   | 2a: DAU [1.2 μM] vs. 2a [10 μM] + DAU [1.2 μM]      | 0.9188  | ns      |
|        |             |     | 2a: DAU [1.2 μM] vs. 2a [30 μM] + DAU [1.2 μM]      | 0.9188  | ns      |
|        |             |     | 2a: DAU [1.2 μM] vs. 2a [100 μM] + DAU [1.2 μM]     | 0.9188  | ns      |
|        | ANOVA       | 4   | 2b: Ctr vs. DAU [1.2 μM]                            | <0.0001 | ***     |
|        |             |     | 2b: Ctr vs. 2b [10 μM] + DAU [1.2 μM]               | <0.0001 | ****    |

| Figure | Test  | N   | Comparison                                      | P value | Summary |
|--------|-------|-----|-------------------------------------------------|---------|---------|
|        |       |     | 2b: Ctr vs. 2b [30 μM] + DAU [1.2 μM]           | <0.0001 | ****    |
|        |       |     | 2b: Ctr vs. 2b [100 μM] + DAU [1.2 μM]          | <0.0001 | ****    |
|        | ANOVA | 4   | 2b: DAU [1.2 μM] vs. 2b [10 μM] + DAU [1.2 μM]  | 0.1288  | ns      |
|        |       |     | 2b: DAU [1.2 μM] vs. 2b [30 μM] + DAU [1.2 μM]  | 0.1919  | ns      |
|        |       |     | 2b: DAU [1.2 μM] vs. 2b [100 μM] + DAU [1.2 μM] | 0.1288  | ns      |
|        | ANOVA | 4   | 2c: Ctr vs. DAU [1.2 μM]                        | <0.0001 | ****    |
|        |       |     | 2c: Ctr vs. 2c [1 μM] + DAU [1.2 μM]            | <0.0001 | ****    |
|        |       |     | 2c: Ctr vs. 2c [10 μM] + DAU [1.2 μM]           | <0.0001 | ****    |
|        |       |     | 2c: Ctr vs. 2c [30 μM] + DAU [1.2 μM]           | 0.0035  | **      |
|        |       |     | 2c: Ctr vs. 2c [100 μM] + DAU [1.2 μM]          | <0.0001 | ****    |
|        | ANOVA | 4   | 2c: DAU [1.2 μM] vs. 2c [1 μM] + DAU [1.2 μM]   | 0.1694  | ns      |
|        |       |     | 2c: DAU [1.2 μM] vs. 2c [10 μM] + DAU [1.2 μM]  | 0.0171  | *       |
|        |       |     | 2c: DAU [1.2 μM] vs. 2c [30 μM] + DAU [1.2 μM]  | 0.0021  | **      |
|        |       |     | 2c: DAU [1.2 μM] vs. 2c [100 μM] + DAU [1.2 μM] | 0.2739  | ns      |
|        | ANOVA | 4   | 2d: Ctr vs. DAU [1.2 μM]                        | <0.0001 | ***     |
|        |       |     | 2d: Ctr vs. 2d [0.1 μM] + DAU [1.2 μM]          | <0.0001 | ****    |
|        |       |     | 2d: Ctr vs. 2d [1 μM] + DAU [1.2 μM]            | <0.0001 | ****    |
|        |       |     | 2d: Ctr vs. 2d [10 μM] + DAU [1.2 μM]           | 0.0031  | **      |
|        |       |     | 2d: Ctr vs. 2d [30 μM] + DAU [1.2 μM]           | 0.0128  | *       |
|        |       |     | 2d: Ctr vs. 2d [100 μM] + DAU [1.2 μM]          | <0.0001 | ****    |
|        | ANOVA | 4–5 | 2d: DAU [1.2 μM] vs. 2d [0.1 μM] + DAU [1.2 μM] | 0.5859  | ns      |
|        |       |     | 2d: DAU [1.2 μM] vs. 2d [1 μM] + DAU [1.2 μM]   | 0.3259  | ns      |
|        |       |     | 2d: DAU [1.2 μM] vs. 2d [10 μM] + DAU [1.2 μM]  | 0.0272  | *       |
|        |       |     | 2d: DAU [1.2 μM] vs. 2d [30 μM] + DAU [1.2 μM]  | 0.0117  | *       |
|        |       |     | 2d: DAU [1.2 μM] vs. 2d [100 μM] + DAU [1.2 μM] | <0.0001 | ***     |
|        | ANOVA | 4   | 3a: Ctr vs. DAU [1.2 μM]                        | <0.0001 | ****    |
|        |       |     | 3a: Ctr vs. 3a [1 μM] + DAU [1.2 μM]            | <0.0001 | ***     |
|        |       |     | 3a: Ctr vs. 3a [3 μM] + DAU [1.2 μM]            | <0.0001 | ****    |
|        |       |     | 3a: Ctr vs. 3a [10 μM] + DAU [1.2 μM]           | <0.0001 | ****    |
|        | ANOVA | 4–5 | 3a: DAU [1.2 μM] vs. 3a [1 μM] + DAU [1.2 μM]   | 0.7736  | ns      |
|        |       |     | 3a: DAU [1.2 μM] vs. 3a [3 μM] + DAU [1.2 μM]   | 0.7736  | ns      |

| Figure | Test  | N | Comparison                                       | P value                                        | Summary |     |
|--------|-------|---|--------------------------------------------------|------------------------------------------------|---------|-----|
|        |       |   | 3a: DAU [1.2 μM] vs. 3a [10 μM] + DAU [1.2 μM]   | 0.7736                                         | ns      |     |
|        | ANOVA | 4 | 3b: Ctr vs. DAU [1.2 μM]                         | <0.0001                                        | ***     |     |
|        |       |   | 3b: Ctr vs. 3b [1 μM] + DAU [1.2 μM]             | <0.0001                                        | ***     |     |
|        |       |   | 3b: Ctr vs. 3b [3 μM] + DAU [1.2 μM]             | <0.0001                                        | ***     |     |
|        |       |   | 3b: Ctr vs. 3b [10 μM] + DAU [1.2 μM]            | <0.0001                                        | ***     |     |
|        | ANOVA | 4 | 3b: DAU [1.2 μM] vs. 3b [1 μM] + DAU [1.2 μM]    | 0.3074                                         | ns      |     |
|        |       |   | 3b: DAU [1.2 μM] vs. 3b [3 μM] + DAU [1.2 μM]    | 0.3634                                         | ns      |     |
|        |       |   | 3b: DAU [1.2 μM] vs. 3b [10 μM] + DAU [1.2 μM]   | 0.2150                                         | ns      |     |
|        | ANOVA | 4 | 3c: Ctr vs. DAU [1.2 μM]                         | <0.0001                                        | ***     |     |
|        |       |   | 3c: Ctr vs. 3c [0.1 μM] + DAU [1.2 μM]           | <0.0001                                        | ***     |     |
|        |       |   | 3c: Ctr vs. 3c [1 μM] + DAU [1.2 μM]             | <0.0001                                        | ****    |     |
|        |       |   | 3c: Ctr vs. 3c [3 μM] + DAU [1.2 μM]             | <0.0001                                        | ***     |     |
|        |       |   | 3c: Ctr vs. 3c [10 μM] + DAU [1.2 μM]            | 0.0012                                         | **      |     |
|        | ANOVA | 4 | 3c: DAU [1.2 μM] vs. 3c [0.1 μM] + DAU [1.2 μM]  | 0.1762                                         | ns      |     |
|        |       |   | 3c: DAU [1.2 μM] vs. 3c [1 μM] + DAU [1.2 μM]    | 0.0093                                         | **      |     |
|        |       |   | 3c: DAU [1.2 μM] vs. 3c [3 μM] + DAU [1.2 μM]    | 0.0014                                         | **      |     |
|        |       |   |                                                  | 3c: DAU [1.2 μM] vs. 3c [10 μM] + DAU [1.2 μM] | 0.0001  | *** |
|        | ANOVA | 4 | 3d: Ctr vs. DAU [1.2 μM]                         | <0.0001                                        | ***     |     |
|        |       |   | 3d: Ctr vs. 3d [0.01 μM] + DAU [1.2 μM]          | <0.0001                                        | ***     |     |
|        |       |   | 3d: Ctr vs. 3d [0.1 μM] + DAU [1.2 μM]           | <0.0001                                        | ***     |     |
|        |       |   | 3d: Ctr vs. 3d [1 μM] + DAU [1.2 μM]             | <0.0001                                        | ****    |     |
|        |       |   | 3d: Ctr vs. 3d [10 μM] + DAU [1.2 μM]            | 0.0496                                         | *       |     |
|        |       |   | 3d: Ctr vs. 3d [30 μM] + DAU [1.2 μM]            | 0.0010                                         | **      |     |
|        | ANOVA | 4 | 3d: DAU [1.2 μM] vs. 3d [0.01 μM] + DAU [1.2 μM] | 0.9523                                         | ns      |     |
|        |       |   | 3d: DAU [1.2 μM] vs. 3d [0.1 μM] + DAU [1.2 μM]  | 0.0926                                         | ns      |     |
|        |       |   | 3d: DAU [1.2 μM] vs. 3d [1 μM] + DAU [1.2 μM]    | 0.0208                                         | *       |     |
|        |       |   | 3d: DAU [1.2 μM] vs. 3d [10 μM] + DAU [1.2 μM]   | 0.0002                                         | ***     |     |
|        |       |   | 3d: DAU [1.2 μM] vs. 3d [30 μM] + DAU [1.2 μM]   | 0.0023                                         | **      |     |
|        | ANOVA | 4 | 4a: Ctr vs. DAU [1.2 μM]                         | <0.0001                                        | ****    |     |
|        |       |   | 4a: Ctr vs. 4a [0.1 μM] + DAU [1.2 μM]           | <0.0001                                        | ****    |     |
|        |       |   | 4a: Ctr vs. 4a [1 μM] + DAU [1.2 μM]             | <0.0001                                        | ****    |     |

| igure | Test  | N   | Comparison                                       | P value | Summary |
|-------|-------|-----|--------------------------------------------------|---------|---------|
|       |       |     | 4a: Ctr vs. 4a [10 μM] + DAU [1.2 μM]            | <0.0001 | ****    |
|       |       |     | 4a: Ctr vs. 4a [30 μM] + DAU [1.2 μM]            | <0.0001 | ****    |
|       | ANOVA | 4–5 | 4a: DAU [1.2 μM] vs. 4a [0.1 μM] + DAU [1.2 μM]  | 0.4863  | ns      |
|       |       |     | 4a: DAU [1.2 μM] vs. 4a [1 μM] + DAU [1.2 μM]    | 0.1212  | ns      |
|       |       |     | 4a: DAU [1.2 μM] vs. 4a [10 μM] + DAU [1.2 μM]   | 0.0003  | ***     |
|       |       |     | 4a: DAU [1.2 μM] vs. 4a [30 μM] + DAU [1.2 μM]   | <0.0001 | ****    |
|       | ANOVA | 4   | 4b: Ctr vs. DAU [1.2 μM]                         | <0.0001 | ****    |
|       |       |     | 4b: Ctr vs. 4b [0.01 μM] + DAU [1.2 μM]          | <0.0001 | ****    |
|       |       |     | 4b: Ctr vs. 4b [0.1 μM] + DAU [1.2 μM]           | <0.0001 | ****    |
|       |       |     | 4b: Ctr vs. 4b [1 μM] + DAU [1.2 μM]             | <0.0001 | ****    |
|       |       |     | 4b: Ctr vs. 4b [10 μM] + DAU [1.2 μM]            | <0.0001 | ****    |
|       |       |     | 4b: Ctr vs. 4b [30 μM] + DAU [1.2 μM]            | 0.0001  | ***     |
|       |       |     | 4b: Ctr vs. 4b [100 μM] + DAU [1.2 μM]           | <0.0001 | ****    |
|       | ANOVA | 4   | 4b: DAU [1.2 μM] vs. 4b [0.01 μM] + DAU [1.2 μM] | 0.1177  | ns      |
|       |       |     | 4b: DAU [1.2 μM] vs. 4b [0.1 μM] + DAU [1.2 μM]  | 0.0124  | *       |
|       |       |     | 4b: DAU [1.2 μM] vs. 4b [1 μM] + DAU [1.2 μM]    | <0.0001 | ****    |
|       |       |     | 4b: DAU [1.2 μM] vs. 4b [10 μM] + DAU [1.2 μM]   | <0.0001 | ****    |
|       |       |     | 4b: DAU [1.2 μM] vs. 4b [30 μM] + DAU [1.2 μM]   | <0.0001 | ****    |
|       |       |     | 4b: DAU [1.2 μM] vs. 4b [100 μM] + DAU [1.2 μM]  | <0.0001 | ****    |
|       | ANOVA | 4   | 4c: Ctr vs. DAU [1.2 μM]                         | <0.0001 | ****    |
|       |       |     | 4c: Ctr vs. 4c [0.01 μM] + DAU [1.2 μM]          | 0.0002  | ***     |
|       |       |     | 4c: Ctr vs. 4c [0.1 μM] + DAU [1.2 μM]           | 0.0106  | *       |
|       |       |     | 4c: Ctr vs. 4c [1 μM] + DAU [1.2 μM]             | 0.2503  | ns      |
|       |       |     | 4c: Ctr vs. 4c [10 μM] + DAU [1.2 μM]            | 0.0313  | *       |
|       |       |     | 4c: Ctr vs. 4c [30 μM] + DAU [1.2 μM]            | <0.0001 | ****    |
|       |       |     | 4c: Ctr vs. 4c [100 μM] + DAU [1.2 μM]           | <0.0001 | ****    |
|       | ANOVA | 4   | 4c: DAU [1.2 μM] vs. 4c [0.01 μM] + DAU [1.2 μM] | 0.4467  | ns      |
|       |       |     | 4c: DAU [1.2 μM] vs. 4c [0.1 μM] + DAU [1.2 μM]  | 0.0392  | *       |
|       |       |     | 4c: DAU [1.2 μM] vs. 4c [1 μM] + DAU [1.2 μM]    | 0.0011  | **      |
|       |       |     | 4c: DAU [1.2 μM] vs. 4c [10 μM] + DAU [1.2 μM]   | 0.0162  | *       |
|       |       |     | 4c: DAU [1.2 μM] vs. 4c [30 μM] + DAU [1.2 μM]   | 0.4467  | ns      |

| ire   | Test  | N   | Comparison                                       | P value | Summary |
|-------|-------|-----|--------------------------------------------------|---------|---------|
|       |       |     | 4c: DAU [1.2 μM] vs. 4c [100 μM] + DAU [1.2 μM]  | 0.0004  | ***     |
|       | ANOVA | 4   | 4d: Ctr vs. DAU [1.2 μM]                         | <0.0001 | ****    |
|       |       |     | 4d: Ctr vs. 4d [0.01 μM] + DAU [1.2 μM]          | 0.0003  | ***     |
|       |       |     | 4d: Ctr vs. 4d [0.1 μM] + DAU [1.2 μM]           | 0.0063  | **      |
|       |       |     | 4d: Ctr vs. 4d [1 μM] + DAU [1.2 μM]             | 0.1423  | ns      |
|       |       |     | 4d: Ctr vs. 4d [10 μM] + DAU [1.2 μM]            | <0.0001 | ****    |
|       |       |     | 4d: Ctr vs. 4d [30 μM] + DAU [1.2 μM]            | <0.0001 | ****    |
|       |       |     | 4d: Ctr vs. 4d [100 μM] + DAU [1.2 μM]           | <0.0001 | ****    |
| AN    | ANOVA | 4   | 4d: DAU [1.2 μM] vs. 4d [0.01 μM] + DAU [1.2 μM] | 0.4723  | ns      |
|       |       |     | 4d: DAU [1.2 μM] vs. 4d [0.1 μM] + DAU [1.2 μM]  | 0.1168  | ns      |
|       |       |     | 4d: DAU [1.2 μM] vs. 4d [1 μM] + DAU [1.2 μM]    | 0.0106  | *       |
|       |       |     | 4d: DAU [1.2 μM] vs. 4d [10 μM] + DAU [1.2 μM]   | 0.7305  | ns      |
|       |       |     | 4d: DAU [1.2 μM] vs. 4d [30 μM] + DAU [1.2 μM]   | <0.0001 | ****    |
|       |       |     | 4d: DAU [1.2 μM] vs. 4d [100 μM] + DAU [1.2 μM]  | <0.0001 | ****    |
| ANOVA | ANOVA | 4   | 5a: Ctr vs. DAU [1.2 μM]                         | <0.0001 | ****    |
|       |       |     | 5a: Ctr vs. 5a [1 μM] + DAU [1.2 μM]             | <0.0001 | ****    |
|       |       |     | 5a: Ctr vs. 5a [10 μM] + DAU [1.2 μM]            | <0.0001 | ****    |
|       |       |     | 5a: Ctr vs. 5a [30 μM] + DAU [1.2 μM]            | <0.0001 | ****    |
|       |       |     | 5a: Ctr vs. 5a [100 μM] + DAU [1.2 μM]           | <0.0001 | ****    |
|       | ANOVA | 4–5 | 5a: DAU [1.2 μM] vs. 5a [1 μM] + DAU [1.2 μM]    | 0.3090  | ns      |
|       |       |     | 5a: DAU [1.2 μM] vs. 5a [10 μM] + DAU [1.2 μM]   | 0.3090  | ns      |
|       |       |     | 5a: DAU [1.2 μM] vs. 5a [30 μM] + DAU [1.2 μM]   | 0.0065  | **      |
|       |       |     | 5a: DAU [1.2 μM] vs. 5a [100 μM] + DAU [1.2 μM]  | 0.0009  | ***     |
|       | ANOVA | 4   | 5b: Ctr vs. DAU [1.2 μM]                         | <0.0001 | ****    |
|       |       |     | 5b: Ctr vs. 5b [0.1 μM] + DAU [1.2 μM]           | <0.0001 | ****    |
|       |       |     | 5b: Ctr vs. 5b [1 μM] + DAU [1.2 μM]             | <0.0001 | ****    |
|       |       |     | 5b: Ctr vs. 5b [10 μM] + DAU [1.2 μM]            | <0.0001 | ****    |
|       |       |     | 5b: Ctr vs. 5b [30 μM] + DAU [1.2 μM]            | <0.0001 | ***     |
|       | ANOVA | 4   | 5b: DAU [1.2 μM] vs. 5b [0.1 μM] + DAU [1.2 μM]  | 0.7670  | ns      |
|       |       |     | 5b: DAU [1.2 μM] vs. 5b [1 μM] + DAU [1.2 μM]    | 0.5634  | ns      |
|       |       |     | 5b: DAU [1.2 μM] vs. 5b [10 μM] + DAU [1.2 μM]   | 0.0064  | **      |

| Figure | Test  | N | Comparison                                       | P value                                | Summary |     |
|--------|-------|---|--------------------------------------------------|----------------------------------------|---------|-----|
|        |       |   | 5b: DAU [1.2 μM] vs. 5b [30 μM] + DAU [1.2 μM]   | 0.0007                                 | ***     |     |
|        | ANOVA | 4 | 5c: Ctr vs. DAU [1.2 μM]                         | <0.0001                                | ***     |     |
|        |       |   | 5c: Ctr vs. 5c [0.01 μM] + DAU [1.2 μM]          | <0.0001                                | ***     |     |
|        |       |   | 5c: Ctr vs. 5c [0.1 μM] + DAU [1.2 μM]           | <0.0001                                | ***     |     |
|        |       |   | 5c: Ctr vs. 5c [1 μM] + DAU [1.2 μM]             | <0.0001                                | ****    |     |
|        |       |   | 5c: Ctr vs. 5c [10 μM] + DAU [1.2 μM]            | 0.0019                                 | **      |     |
|        |       |   | 5c: Ctr vs. 5c [30 μM] + DAU [1.2 μM]            | 0.0012                                 | **      |     |
|        |       |   | 5c: Ctr vs. 5c [100 μM] + DAU [1.2 μM]           | <0.0001                                | ***     |     |
|        | ANOVA | 4 | 5c: DAU [1.2 μM] vs. 5c [0.01 μM] + DAU [1.2 μM] | 0.0825                                 | ns      |     |
|        |       |   | 5c: DAU [1.2 μM] vs. 5c [0.1 μM] + DAU [1.2 μM]  | 0.0102                                 | *       |     |
|        |       |   | 5c: DAU [1.2 μM] vs. 5c [1 μM] + DAU [1.2 μM]    | 0.0007                                 | ***     |     |
|        |       |   | 5c: DAU [1.2 μM] vs. 5c [10 μM] + DAU [1.2 μM]   | <0.0001                                | ***     |     |
|        |       |   | 5c: DAU [1.2 μM] vs. 5c [30 μM] + DAU [1.2 μM]   | <0.0001                                | ***     |     |
|        |       |   | 5c: DAU [1.2 μM] vs. 5c [100 μM] + DAU [1.2 μM]  | 0.0004                                 | ***     |     |
|        | ANOVA | 4 | 5d: Ctr vs. DAU [1.2 μM]                         | <0.0001                                | ***     |     |
|        |       |   | 5d: Ctr vs. 5d [0.01 μM] + DAU [1.2 μM]          | <0.0001                                | ***     |     |
|        |       |   |                                                  | 5d: Ctr vs. 5d [0.1 μM] + DAU [1.2 μM] | <0.0001 | *** |
|        |       |   | 5d: Ctr vs. 5d [1 μM] + DAU [1.2 μM]             | <0.0001                                | ***     |     |
|        |       |   | 5d: Ctr vs. 5d [10 μM] + DAU [1.2 μM]            | 0.0001                                 | ***     |     |
|        |       |   | 5d: Ctr vs. 5d [30 μM] + DAU [1.2 μM]            | <0.0001                                | ***     |     |
|        |       |   | 5d: Ctr vs. 5d [100 μM] + DAU [1.2 μM]           | <0.0001                                | ***     |     |
|        | ANOVA | 4 | 5d: DAU [1.2 μM] vs. 5d [0.01 μM] + DAU [1.2 μM] | 0.9271                                 | ns      |     |
|        |       |   | 5d: DAU [1.2 μM] vs. 5d [0.1 μM] + DAU [1.2 μM]  | 0.9271                                 | ns      |     |
|        |       |   | 5d: DAU [1.2 μM] vs. 5d [1 μM] + DAU [1.2 μM]    | 0.1610                                 | ns      |     |
|        |       |   | 5d: DAU [1.2 μM] vs. 5d [10 μM] + DAU [1.2 μM]   | 0.0551                                 | ns      |     |
|        |       |   | 5d: DAU [1.2 μM] vs. 5d [30 μM] + DAU [1.2 μM]   | 0.1732                                 | ns      |     |
|        |       |   | 5d: DAU [1.2 μM] vs. 5d [100 μM] + DAU [1.2 μM]  | 0.9271                                 | ns      |     |
| Supp 4 | ANOVA | 4 | 1: Ctr vs. BNS-22 [0.01 μM]                      | 0.9742                                 | ns      |     |
|        |       |   | 1: Ctr vs. BNS-22 [0.1 μM]                       | 0.9742                                 | ns      |     |
|        |       |   | 1: Ctr vs. BNS-22 [1 μM]                         | 0.9742                                 | ns      |     |
|        |       |   | 1: Ctr vs. BNS-22 [3 μM]                         | 0.9742                                 | ns      |     |

| Figure | Test  | N | Comparison                | P value | Summary                                  |
|--------|-------|---|---------------------------|---------|------------------------------------------|
|        |       |   | 1: Ctr vs. BNS-22 [10 μM] | 0.6836  | ns                                       |
|        | ANOVA | 4 | 1d: Ctr vs. 1d [0.1 μM]   | 0.8671  | ns                                       |
|        |       |   | 1d: Ctr vs. 1d [1 μM]     | 0.8671  | ns                                       |
|        |       |   | 1d: Ctr vs. 1d [10 μM]    | 0.1840  | ns                                       |
|        |       |   | 1d: Ctr vs. 1d [30 μM]    | <0.0001 | ****                                     |
|        |       |   | 1d: Ctr vs. 1d [100 μM]   | <0.0001 | ****                                     |
|        | ANOVA | 4 | 2a: Ctr vs. 2a [10 μM]    | 0.9389  | ns                                       |
|        |       |   | 2a: Ctr vs. 2a [30 μM]    | 0.9389  | ns                                       |
|        |       |   | 2a: Ctr vs. 2a [100 μM]   | 0.9389  | ns                                       |
|        | ANOVA | 4 | 2b: Ctr vs. 2b [10 μM]    | 0.6757  | ns                                       |
|        |       |   | 2b: Ctr vs. 2b [30 μM]    | 0.6757  | ns                                       |
|        |       |   | 2b: Ctr vs. 2b [100 μM]   | 0.6757  | ns                                       |
|        | ANOVA | 4 | 2c: Ctr vs. 2c [1 μM]     | 0.9468  | ns                                       |
|        |       |   | 2c: Ctr vs. 2c [10 μM]    | 0.9468  | ns                                       |
|        |       |   | 2c: Ctr vs. 2c [30 μM]    | 0.9467  | ns                                       |
|        |       |   | 2c: Ctr vs. 2c [100 μM]   | <0.0001 | ****                                     |
|        | ANOVA | 4 | 2d: Ctr vs. 2d [0.1 μM]   | 0.9148  | ns                                       |
|        |       |   | 2d: Ctr vs. 2d [1 μM]     | 0.9148  | ns                                       |
|        |       |   | 2d: Ctr vs. 2d [10 μM]    | 0.8461  | ns                                       |
|        |       |   | 2d: Ctr vs. 2d [30 μM]    | 0.8311  | ns                                       |
|        |       |   | 2d: Ctr vs. 2d [100 μM]   | <0.0001 | ****                                     |
|        | ANOVA | 4 | 3a: Ctr vs. 3a [1 μM]     | 0.7160  | ns                                       |
|        |       |   | 3a: Ctr vs. 3a [3 μM]     | 0.9575  | ns                                       |
|        |       |   | 3a: Ctr vs. 3a [10 μM]    | 0.9575  | ns                                       |
|        | ANOVA | 4 | 3b: Ctr vs. 3b [1 μM]     | 0.9627  | ns                                       |
|        |       |   | 3b: Ctr vs. 3b [3 μM]     | 0.9627  | ns                                       |
|        |       |   | 3b: Ctr vs. 3b [10 μM]    | 0.9627  | ns n |
|        | ANOVA | 4 | 3c: Ctr vs. 3c [0.1 μM]   | 0.9958  | ns                                       |
|        |       |   | 3c: Ctr vs. 3c [1 μM]     | 0.9958  | ns                                       |
|        |       |   | 3c: Ctr vs. 3c [3 μM]     | 0.9958  | ns                                       |
|        |       |   | 3c: Ctr vs. 3c [10 μM]    | 0.9958  | ns                                       |

| gure | Test  | N              | Comparison               | P value | Summary        |
|------|-------|----------------|--------------------------|---------|----------------|
|      | ANOVA | 4              | 3d: Ctr vs. 3d [0.01 μM] | 0.9976  | ns             |
|      |       |                | 3d: Ctr vs. 3d [0.1 μM]  | 0.9976  | ns             |
|      |       |                | 3d: Ctr vs. 3d [1 μM]    | 0.9355  | ns             |
|      |       |                | 3d: Ctr vs. 3d [10 μM]   | 0.6273  | ns             |
|      |       |                | 3d: Ctr vs. 3d [30 μM]   | 0.6404  | ns             |
|      | ANOVA | 4              | 4a: Ctr vs. 4a [0.1 μM]  | 0.9789  | ns             |
|      |       |                | 4a: Ctr vs. 4a [1 μM]    | 0.9789  | ns             |
|      |       |                | 4a: Ctr vs. 4a [10 μM]   | 0.7172  | ns             |
|      |       |                | 4a: Ctr vs. 4a [30 μM]   | 0.1208  | ns             |
|      | ANOVA | 4              | 4b: Ctr vs. 4b [0.01 μM] | 0.8921  | ns             |
|      |       |                | 4b: Ctr vs. 4b [0.1 μM]  | 0.8921  | ns             |
|      |       |                | 4b: Ctr vs. 4b [1 μM]    | 0.8921  | ns             |
|      |       |                | 4b: Ctr vs. 4b [10 μM]   | 0.3956  | ns             |
|      |       |                | 4b: Ctr vs. 4b [30 μM]   | 0.3956  | ns             |
|      |       |                | 4b: Ctr vs. 4b [100 μM]  | 0.3956  | ns<br>ns<br>ns |
|      | ANOVA | 4              | 4c: Ctr vs. 4c [0.01 μM] | 0.9900  | ns             |
|      |       |                | 4c: Ctr vs. 4c [0.1 μM]  | 0.9900  | ns             |
|      |       |                | 4c: Ctr vs. 4c [1 μM]    | 0.9900  | ns             |
|      |       |                | 4c: Ctr vs. 4c [10 μM]   | 0.5694  | ns             |
|      |       |                | 4c: Ctr vs. 4c [30 μM]   | 0.0313  | *              |
|      |       | 4c:            | 4c: Ctr vs. 4c [100 μM]  | <0.0001 | ****           |
|      | ANOVA | 4              | 4d: Ctr vs. 4d [0.01 μM] | 0.9052  | ns             |
|      |       |                | 4d: Ctr vs. 4d [0.1 μM]  | 0.9518  | ns             |
|      |       | 4d: Ctr vs. 4d | 4d: Ctr vs. 4d [1 μM]    | 0.9052  | ns             |
|      |       |                | 4d: Ctr vs. 4d [10 μM]   | 0.0052  | **             |
|      |       |                | 4d: Ctr vs. 4d [30 μM]   | <0.0001 | ****           |
|      |       |                | 4d: Ctr vs. 4d [100 μM]  | <0.0001 | ***            |
|      | ANOVA | 4              | 5a: Ctr vs. 5a [1 μM]    | 0.7394  | ns             |
|      |       |                | 5a: Ctr vs. 5a [10 μM]   | 0.9751  | ns             |
|      |       |                | 5a: Ctr vs. 5a [30 μM]   | 0.9287  | ns             |
|      |       |                | 5a: Ctr vs. 5a [100 μM]  | 0.9751  | ns             |

| Figure     | Test  | N | Comparison                                              | P value | Summary |
|------------|-------|---|---------------------------------------------------------|---------|---------|
|            | ANOVA | 4 | 5b: Ctr vs. 5b [0.1 μM]                                 | 0.7837  | ns      |
|            |       |   | 5b: Ctr vs. 5b [1 μM]                                   | 0.7837  | ns      |
|            |       |   | 5b: Ctr vs. 5b [10 μM]                                  | 0.7837  | ns      |
|            |       |   | 5b: Ctr vs. 5b [30 μM]                                  | 0.7837  | ns      |
|            | ANOVA | 4 | 5c: Ctr vs. 5c [0.01 μM]                                | 0.9795  | ns      |
|            |       |   | 5c: Ctr vs. 5c [0.1 μM]                                 | 0.9795  | ns      |
|            |       |   | 5c: Ctr vs. 5c [1 μM]                                   | 0.9795  | ns      |
|            |       |   | 5c: Ctr vs. 5c [10 μM]                                  | 0.5423  | ns      |
|            |       |   | 5c: Ctr vs. 5c [30 μM]                                  | 0.5623  | ns      |
|            |       |   | 5c: Ctr vs. 5c [100 μM]                                 | 0.1222  | ns      |
|            | ANOVA | 4 | 5d: Ctr vs. 5d [0.01 μM]                                | 0.9649  | ns      |
|            |       |   | 5d: Ctr vs. 5d [0.1 μM]                                 | 0.9786  | ns      |
|            |       |   | 5d: Ctr vs. 5d [1 μM]                                   | 0.9786  | ns      |
|            |       |   | 5d: Ctr vs. 5d [10 μM]                                  | 0.5967  | ns      |
|            |       |   | 5d: Ctr vs. 5d [30 μM]                                  | 0.0564  | ns      |
|            |       |   | 5d: Ctr vs. 5d [100 μM]                                 | 0.0164  | *       |
| Supp<br>6b | ANOVA | 4 | Cmpd 6: Ctr vs. DAU [1.2 μM]                            | <0.0001 | ****    |
|            |       |   | Cmpd 6: Ctr vs. Cmpd 6 [0.1 μM] + DAU [1.2 μM]          | <0.0001 | ****    |
|            |       |   | Cmpd 6: Ctr vs. Cmpd 6 [1 μM] + DAU [1.2 μM]            | <0.0001 | ****    |
|            |       |   | Cmpd 6: Ctr vs. Cmpd 6 [10 μM] + DAU [1.2 μM]           | <0.0001 | ****    |
|            |       |   | Cmpd 6: Ctr vs. Cmpd 6 [30 μM] + DAU [1.2 μM]           | <0.0001 | ****    |
|            |       |   | Cmpd 6: Ctr vs. Cmpd 6 [100 μM] + DAU [1.2 μM]          | <0.0001 | ****    |
|            | ANOVA | 4 | Cmpd 6: DAU [1.2 μM] vs. Cmpd 6 [0.1 μM] + DAU [1.2 μM] | 0.8741  | ns      |
|            |       |   | Cmpd 6: DAU [1.2 μM] vs. Cmpd 6 [1 μM] + DAU [1.2 μM]   | 0.8741  | ns      |
|            |       |   | Cmpd 6: DAU [1.2 μM] vs. Cmpd 6 [10 μM] + DAU [1.2 μM]  | 0.0491  | *       |
|            |       |   | Cmpd 6: DAU [1.2 μM] vs. Cmpd 6 [30 μM] + DAU [1.2 μM]  | 0.0064  | **      |
|            |       |   | Cmpd 6: DAU [1.2 μM] vs. Cmpd 6 [100 μM] + DAU [1.2 μM] | 0.0491  | *       |
|            | ANOVA | 4 | Cmpd 7: Ctr vs. DAU [1.2 μM]                            | <0.0001 | ****    |
|            |       |   | Cmpd 7: Ctr vs. Cmpd 7 [0.01 μM] + DAU [1.2 μM]         | <0.0001 | ****    |

| igure | Test  | N | Comparison                                                    | P value | Summary |
|-------|-------|---|---------------------------------------------------------------|---------|---------|
|       |       |   | Cmpd 7: Ctr vs. Cmpd 7 [0.1 μM] + DAU [1.2 μM]                | <0.0001 | ****    |
|       |       |   | Cmpd 7: Ctr vs. Cmpd 7 [1 μM] + DAU [1.2 μM]                  | <0.0001 | ***     |
|       |       |   | Cmpd 7: Ctr vs. Cmpd 7 [10 μM] + DAU [1.2 μM]                 | 0.0002  | ***     |
|       |       |   | Cmpd 7: Ctr vs. Cmpd 7 [30 μM] + DAU [1.2 μM]                 | <0.0001 | ****    |
|       |       |   | Cmpd 7: Ctr vs. Cmpd 7 [100 μM] + DAU [1.2 μM]                | <0.0001 | ****    |
|       | ANOVA | 4 | Cmpd 7: DAU [1.2 μM] vs. Cmpd 7 [0.01 μM] + DAU [1.2 μM]      | 0.5381  | ns      |
|       |       |   | Cmpd 7: DAU [1.2 μM] vs. Cmpd 7 [0.1 μM] + DAU [1.2 μM]       | 0.5381  | ns      |
|       |       |   | Cmpd 7: DAU [1.2 μM] vs. Cmpd 7 [1 μM] + DAU [1.2 μM]         | 0.1928  | ns      |
|       |       |   | Cmpd 7: DAU [1.2 μM] vs. Cmpd 7 [10 μM] + DAU [1.2 μM]        | 0.0077  | **      |
|       |       |   | Cmpd 7: DAU [1.2 μM] vs. Cmpd 7 [30 μM] + DAU [1.2 μM]        | 0.0219  | *       |
|       |       |   | Cmpd 7: DAU [1.2 μM] vs. Cmpd 7 [100 μM] + DAU [1.2 μM]       | 0.1011  | ns      |
|       | ANOVA | 4 | Cmpd 8: Ctr vs. DAU [1.2 μM]                                  | <0.0001 | ****    |
|       |       |   | Cmpd 8: Ctr vs. Cmpd 8 [0.01 μM] + DAU [1.2 μM]               | <0.0001 | ***     |
|       |       |   | Cmpd 8: Ctr vs. Cmpd 8 [0.1 μM] + DAU [1.2 μM]                | <0.0001 | ***     |
|       |       |   | Cmpd 8: Ctr vs. Cmpd 8 [1 μM] + DAU [1.2 μM]                  | <0.0001 | ***     |
|       |       |   | Cmpd 8: Ctr vs. Cmpd 8 [10 μM] + DAU [1.2 μM]                 | <0.0001 | ***     |
|       |       |   | Cmpd 8: Ctr vs. Cmpd 8 [30 μM] + DAU [1.2 μM]                 | <0.0001 | ***     |
|       |       |   | Cmpd 8: Ctr vs. Cmpd 8 [100 μM] + DAU [1.2 μM]                | <0.0001 | ****    |
|       | ANOVA | 4 | Cmpd 8: DAU [1.2 μM] vs. Cmpd 8 [0.01 μM] + DAU [1.2 μM]      | 0.3717  | ns      |
|       |       |   | Cmpd 8: DAU [1.2 μM] vs. Cmpd 8 [0.1 μM] + DAU [1.2 μM]       | 0.3717  | ns      |
|       |       |   | Cmpd 8: DAU [1.2 μM] vs. Cmpd 8 [1 μM] + DAU [1.2 μM]         | 0.0122  | *       |
|       |       |   | Cmpd 8: DAU [1.2 μM] vs. Cmpd 8 [10 μM] + DAU [1.2 μM]        | 0.0012  | **      |
|       |       |   | Cmpd 8: DAU [1.2 μM] vs. Cmpd 8 [30 μM] + DAU [1.2 μM]        | 0.0054  | **      |
|       |       |   | Cmpd 8: DAU [1.2 μM] vs. Cmpd 8 [100 μM] + DAU [1.2 μM]       | 0.3717  | ns      |
|       | ANOVA | 4 | topobexin (9): Ctr vs. DAU [1.2 μM]                           | <0.0001 | ****    |
|       |       |   | topobexin (9): Ctr vs. topobexin (9) [0.01 μM] + DAU [1.2 μM] | <0.0001 | ****    |

| Figure     | Test  | N | Comparison                                                             | P value                                                                | Summary |
|------------|-------|---|------------------------------------------------------------------------|------------------------------------------------------------------------|---------|
|            |       |   | topobexin (9): Ctr vs. topobexin (9) [0.1 μM] + DAU [1.2 μM]           | <0.0001                                                                | ***     |
|            |       |   | topobexin (9): Ctr vs. topobexin (9) [1 μM] + DAU [1.2 μM]             | <0.0001                                                                | ****    |
|            |       |   | topobexin (9): Ctr vs. topobexin (9) [10 μM] + DAU [1.2 μM]            | 0.0037                                                                 | **      |
|            |       |   | topobexin (9): Ctr vs. topobexin (9) [30 μM] + DAU [1.2 μM]            | 0.0014                                                                 | **      |
|            |       |   | topobexin (9): Ctr vs. topobexin (9) [100 μM] + DAU [1.2 μM]           | 0.0003                                                                 | ***     |
|            | ANOVA | 4 | topobexin (9): DAU [1.2 μM] vs. topobexin (9) [0.01 μM] + DAU [1.2 μM] | 0.6901                                                                 | ns      |
|            |       |   | topobexin (9): DAU [1.2 μM] vs. topobexin (9) [0.1 μM] + DAU [1.2 μM]  | 0.5031                                                                 | ns      |
|            |       |   | topobexin (9): DAU [1.2 μM] vs. topobexin (9) [1 μM] + DAU [1.2 μM]    | 0.0062                                                                 | **      |
|            |       |   | topobexin (9): DAU [1.2 μM] vs. topobexin (9) [10 μM] + DAU [1.2 μM]   | 0.0002                                                                 | ***     |
|            |       |   | topobexin (9): DAU [1.2 μM] vs. topobexin (9) [30 μM] + DAU [1.2 μM]   | 0.0003                                                                 | ***     |
|            |       |   | topobexin (9): DAU [1.2 μM] vs. topobexin (9) [100 μM] + DAU [1.2 μM]  | 0.0009                                                                 | ***     |
| Supp<br>6c | ANOVA | 4 | Cmpd 6: Ctr vs. Cmpd 6 [0.1 μM]                                        | 0.9451                                                                 | ns      |
|            |       |   | Cmpd 6: Ctr vs. Cmpd 6 [1 μM]                                          | 0.9451                                                                 | ns      |
|            |       |   | Cmpd 6: Ctr vs. Cmpd 6 [10 μM]                                         | 0.9451                                                                 | ns      |
|            |       |   | Cmpd 6: Ctr vs. Cmpd 6 [30 μM]                                         | 0.0014  0.0003  0.6901  0.5031  0.0062  0.0002  0.0003  0.0009  0.9451 | ns      |
|            |       |   | Cmpd 6: Ctr vs. Cmpd 6 [100 μM]                                        | 0.1287                                                                 | ns      |
|            | ANOVA | 4 | Cmpd 7: Ctr vs. Cmpd 7 [0.01 μM]                                       | 0.9989                                                                 | ns      |
|            |       |   | Cmpd 7: Ctr vs. Cmpd 7 [0.1 μM]                                        | 0.9989                                                                 | ns      |
|            |       |   | Cmpd 7: Ctr vs. Cmpd 7 [1 μM]                                          | 0.9989                                                                 | ns      |
|            |       |   | Cmpd 7: Ctr vs. Cmpd 7 [10 μM]                                         | 0.9989                                                                 | ns      |
|            |       |   | Cmpd 7: Ctr vs. Cmpd 7 [30 μM]                                         | 0.6692                                                                 | ns      |
|            |       |   | Cmpd 7: Ctr vs. Cmpd 7 [100 μM]                                        | 0.0026                                                                 | **      |
|            | ANOVA | 4 | Cmpd 8: Ctr vs. Cmpd 8 [0.01 µM]                                       | 0.9615                                                                 | ns      |
|            |       |   | Cmpd 8: Ctr vs. Cmpd 8 [0.1 μM]                                        | 0.9676                                                                 | ns      |

| Figure     | Test                                   | N | Comparison                                                                    | P value | Summary |
|------------|----------------------------------------|---|-------------------------------------------------------------------------------|---------|---------|
|            |                                        |   | Cmpd 8: Ctr vs. Cmpd 8 [1 µM]                                                 | 0.9676  | ns      |
|            |                                        |   | Cmpd 8: Ctr vs. Cmpd 8 [10 μM]                                                | 0.6402  | ns      |
|            |                                        |   | Cmpd 8: Ctr vs. Cmpd 8 [30 μM]                                                | 0.0322  | *       |
|            |                                        |   | Cmpd 8: Ctr vs. Cmpd 8 [100 μM]                                               | <0.0001 | ***     |
|            | ANOVA                                  | 4 | topobexin (9): Ctr vs. topobexin (9) [0.01 μM]                                | 0.9983  | ns      |
|            |                                        |   | topobexin (9): Ctr vs. topobexin (9) [0.1 μM]                                 | 0.9983  | ns      |
|            |                                        |   | topobexin (9): Ctr vs. topobexin (9) [1 μM]                                   | 0.9642  | ns      |
|            |                                        |   | topobexin (9): Ctr vs. topobexin (9) [10 μM]                                  | 0.9983  | ns      |
|            |                                        |   | topobexin (9): Ctr vs. topobexin (9) [30 μM]                                  | 0.9983  | ns      |
|            |                                        |   | topobexin (9): Ctr vs. topobexin (9) [100 μM]                                 | 0.9642  | ns      |
| Supp<br>8a | ANOVA                                  | 4 | DAU [1.2 μM] vs. dexrazoxane [0.1 μM] + DAU [1.2 μM]                          | 0.2188  | ns      |
|            |                                        |   | DAU [1.2 μM] vs. dexrazoxane [1 μM] + DAU [1.2 μM]                            | 0.0023  | **      |
|            |                                        |   | DAU [1.2 μM] vs. dexrazoxane [10 μM] + DAU [1.2 μM]                           | 0.0007  | ***     |
|            |                                        |   | DAU [1.2 μM] vs. dexrazoxane [100 μM] + DAU [1.2 μM]                          | <0.0001 | ****    |
|            |                                        |   | DAU [1.2 μM] vs. topobexin (9) [0.1 μM] + DAU [1.2 μM]                        | 0,0004  | ***     |
|            |                                        |   | DAU [1.2 μM] vs. topobexin (9) [1 μM] + DAU [1.2 μM]                          | <0.0001 | ****    |
|            |                                        |   | DAU [1.2 μM] vs. topobexin (9) [10 μM] + DAU [1.2 μM]                         | <0.0001 | ****    |
|            |                                        |   | DAU [1.2 μM] vs. topobexin (9) [100 μM] + DAU [1.2 μM]                        | <0.0001 | ****    |
|            | Ratio paired<br>t-test, two-<br>tailed | 4 | dexrazoxane [0.1 μM] + DAU [1.2 μM] vs. topobexin (9) [0.1 μM] + DAU [1.2 μM] | 0.0356  | *       |
|            |                                        |   | dexrazoxane [1 μM] + DAU [1.2 μM] vs. topobexin (9) [1 μM] + DAU [1.2 μM]     | 0.0317  | *       |
|            |                                        |   | dexrazoxane [10 μM] + DAU [1.2 μM] vs. topobexin (9) [10 μM] + DAU [1.2 μM]   | 0.0013  | **      |
|            |                                        |   | dexrazoxane [100 μM] + DAU [1.2 μM] vs. topobexin (9) [100 μM] + DAU [1.2 μM] | 0.0075  | **      |
| Supp<br>8c | ANOVA                                  | 4 | Ctr vs. topobexin (9) [0.01 μM]                                               | 0.8162  | ns      |
|            |                                        |   | Ctr vs. topobexin (9) [0.1 μM]                                                | 0.8616  | ns      |
|            |                                        |   | Ctr vs. topobexin (9) [1 μM]                                                  | 0.1626  | ns      |
|            |                                        |   | Ctr vs. topobexin (9) [10 μM]                                                 | <0.0001 | ****    |
|            |                                        |   | Ctr vs. topobexin (9) [30 μM]                                                 | <0.0001 | ****    |

| Figure     | Test  | N | Comparison                                             | P value   | Summary |
|------------|-------|---|--------------------------------------------------------|-----------|---------|
|            |       |   | Ctr vs. topobexin (9) [100 μM]                         | <0.0001   | ***     |
|            |       |   | Ctr vs. DAU [1.2 μM]                                   | <0.0001   | ****    |
|            |       |   | Ctr vs. topobexin (9) [0.1 μM] + DAU [1.2 μM]          | <0.0001   | ****    |
|            |       |   | Ctr vs. topobexin (9) [1 μM] + DAU [1.2 μM]            | <0.0001   | ****    |
|            |       |   | Ctr vs. topobexin (9) [10 μM] + DAU [1.2 μM]           | <0.0001   | ****    |
|            |       |   | Ctr vs. topobexin (9) [30 μM] + DAU [1.2 μM]           | <0.0001   | ****    |
|            |       |   | Ctr vs. topobexin (9) [100 μM] + DAU [1.2 μM]          | <0.0001   | ****    |
|            | ANOVA | 4 | DAU [1.2 μM] vs. topobexin (9) [0.1 μM] + DAU [1.2 μM] | 0.8454    | ns      |
|            |       |   | DAU [1.2 μM] vs. topobexin (9) [1 μM] + DAU [1.2 μM]   | 0.8454    | ns      |
|            |       |   | DAU [1.2 μM] vs. topobexin (9) [10 μM] + DAU [1.2 μM]  | 0.0026    | **      |
|            |       |   | DAU [1.2 μM] vs. topobexin (9) [30 μM] + DAU [1.2 μM]  | 0.0002    | ***     |
|            |       |   | DAU [1.2 μM] vs. topobexin (9) [100 μM] + DAU [1.2 μM] | <0.0001   | ****    |
| Supp<br>8d | ANOVA | 4 | Ctr vs. topobexin (9) [0.1 μM]                         | 0.9953    | ns      |
|            |       |   | Ctr vs. topobexin (9) [0.3 μM]                         | 0.9953    | ns      |
|            |       |   | Ctr vs. topobexin (9) [1 µM]                           | 0.9953    | ns      |
|            |       |   | Ctr vs. topobexin (9) [3 µM]                           | 0.9953 ns | ns      |
|            |       |   | Ctr vs. topobexin (9) [10 µM]                          |           | ns      |
|            |       |   | Ctr vs. DAU [1.2 μM]                                   | <0.0001   | ***     |
|            |       |   | Ctr vs. topobexin (9) [0.1 μM] + DAU [1.2 μM]          | <0.0001   | ****    |
|            |       |   | Ctr vs. topobexin (9) [0.3 μM] + DAU [1.2 μM]          | 0.0011    | **      |
|            |       |   | Ctr vs. topobexin (9) [1 μM] + DAU [1.2 μM]            | 0.0148    | *       |
|            |       |   | Ctr vs. topobexin (9) [3 μM] + DAU [1.2 μM]            | 0.0148    | *       |
|            |       |   | Ctr vs. topobexin (9) [10 μM] + DAU [1.2 μM]           | 0.9102    | ns      |
|            |       |   | DAU [1.2 μM] vs. topobexin (9) [0.1 μM] + DAU [1.2 μM] | 0.334     | ns      |
|            |       |   | DAU [1.2 μM] vs. topobexin (9) [0.3 μM] + DAU [1.2 μM] | 0.1361    | ns      |
|            |       |   | DAU [1.2 μM] vs. topobexin (9) [1 μM] + DAU [1.2 μM]   | 0.0582    | ns      |
|            |       |   | DAU [1.2 μM] vs. topobexin (9) [3 μM] + DAU [1.2 μM]   | 0.0582    | ns      |
|            |       |   | DAU [1.2 μM] vs. topobexin (9) [10 μM] + DAU [1.2 μM]  | 0.0013    | **      |
|            |       |   | First kind on the second (a) (To kind a second kind    | 10.00.0   |         |

#### Supplementary Methods – Chemistry (Synthetic procedures and characterization of compounds)

The prepared compounds were characterized using 1H NMR and 13C NMR spectroscopy. The purities of the prepared compounds were determined using elemental analysis or HPLC-HRMS experiments. All chemicals used in the syntheses were obtained from Sigma-Aldrich (Schnelldorf, Germany) and PENTA s.r.o. (Prague, Czech Republic) and were used as received. TLC separations were performed on Merck aluminum plates with silica gel 60 F254. Merck Kieselgel 60 (0.040-0.063 mm) was used for column chromatography. Melting points were recorded with a Büchi B-545 apparatus (BUCHI Labortechnik AG, Flawil, Switzerland) and are uncorrected. 1H and 13C NMR spectra were recorded using Varian Mercury Vx BB 300, VNMR S500 NMR (Varian, Palo Alto, CA, USA) or Jeol JNM-ECZ600R (JEOL Ltd., Akishima, Tokyo, Japan) spectrometers. Chemical shifts are reported as δ values in parts per million (ppm) and were indirectly referenced to tetramethylsilane (TMS) via the solvent signal. Elemental analyses were performed on an Automatic Microanalyzer EA1110CE (Fisons Instruments S.p.A., Milano, Italy). UHPLC system Acquity UPLC I-class (Waters, Millford, USA) coupled to high resolution mass spectrometer (HRMS) Synapt G2Si (Waters, Manchester, UK) based on Q-TOF were used for HRMS spectra measurement.

Scheme 1. Synthesis of BNS-22 (1c) and its analog 1d

(0.7 g, 2.23 mmol), corresponding ethyl ester of 3-oxocarboxylic acid (2.34 mmol) and methane sulfonic acid (7 ml) was stirred for 24 h at RT. The reaction mixture was poured into ice water (150 ml) and stirred for 30 min. The aqueous layer was extracted with EtOAc (2 × 100 ml), combined organic layer was dried over anhydrous sodium sulfate, and concentrated under reduced pressure. The product was purified by column chromatography (mobile phase: hexan/EtOAc, 2:1 or hexan/EtOAc/acetic acid, 20:20:1). 4-Butyl-5,7-dimethoxy-8-(1,2,3,4-tetrahydroquinolin-1-carbonyl)-2H-chromen-2-one (1d): The product was prepared according to General Method 1. Yield: 46 % as a beige solid; mp 129-131 °C as a dynamic equilibrium of cis-trans amide bond rotamers distinguishable by NMR in a ratio 2.2:1. <sup>1</sup>H NMR (500 MHz, DMSO) δ 8.08 (1H, d, *J*=8.6 Hz, CH, **B**), 7.22-7.15 (2H, m, CH, **B**), 7.13-7.05 (1H, m, CH, **A**, 1H, m, CH, **B**), 6.91 (1H, t, *J*=7.3 Hz, CH, **A**), 6.77-6.70 (1H, m, CH, **A**), 6.56-6.50 (2H, m, CH, **A**, 1H, m, CH, **B**), 6.05 (1H, s, CH, **B**), 5.89 (1H, s, CH, **A**), 4.05-3.97 (1H, m, CH<sub>2</sub>, **A**), 4.01 (3H, s, CH<sub>3</sub>, **B**), 3.96 (3H, s, CH<sub>3</sub>, **B**), 3.91 (3H, s, CH<sub>3</sub>, **A**), 3.80 (3H, s, CH<sub>3</sub>, **A**), 3.73-3.64 (1H, m, CH<sub>2</sub>, **A**), 3.46-3.40 (2H, m, CH<sub>2</sub>, **B**), 2.94-2,67 (4H, m, CH<sub>2</sub>, **A**, 4H, m, CH<sub>2</sub>, **B**), 2,16-2.05 (1H, m, CH<sub>2</sub>, **A**), 2.00-1.82 (1H, m, CH<sub>2</sub>, **A**,2H, m, CH<sub>2</sub>, **B**), 1.57-1.12 (4H, m, CH<sub>2</sub>, **A**, 4H, m, CH<sub>2</sub>, **B**), 0.95 (3H, t, *J*=7.3 Hz, CH<sub>3</sub>, **B**), 0.88 (3H, t, *J*=7.1 Hz, CH<sub>3</sub>, **A**). <sup>13</sup>C NMR (125 MHz, DMSO) **isomer A**: δ 163.5, 159.3, 159.2, 158.9, 158.0, 152.1, 138.6, 133.2, 128.0, 125.3, 125.3, 122.8, 110.3, 108.1, 102.5, 92.5, 56.6, 56.5, 42.5, 35.6, 31.5, 26.1, 23.5, 22.2,

**General Method 1.** A mixture of N-(2-hydroxy-4,6-dimethoxy)benzoyl-1,2,3,4-tetrahydroquinoline 13

13.9. <sup>13</sup>C NMR (125 MHz, DMSO) **isomer B**:  $\delta$  163.3, 15932, 159.1, 158.4, 158.3, 151.8, 137.7, 129.8, 129.3, 125.5, 124.6, 124.1, 110.7, 107.9, 103.1, 92.9, 56.8, 56.7, 46.5, 35.8, 31.7, 26.6, 23.3, 22.4, 14.0. HRMS (m/z): [M+H]<sup>+</sup> calcd. for C<sub>25</sub>H<sub>28</sub>NO<sub>5</sub>, 422.1962; found, 422.1963; Elem. Anal. Calcd for C<sub>25</sub>H<sub>27</sub>NO<sub>5</sub>: C, 71.24; H, 6.46; N, 3.32. Found: C, 71.62; H, 6.83; N, 3.98.

#### Scheme 2. Synthesis of compounds 2a-d.

HO COOH

HO COOH

HO COOH

HO COOH

$$A: R^1 = Me$$
 $b: R^1 = Et$ 
 $c: R^1 = Pr$ 
 $d: R^1 = Bu$ 

2a-d

General Method 2. Synthesis of carboxylic acids 10a-d. Methyl or ethyl ester of corresponding aliphatic 3-oxocarboxylic acid (14.6 mmol) was added dropwise to a suspension of 2,6-dihydroxybenzoic acid (1.5 g, 9.73 mmol) in conc. H<sub>2</sub>SO<sub>4</sub> (4.6 g, 2.5 mL, 45 mmol). The reaction mixture was heated to 75 °C for 2-5 h. After cooling to RT, the reaction mixture was poured into ice water (150 mL) and a precipitation was filtered off, washed with water to neutral pH and dried over P<sub>2</sub>O<sub>5</sub>.

7-Hydroxy-4-methyl-2-oxo-2H-chromene-8-carboxylic acid (10a): The product was prepared according to General Method 2. Ethyl ester of 3-oxobutyric acid was used as a substrate. The reaction mixture was heated to 75 °C for 2 h. Yield: 70% as a white solid; mp 255-257 °C.  $^{1}$ H NMR (500 MHz, DMSO)  $\delta$  7.66 (d, J = 8.7 Hz, 1H), 6.90 (d, J = 8.8 Hz, 1H), 6.18 (d, J = 1.3 Hz, 1H), 2.37 (d, J = 1.2 Hz, 3H).  $^{13}$ C NMR (126 MHz, DMSO)  $\delta$  166.26, 159.81, 158.56, 153.86, 151.42, 127.58, 112.93, 112.03, 110.76, 110.70, 18.49. HRMS (m/z): [M+H]<sup>+</sup> calcd. for C<sub>11</sub>H<sub>9</sub>O<sub>5</sub>, 221.0444; found, 221.0450; Elem. Anal. Calcd. for C<sub>11</sub>H<sub>8</sub>O<sub>5</sub>: C, 60.01; H, 3.66. Found: C, 59.62; H, 3.82.

4-Ethyl-7-hydroxy-2-oxo-2H-chromene-8-carboxylic acid (10b): The product was prepared according to General Method 2. Ethyl ester of 3-oxovaleric acid was used as a substrate. The reaction mixture was heated to 75 °C for 2 h. Yield: 61% as a white solid; mp 234-236 °C.  $^{1}$ H NMR (500 MHz, DMSO) δ 11.05 (s, 1H), 7.70 (d, J = 8.8 Hz, 1H), 6.90 (d, J = 8.8 Hz, 1H), 6.13 (d, J = 1.4 Hz, 1H), 2.77 (qd, J = 7.4, 1.2 Hz, 2H), 1.20 (t, J = 7.4 Hz, 3H).  $^{13}$ C NMR (126 MHz, DMSO) δ 166.16, 160.00, 158.59, 158.34, 151.51, 127.06, 112.88, 111.12, 110.92, 108.88, 24.35, 12.54. HRMS (m/z): [M+H]<sup>+</sup> calcd. for C<sub>12</sub>H<sub>11</sub>O<sub>5</sub>, 235.0601; found, 235.0609; Elem. Anal. Calcd. for C<sub>12</sub>H<sub>10</sub>O<sub>5</sub>: C, 61.54; H, 4.30. Found: C, 61.16; H, 4.14.

7-Hydroxy-4-propyl-2-oxo-2H-chromene-8-carboxylic acid (10c): The product was prepared according to General Method 2. Ethyl ester of 3-oxohexanoic acid was used as a substrate. The reaction mixture was heated to 75 °C for 5 h. Yield: 51% as a white solid; mp 210-212 °C.  $^{1}$ H NMR (500 MHz, DMSO)  $\delta$  7.71 (d, J = 8.8 Hz, 1H), 6.90 (d, J = 8.8 Hz, 1H), 6.13 (s, 1H), 2.71 (t, J = 7.6 Hz, 2H), 1.61 (h, J = 7.4 Hz, 2H), 0.95 (t, J = 7.3 Hz, 3H).  $^{13}$ C NMR (126 MHz, DMSO)  $\delta$  166.13, 159.85, 158.36, 157.11, 151.63, 127.24,

112.94, 111.16, 110.96, 109.83, 33.11, 21.56, 13.81. HRMS (m/z):  $[M+H]^+$  calcd. for  $C_{13}H_{13}O_5$ , 249.0757; found, 249.0765; Elem. Anal. Calcd. for  $C_{13}H_{12}O_5$ : C, 62.9; H, 4.87. Found: C, 62.92; H, 4.81.

4-Butyl-7-hydroxy-2-oxo-2H-chromene-8-carboxylic acid (10d): The product was prepared according to General Method 2. Methyl ester of 3-oxoheptanoic acid was used as a substrate. The reaction mixture was heated to 75 °C for 3 h. Yield: 73% as a white solid; mp 179-181 °C. ¹H NMR (600 MHz, DMSO- $D_6$ ) δ 7.67 (d, J = 8.9 Hz, 1H), 6.87 (d, J = 8.8 Hz, 1H), 6.10 (s, 1H), 2.73 – 2.64 (m, 2H), 1.58 – 1.48 (m, 2H), 1.37 – 1.31 (m, 2H), 0.87 (t, J = 7.4 Hz, 3H). ¹³C NMR (151 MHz, DMSO- $D_6$ ) δ 166.50, 160.22, 158.77, 157.73, 152.01, 127.58, 113.33, 111.48, 111.30, 110.09, 31.30, 30.75, 22.43, 14.20. HRMS (m/z): [M+H]<sup>+</sup> calcd. for C<sub>14</sub>H<sub>15</sub>O<sub>5</sub>, 263.0914; found, 263.0923; Elem. Anal. Calcd. for C<sub>14</sub>H<sub>14</sub>O<sub>5</sub>: C, 64.12; H, 5.38. Found: C, 64.08; H, 5.48.

General Method 3. Synthesis of compounds 2a-d. To a solution of corresponding carboxylic acid 10a-d (4.27 mmol) and 1,2,3,4-tetrahydroquinoline (2.16 g, 2.04 mL, 16.2 mmol) in  $CH_2Cl_2$  (50 mL) EDC.HCl (1.88 g, 9.83 mmol) and DMAP (26 mg, 0.214 mmol) were added. The reaction mixture was stirred at room temperature (RT) for 48-72 h. Then, the reaction mixture was washed with water (2 × 50 mL), 1M HCl (2 × 50 mL), and brine (1 × 50 mL). Organic phase was dried over anhydrous sodium sulfate and concentrated under reduced pressure. The product was purified by column chromatography (mobile phase: hexane/EtOAc/acetic acid, 20:20:1).

7-Hydroxy-4-methyl-8-(1,2,3,4-tetrahydroquinoline-1-carbonyl)-2H-chromen-2-one (2a): The product was prepared according to General Method 3 using substrate 10a. The reaction mixture was stirred at RT for 48 h. Yield: 64% as a white solid; mp 241-243 °C as a dynamic equilibrium of *cis-trans* amide bond rotamers distinguishable by NMR in a ratio 2.2:1. ¹H NMR (500 MHz, DMSO) δ 11.02 (1H, bs, OH, A, 1H, bs, OH, B), 8.11 (1H, d, *J* = 8.3 Hz, CH, B), 7.67 (1H, d, *J* = 8.3 Hz, CH, B), 7.50 (1H, d, *J* = 8.8 Hz, CH, A), 7.23-7.18 (2H, m, CH, B), 7.13-7.06 (1H, m, CH, A, 1H, m, CH, B), 6.95 (1H, d, *J* = 8.8 Hz, CH, B), 6.90 (1H, t, *J* = 7.3 Hz, CH, A), 6.76 (1H, d, *J* = 8.8 Hz, CH, A), 6.73 (1H, t, *J* = 7.3 Hz, CH, A), 6.66 (1H, d, *J* = 7.3 Hz, CH, A), 6.19 (1H, s, CH, B), 6.03 (1H, s, CH, A), 4.14-4.04 (1H, m, CH<sub>2</sub>, A), 3.71-3.61 (1H, m, CH<sub>2</sub>, A), 3.50-3.42 (2H, m, CH<sub>2</sub>, B), 2.91-2.68 (2H, m, CH<sub>2</sub>, A, 2H, m, CH<sub>2</sub>, B), 2.40 (3H, s, CH<sub>3</sub>, B), 2.28 (3H, s, CH<sub>3</sub>, A), 2.20-2.09 (1H, m, CH<sub>2</sub>, A), 1.99-1.81 (1H, m, CH<sub>2</sub>, A, 2H, m, CH<sub>2</sub>, B). Isomer A: ¹³C NMR (125 MHz, DMSO) δ 163.8, 159.5, 158.2, 153.7, 150.8, 138.5, 133.3, 128.1, 126.7, 125.4, 125.3, 122.8, 113.5, 112.5, 111.5, 110.3, 42.5, 26.2, 23.6, 18.3. Isomer B: ¹³C NMR (125 MHz, DMSO) δ 163.6, 159.9, 157.2, 153.9, 150.7, 137.7, 129.8, 129.3, 126.7, 125.5, 124.6, 124.2, 113.2, 112.9, 112.2, 110.7, 46.5, 26.6, 23.4, 18.4. HRMS (m/z): [M+H]<sup>+</sup> calcd. for C<sub>20</sub>H<sub>18</sub>NO<sub>4</sub>, 336.1230; found, 336.1240; Elem. Anal. Calcd for C<sub>20</sub>H<sub>17</sub>NO<sub>4</sub>: C, 71.63; H, 5.11; N, 4.18. Found: C, 71.38; H, 5.18; N, 4.31.

4-Ethyl-7-hydroxy-8-(1,2,3,4-tetrahydroquinolin-1-carbonyl)-2H-chromen-2-one (2b): The product was prepared according to General Method 3 using substrate 10b. The reaction mixture was stirred at RT for 72 h Yield: 64% as a white solid; mp 218-219 °C as a dynamic equilibrium of *cis-trans* amide bond rotamers distinguishable by NMR in a ratio 2:1. ¹H NMR (500 MHz, DMSO) δ 10.96 (1H, bs, OH, B), 10.87 (1H,

bs, OH, **A**), 8.11 (1H, d, J = 8.3 Hz, CH, **B**), 7.72 (1H, d, J = 8.3 Hz, CH, **B**), 7.55 (1H, d, J = 8.8 Hz, CH, **A**), 7.23-7.17 (2H, m, CH, **B**), 7.13-7.05 (1H, m, CH, **A**, 1H, m, CH, **B**), 6.96 (1H, d, J = 8.8 Hz, CH, **B**), 6.90 (1H, dt, J = 7.6 Hz, J = 1.0 Hz, CH, **A**), 6.77 (1H, d, J = 8.8 Hz, CH, **A**), 6.73 (1H, t, J = 7.6 Hz, CH, **A**), 6.65 (1H, d, J = 7.6 Hz, CH, **A**), 6.15 (1H, s, CH, **B**) 5.98 (1H, s, CH, **A**), 4.13-4.06 (1H, m, CH<sub>2</sub>, **A**), 3.69-3.62 (1H, m, CH<sub>2</sub>, **A**), 3.49-3.43 (2H, m, CH<sub>2</sub>, **B**), 2.95-2.60 (4H, m, CH<sub>2</sub>, **A**, 4H, m, CH<sub>2</sub>, **B**), 2.20-2.09 (1H, m, CH<sub>2</sub>, **A**), 1.98-1,82 (1H, m, CH<sub>2</sub>, **A**, 2H, m, CH<sub>2</sub>, **B**), 1.23 (3H, t, J = 7.3 Hz, CH<sub>3</sub>, **B**), 1.14 (3H, t, J = 7.3 Hz, CH<sub>3</sub>, **A**). **Isomer A**: <sup>13</sup>C NMR (125 MHz, DMSO)  $\delta$  163.8, 159.7, 158.4, 157.9, 150.9, 138.5, 133.3, 128.0, 126.3, 125.3, 125.3, 122.7, 113.6, 112.5, 110.8, 108.4, 42.5, 26.2, 24.1, 23.5, 12.2. **Isomer B**: <sup>13</sup>C NMR (125 MHz, DMSO)  $\delta$  163.5, 160.1, 158.6, 156.9, 150.8, 137.7, 129.8, 129.3, 126.3, 125.5, 124.6, 124.1, 113.4, 112.8, 111.4, 109.0, 46.5, 26.6, 24.3, 23.4, 12.5. HRMS (m/z): [M+H]<sup>+</sup> calcd. for C<sub>21</sub>H<sub>20</sub>NO<sub>4</sub>, 350.1387; found, 350.1396; Elem. Anal. Calcd for C<sub>21</sub>H<sub>19</sub>NO<sub>4</sub>: C, 72.19; H, 5.48; N, 4.01. Found: C, 72.32; H, 5.39; N, 3.91.

### 7-Hydroxy-4-propyl-8-(1,2,3,4-tetrahydroquinolin-1-carbonyl)-2H-chromen-2-one (2c):

The product was prepared according to General Method 3 using substrate **10c**. The reaction mixture was stirred at RT for 72 h. Yield: 64% as a white solid; mp 184-185 °C as a dynamic equilibrium of *cis-trans* amide bond rotamers distinguishable by NMR in a ratio 2:1.  $^{1}$ H NMR (500 MHz, DMSO)  $\delta$  10.60 (1H, bs, OH, **A**, 1H, bs, OH, **B**), 8.11 (1H, d, J = 8.6 Hz, CH, **B**), 7.71 (1H, d, J = 8.6 Hz, CH, **B**), 7.55 (1H, d, J = 8.8 Hz, CH, **A**), 7.23-7.18 (2H, m, CH, **B**), 7.13-7.06 (1H, m, CH, **A**, 1H, m, CH, **B**), 6.94 (1H, d, J = 8.8 Hz, CH, **B**), 6.90 (1H, t, J = 7.6 Hz, CH, **A**), 6.75 (1H, d, J = 8.8 Hz, CH, **A**), 6.72 (1H, t, J = 7.6 Hz, CH, **A**), 6.65 (1H, d, J = 7.6 Hz, CH, **A**), 6.14 (1H, s, CH, **B**), 5.97 (1H, s, CH, **A**), 4.13-4.06 (1H, m, CH<sub>2</sub>, **A**), 3.68-3.61 (1H, m, CH<sub>2</sub>, **A**), 3.46 (2H, t, J = 5.6 Hz, CH<sub>2</sub>, **B**), 2.91-2.52 (4H, m, CH<sub>2</sub>, **A**, 4H, m, CH<sub>2</sub>, **B**), 2.20-2.09 (1H, m, CH<sub>2</sub>, **A**), 1.97-1.83 (1H, m, CH<sub>2</sub>, **A**, 2H, m, CH<sub>2</sub>, **B**), 1.71-1.46 (2H, m, CH<sub>2</sub>, **A**, 2H, m, CH<sub>2</sub>, **B**), 0.98 (3H, t, J = 7.3 Hz, CH<sub>3</sub>, **B**), 0.89 (3H, t, J = 7.3 Hz, CH<sub>3</sub>, **A**). **Isomer A**:  $^{13}$ C NMR (125 MHz, DMSO)  $\delta$  163.9, 159.6, 158.1, 157.0, 151.1, 138.5, 133.3, 128.0, 126.4, 125.3, 125.3, 122.7, 113.6, 112.5, 110.7, 109.3, 42.4, 32.9, 26.2, 23.5, 21.4, 13.7. **Isomer B**:  $^{13}$ C NMR (125 MHz, DMSO)  $\delta$  163.6, 160.0, 158.1, 157.2, 151.0, 137.7, 129.8, 129.3, 126.4, 125.5, 124.5, 124.1, 113.4, 112.9, 111.3, 109.7, 46.5, 33.1, 26.6, 23.4, 21.5, 13.9. HRMS (m/z): [M+H] $^+$  calcd. for C<sub>22</sub>H<sub>22</sub>NO<sub>4</sub>, 364.1543; found, 364.1549; Elem. Anal. Calcd for C<sub>22</sub>H<sub>21</sub>NO<sub>4</sub>: C, 72.71; H, 5.82; N, 3.85. Found: C, 72.33; H, 5.87; N 3.77.

4-Butyl-7-hydroxy-8-(1,2,3,4-tetrahydroqquinolin-1-carbonyl)-2H-chromen-2-one (2d): The product was prepared according to General Method 3 using substrate 10d. The reaction mixture was stirred at RT for 48 h. Yield: 46% as a beige solid; mp 133-135 °C as a dynamic equilibrium of *cis-trans* amide bond rotamers distinguishable by NMR in a ratio 2:1.  $^{1}$ H NMR (500 MHz, DMSO) δ 10.98 (1H, bs, OH, **A**, 1H, bs, OH, **B**), 8.11 (1H, d, J = 8.3 Hz, CH, **B**), 7.72 (1H, d, J = 8.3 Hz, CH, **B**), 7.56 (1H, d, J = 8.7 Hz, CH, **A**), 7.23-7.18 (2H, m, CH, **B**), 7.13-7.05 (1H, m, CH, **A**, 1H, m, CH, **B**), 6.95 (1H, d, J = 8.7 Hz, CH, **B**), 6.90 (1H, t, J = 7.7 Hz, CH, **A**), 6.76 (1H, d, J = 8.7 Hz, CH, **A**), 6.72 (1H, t, J = 7.7 Hz, CH, **A**), 6.64 (1H, d, J = 7.7 Hz, CH, **A**), 6.14 (1H, s, CH, **B**), 5.97 (1H, s, CH, **A**), 4.14-4.04 (1H, m, CH<sub>2</sub>, **A**), 3.69-3.59 (1H, m, CH<sub>2</sub>, **A**), 3.48-3.44 (2H, m, CH<sub>2</sub>, **B**), 2.90-2.55 (4H, m, CH<sub>2</sub>, **A**, 4H, m, CH<sub>2</sub>, **B**), 2.20-2.09 (1H, m, CH<sub>2</sub>, **A**), 1.98-1.83 (1H, m, CH<sub>2</sub>, **A**, 2H, m, CH<sub>2</sub>, **B**), 1.65-1.55 (2H, m, CH<sub>2</sub>, **B**), 1.55-1.45 (2H, m, CH<sub>2</sub>, **A**), 1.45-1.37

(2H, m, CH<sub>2</sub>, **B**), 1.36-1.25 (2H, m, CH<sub>2</sub>, **A**) 0.93 (3H, t, J = 7.5 Hz, CH<sub>3</sub>, **B**), 0.87 (3H, t, J = 7.3 Hz, CH<sub>3</sub>, **A**). **Isomer A**: <sup>13</sup>C NMR (125 MHz, DMSO)  $\delta$  163.9, 159.6, 158.0, 157.3, 151.1, 138.5, 133.3, 128.0, 126.5, 125.3, 125.3, 122.8, 113.7, 112.5, 110.7, 109.3, 42.5, 30.8, 30.2, 26.2, 23.6, 20.0, 13.9. **Isomer B**: <sup>13</sup>C NMR (125 MHz, DMSO)  $\delta$  163.6, 160.0, 157.5, 157.1, 151.0, 137.7, 129.8, 129.3, 126.5, 125.5, 124.6, 124.1, 113.5, 112.9, 111.4, 109.7, 46.5, 31.0, 30.4, 26.6, 23.4, 22.2, 13.9. HRMS (m/z): [M+H]<sup>+</sup> calcd. for C<sub>23</sub>H<sub>24</sub>NO<sub>4</sub>, 378.1700; found, 378.1711; Elem. Anal. Calcd for C<sub>23</sub>H<sub>23</sub>NO<sub>4</sub>: C, 73.19; H, 6.14; N, 3.71. Found: C, 72.81; H 6.05; N 3.62.

## Scheme 3. Synthesis of compounds 3a-d, 4a-d, and 5a-d.

2a-d

$$R^{1}$$
 $R^{2}$ 
 $R^{2}$ 
 $R^{2}$ 
 $R^{2}$ 
 $R^{3}$ 
 $R^{4}$ 
 $R^{1}$ 
 $R^{2}$ 
 $R^{2}$ 
 $R^{2}$ 
 $R^{2}$ 
 $R^{3}$ 
 $R^{2}$ 
 $R^{4}$ 
 $R^{2}$ 
 $R^{2}$ 
 $R^{2}$ 
 $R^{2}$ 
 $R^{3}$ 
 $R^{4}$ 
 $R^{2}$ 
 $R^{2}$ 
 $R^{2}$ 
 $R^{3}$ 
 $R^{4}$ 
 $R^{2}$ 
 $R^{2}$ 
 $R^{3}$ 
 $R^{4}$ 
 $R^{2}$ 
 $R^{2}$ 
 $R^{3}$ 
 $R^{4}$ 
 $R^{4$ 

General Method 4. Synthesis of compounds 3a-d. The mixture of corresponding 4-alkyl-7-hydroxy-8-(1,2,3,4-tetrahydroquinoline-1-carbonyl)-2*H*-chromen-2-one 2a-d (0.9 mmol), dimethyl sulfate (0.23 g, 0.17 mL, 1.8 mmol) and potassium carbonate (0.25 g, 1.8 mmol) in DMF (10 mL) was heated to 100 °C for 3-6 h. Then, volatiles were evaporated under reduced pressure. The residue was dissolved in EtOAc (50 mL) and washed with water (2 × 40 mL) and brine (2 × 30 mL). The organic phase was dried over anhydrous sodium sulfate and concentrated under reduced pressure. Product was suspended with EtOAc (5 mL), filtered off and obtained in high quality without additional purification.

7-Methoxy-4-methyl-8-(1,2,3,4-tetrahydroquinolin-1-carbonyl)-2H-chromen-2-one (3a): The product was prepared according to General Method 4. Compound 2a was used as starting material. The reaction mixture was heated to reflux for 3 h. Yield: 97% as a beige solid; mp 170-171 °C as a dynamic equilibrium of *cistrans* amide bond rotamers distinguishable by NMR in a ratio 2.5:1. ¹H NMR (500 MHz, DMSO)  $\delta$  8.12-8.08 (1H, m, CH, B), 7.84 (1H, d, J=8.8 Hz, CH, B), 7.67 (1H, d, J=8.8 Hz, CH, A), 7.23-7.18 (3H, m, CH, B), 7.14-7.07 (1H, m, CH, A, 1H, m, CH, B), 7.00 (1H, d, J=8.8 Hz, CH, A), 6.91 (1H, dt, J=7.5 Hz, J=1.0 Hz, CH, A), 6.70 (1H, t, J=7.5 Hz, CH, A), 6.53 (1H, d, J=7.5 Hz, CH, A), 6.28 (1H, s, CH, B), 6.13 (1H, s, CH, A), 4.05-3.96 (1H, m, CH<sub>2</sub>, A), 3.93 (3H, s, CH<sub>3</sub>, B), 3.77 (3H, s, CH<sub>3</sub>, A), 3.78-3.70 (1H, m, CH<sub>2</sub>, A), 3.45-3.38 (2H, m, CH<sub>2</sub>, B), 2.91-2.78 (1H, m, CH<sub>2</sub>, A, 2H, m, CH<sub>2</sub>, B), 2.78-2.69 (1H, m, CH<sub>2</sub>, A), 2.44 (3H, s CH<sub>3</sub>, B), 2.33 (3H, s CH<sub>3</sub>, A), 2.16-2.06 (1H, m, CH<sub>2</sub>, A), 2.00-1.82 (1H, m, CH<sub>2</sub>, A, 2H, m, CH<sub>2</sub>, B). **Isomer A**: ¹³C NMR (125 MHz, DMSO)  $\delta$  163.3, 159.3, 158.6, 153.5, 150.1, 138.3, 133.4,

128.0, 127.3, 125.5, 125.4, 122.8, 114.6, 113.2, 111.5, 108.2, 56.5, 42.5, 26.1, 23.5, 18.3. **Isomer B**:  $^{13}$ C NMR (125 MHz, DMSO)  $\delta$  163.0, 159.6, 157.9, 153.7, 149.9, 137.5, 129.9, 129.4, 127.2, 125.6, 124.7, 124.1, 114.4, 113.9, 111.9, 108.5, 56.8, 46.5, 26.5, 23.3, 18.4. HRMS (m/z): [M+H]<sup>+</sup> calcd. for C<sub>21</sub>H<sub>20</sub>NO<sub>4</sub>, 350.1387; found, 350.1394; Elem. Anal. Calcd for C<sub>21</sub>H<sub>19</sub>NO<sub>4</sub>: C, 72.19; H, 5.48; N, 4.01. Found: C, 72.58; H, 5.49; N, 3.89.

4-Ethyl-7-methoxy-8-(1,2,3,4-tetrahydroquinolin-1-carbonyl)-2H-chromen-2-one (3b): The product was prepared according to General Method 4. Compound 2b was used as starting material. The reaction mixture was heated to reflux for 3 h. Yield: 86 % as a white solid; mp 218-220 °C as a dynamic equilibrium of cistrans amide bond rotamers distinguishable by NMR in a ratio 2.4:1. <sup>1</sup>H NMR (500 MHz, DMSO) δ 8.10  $(1H, d, J = 8.6 \text{ Hz}, CH, \mathbf{B}), 7.89 (1H, d, J = 8.6 \text{ Hz}, CH, \mathbf{B}), 7.72 (1H, d, J = 8.8 \text{ Hz}, CH, \mathbf{A}), 7.24-7.18 (3H, d, J = 8.6 \text{ Hz}, CH, d, J = 8.8 \text{ Hz}, CH, d, J$ m, CH, **B**), 7.14-7.06 (1H, m, CH, **A**, 1H, m, CH, **B**), 6.99 (1H, d, J = 8.8 Hz, CH, **A**), 6.91 (1H, t, J = 7.4Hz, CH, A), 6.70 (1H, t, J = 7.4 Hz, CH, A), 6.53 (1H, d, J = 7.4 Hz, CH, A), 6.22 (1H, s, CH, B), 6.07 (1H, s, CH, A), 4.06-3.96 (1H, m, CH<sub>2</sub>, A), 3.93 (3H, s, CH<sub>3</sub>, B), 3.77 (3H, s, CH<sub>3</sub>, A), 3.80-3.69 (1H, m, CH<sub>2</sub>, A), 3.46-3.37 (2H, m, CH<sub>2</sub>, B), 2.92-2.66 (4H, m, CH<sub>2</sub>, A, 4H, m, CH<sub>2</sub>, B), 2.16-2.06 (1H, m, CH<sub>2</sub>, A), 2.01-1.83 (1H, m, CH<sub>2</sub>, **A**, 2H, m, CH<sub>2</sub>, **B**), 1.24 (3H, t, J = 7.4 Hz, CH<sub>3</sub>, **B**), 1.15 (3H, t, J = 7.2 Hz, CH<sub>3</sub>, **A**). **Isomer A**: <sup>13</sup>C NMR (125 MHz, DMSO) δ 163.3, 159.6, 158.5, 158.2, 150.3, 138.3, 133.4, 128.0, 126.8, 125.5, 125.4, 122.8, 114.8, 112.4, 109.6, 108.2, 56.5, 42.5, 26.1, 24.1, 23.5, 12.2. **Isomer B**: <sup>13</sup>C NMR (125 MHz, DMSO) δ 163.0, 159.9, 158.4, 157.7, 150.0, 137.5, 129.9, 129.4, 126.8, 125.6, 124.7, 124.1, 114.5, 113.0, 110.1, 108.6, 56.8, 46.6, 26.5, 24.3, 23.3, 12.5. HRMS (m/z): [M+H]<sup>+</sup> calcd. for C<sub>22</sub>H<sub>22</sub>NO<sub>4</sub>, 364.1543; found, 364.1549; Elem. Anal. Calcd for C<sub>22</sub>H<sub>21</sub>NO<sub>4</sub>: C, 72.71; H, 5.82; N, 3.85. Found: C, 72.32; H, 5.89; N, 3.69.

7-Methoxy-4-propyl-8-(1,2,3,4-tetrahydroquinolin-1-carbonyl)-2H-chromen-2-one (3c): The product was prepared according to General Method 4. Compound 2c was used as starting material. The reaction mixture was heated to reflux for 6 h. Yield: 80% as a white solid; mp 200-202 °C as a dynamic equilibrium of cistrans amide bond rotamers distinguishable by NMR in a ratio 2.4:1. <sup>1</sup>H NMR (500 MHz, DMSO) δ 8.10  $(1H, d, J = 8.2 \text{ Hz}, CH, \mathbf{B}), 7.90 (1H, d, J = 8.2 \text{ Hz}, CH, \mathbf{B}), 7.73 (1H, d, J = 8.9 \text{ Hz}, CH, \mathbf{A}), 7.23-7.18 (3H, d, J = 8.2 \text{ Hz}, CH, d, J = 8.9 \text{ Hz}, CH, d, J$ m, CH, **B**), 7.14-7.07 (1H, m, CH, **A**, 1H, m, CH, **B**), 6.99 (1H, d, J = 8.9 Hz, CH, **A**), 6.90 (1H, dt, J = 7.3Hz, J = 1.4 Hz, CH, A), 6.69 (1H, t, J = 7.3 Hz, CH, A), 6.52 (1H, d, J = 7.3 Hz, CH, A), 6.23 (1H, s, CH, **B**), 6.07 (1H, s, CH, **A**), 4.06-3.97 (1H, m, CH<sub>2</sub>, **A**), 3.93 (3H, s, CH<sub>3</sub>, **B**), 3.77 (3H, s, CH<sub>3</sub>, **A**), 3.78-3.70 (1H, m, CH<sub>2</sub>, **A**), 3.46-3.39 (2H, m, CH<sub>2</sub>, **B**), 2.91-2.59 (4H, m, CH<sub>2</sub>, **A**, 4H, m, CH<sub>2</sub>, **B**), 2.16-2.06 (1H, m, CH<sub>2</sub>, **A**), 2.00-1.84 (1H, m, CH<sub>2</sub>, **A**, 2H, m, CH<sub>2</sub>, **B**), 1.75-1.49 (2H, m, CH<sub>2</sub>, **A**, 2H, m, CH<sub>2</sub>, **B**), 0.99 (3H, t, J = 7.3 Hz, CH<sub>3</sub>, **B**), 0.91 (3H, t, J = 7.5 Hz, CH<sub>3</sub>, **A**). **Isomer A**: <sup>13</sup>C NMR (125 MHz, DMSO)  $\delta$  163.3, 159.4, 158.5, 156.8, 150.4, 138.3, 133.4, 128.0, 127.0, 125.5, 125.3, 122.8, 114.8, 112.4, 110.6, 108.2, 56.5, 42.5, 32.8, 26.1, 24.5, 21.3, 13.7. **Isomer B**: <sup>13</sup>C NMR (125 MHz, DMSO) δ 163.0, 159.7, 157.7, 156.9, 150.1, 137.5, 129.9, 129.4, 127.0, 125.6, 124.7, 124.1, 114.6, 113.1, 111.0, 108.6, 56.8, 46.5, 33.0, 26.5, 24.3, 21.5, 13.9. HRMS (m/z): [M+H]<sup>+</sup> calcd. for C<sub>23</sub>H<sub>24</sub>NO<sub>4</sub>, 378.1700; found, 378.1711; Elem. Anal. Calcd for C<sub>23</sub>H<sub>23</sub>NO<sub>4</sub>: C, 73.19; H, 6.14; N, 3.71. Found: C, 72.8; H, 6.10; N, 3.58.

4-Butyl-7-methoxy-8-(1,2,3,4-tetrahydroquinolin-1-carbonyl)-2H-chromen-2-one (3d): The product was prepared according to General Method 4. Compound 2d was used as starting material. The reaction mixture

was refluxed for 6 h. Yield: 63 % as a beige solid; mp 161-163 °C as a dynamic equilibrium of *cis-trans* amide bond rotamers distinguishable by NMR in a ratio 2.9:1.  $^{1}$ H NMR (600 MHz, DMSO) δ 8.07 (1H, d, J = 8.1 Hz, CH, **B**), 7.85 (1H, d, J = 8.1 Hz, CH, **B**), 7.69 (1H, d, J = 9.0 Hz, CH, **A**), 7.20-7.14 (3H, m, CH, **B**), 7.11-7.02 (1H, m, CH, **A**, 1H, m, CH, **B**), 6.95 (1H, d, J = 9.0 Hz, CH, **A**), 6.87 (1H, t, J = 7.4 Hz, CH, **A**), 6.66 (1H, t, J = 7.4 Hz, CH, **A**), 6.48 (1H, d, J = 7.4 Hz, CH, **A**), 6.19 (1H, s, CH, **B**), 6.04 (1H, s, CH, **A**), 4.03-3.94 (1H, m, CH<sub>2</sub>, **A**), 3.90 (3H, s, CH<sub>3</sub>, **B**), 3.74 (3H, s, CH<sub>3</sub>, **A**), 3.73-3.67 (1H, m, CH<sub>2</sub>, **A**), 3.42-3.36 (2H, m, CH<sub>2</sub>, **B**), 2.88-2.57 (4H, m, CH<sub>2</sub>, **A**), 4.63-1.53 (2H, m, CH<sub>2</sub>, **B**), 1.53-1.42 (2H, m, CH<sub>2</sub>, **A**), 1.87-1.80 (2H, m, CH<sub>2</sub>, **B**), 1.63-1.53 (2H, m, CH<sub>2</sub>, **B**), 1.53-1.42 (2H, m, CH<sub>2</sub>, **A**), 1.41-1.35 (2H, m, CH<sub>2</sub>, **B**), 1.33-1.25 (2H, m, CH<sub>2</sub>, **A**), 0.90 (3H, t, J = 7.2 Hz, CH<sub>3</sub>, **B**), 0.85 (3H, t, J = 7.5 Hz, CH<sub>3</sub>, **A**). **Isomer A**:  $^{13}$ C NMR (150 MHz, DMSO) δ 163.3, 159.4, 158.5, 157.0, 150.4, 138.3, 133.4, 128.0, 127.0, 125.4, 125.3, 122.8, 114.8, 112.4, 110.5, 108.2, 56.5, 42.5, 30.7, 30.1, 26.1, 23.5, 21.9, 13.8. **Isomer B**:  $^{13}$ C NMR (150 MHz, DMSO) δ 163.0, 159.7, 157.7, 157.2, 150.1, 137.5, 129.8, 129.3, 126.9, 125.6, 124.7, 124.1, 114.6, 113.0, 110.9, 108.6, 56.7, 46.5, 30.9, 30.3, 26.5, 23.3, 22.1, 13.9. HRMS (m/z): [M+H]<sup>+</sup> calcd. for C<sub>24</sub>H<sub>26</sub>NO<sub>4</sub>, 392.1856; found, 392.1865; Elem. Anal. Calcd for C<sub>24</sub>H<sub>25</sub>NO<sub>4</sub>: C, 73.64; H, 6.44; N, 3.58. Found: C, 73.25; H, 6.61; N, 3.42.

General Method 5. Synthesis of compounds 4a-d. 1-Bromopropane (0.2 g, 0.15 mL, 1.63 mmol) was added to a solution of corresponding 4-alkyl-7-hydroxy-8-(1,2,3,4-tetrahydroquinoline-1-carbonyl)-2H-chromen-2-one 2a-d (0.54 mmol) and potassium carbonate (0.23 g, 1.63 mmol) in DMF (7 mL). The reaction mixture was heated to 75 °C for 12 h. After cooling, the reaction mixture was diluted with EtOAc (50 mL), washed with water (3 × 30 mL) and brine (1 × 30 mL), organic phase was dried over anhydrous sodium sulfate, and concentrated under reduced pressure. The product was suspended in diethyl ether (10-15 mL), filtered off and obtained in high quality without additional purification.

4-Methyl-7-propoxy-8-(1,2,3,4-tetrahydroquinolin-1-carbonyl)-2H-chromen-2-one (4a): The product was prepared according to General Method 5. Compound 2a was used as starting material. Yield: 69% as a white solid; mp 158-159 °C as a dynamic equilibrium of cis-trans amide bond rotamers distinguishable by NMR in a ratio 2.2:1. <sup>1</sup>H NMR (500 MHz, DMSO)  $\delta$  8.06 (1H, d, J = 8.9 Hz, CH, **B**), 7.80 (1H, d, J = 8.9Hz, CH, **B**), 7.65 (1H, d, J = 8.8 Hz, CH, **A**), 7.25-7.16 (3H, m, CH, **B**), 7.14-7.06 (1H, m, CH, **A**, 1H, m, CH, **B**), 6.98 (1H, d, J = 8.8 Hz, CH, **A**), 6.91 (1H, t, J = 7.6 Hz CH, **A**), 6.70 (1H, t, J = 7.6 Hz, CH, **A**), 6.56 (1H, d, J = 7.6 Hz, CH, A), 6.27 (1H, s, CH, B), 6.14 (1H, s, CH, A), 4.16-4.10 (2H, m, CH<sub>2</sub>, B), 4.04-4.003.97 (1H, m, CH<sub>2</sub>, **A**), 3.97-3.82 (3H, m, CH<sub>2</sub>, **A**), 3.51-3.42 (1H, m, CH<sub>2</sub>, **B**), 3.41-3.34 (1H, m, CH<sub>2</sub>, **B**), 2.92-2.83 (1H, m, CH<sub>2</sub>, A), 2.83-2.69 (1H, m, CH<sub>2</sub>, A, 2H, m, CH<sub>2</sub>, B), 2.43 (3H, s CH<sub>3</sub>, B), 2.33 (3H, s CH<sub>3</sub>, **A**), 2.15-2.06 (1H, m CH<sub>2</sub>, **A**), 2.00-1.82 (1H, m CH<sub>2</sub>, **A**, 2H, m CH<sub>2</sub>, **B**), 1.75-1.59 (2H, m CH<sub>2</sub>, **A**, 2H, m CH<sub>2</sub>, **B**), 0.92 (3H, t, J = 7.3 Hz, CH<sub>3</sub>, **A**, 3H, t, J = 7.3 Hz, CH<sub>3</sub>, **B**). Isomer A: <sup>13</sup>C NMR (125 MHz, DMSO) δ 163.3, 159.4, 157.9, 153.5, 150.4, 138.2, 132.9, 128.2, 127.1, 125.4, 125.4, 122.6, 114.8, 113.0, 111.5, 108.8, 70.3, 42.6, 26.3, 23.4, 22.0, 18.3, 10.3. **Isomer B:** <sup>13</sup>C NMR (125 MHz, DMSO) δ 162.1, 159.6, 157.3, 153.6, 150.0, 137.5, 129.9, 129.3, 127.1, 125.6, 124.7, 124.0, 114.5, 113.7, 111.8, 109.3, 70.4, 46.4, 26.5, 23.5, 22.1, 18.4, 10.4. HRMS (m/z): [M+H]<sup>+</sup> calcd. for C<sub>23</sub>H<sub>24</sub>NO<sub>4</sub>, 378.1700; found, 378.1702; Elem. Anal. Calcd for C<sub>23</sub>H<sub>23</sub>NO<sub>4</sub>: C, 73.19; H, 6.14; N, 3.71. Found: C, 72.97; H 5.94, N 3.65.

4-Ethyl-7-propoxy-8-(1,2,3,4-tetrahydroquinolin-1-carbonyl)-2H-chromen-2-one (4b): The product was prepared according to General Method 5. Compound 2b was used as starting material. Yield: 75% as a white solid; mp 139-140 °C as a dynamic equilibrium of cis-trans amide bond rotamers distinguishable by NMR in a ratio 2:1. <sup>1</sup>H NMR (600 MHz, DMSO)  $\delta$  8.01 (1H, d, J = 8.5 Hz, CH, **B**), 7.80 (1H, d, J = 8.5Hz, CH, **B**), 7.65 (1H, d, J = 9.0 Hz, CH, **A**), 7.20-7.12 (3H, m, CH, **B**), 7.09-7.02 (1H, m, CH, **A**, 1H, m, CH, **B**), 6.93 (1H, d, J = 9.0 Hz, CH, **A**), 6.85 (1H, t, J = 7.6 Hz, CH, **A**), 6.65 (1H, t, J = 7.6 Hz, CH, **A**), 6.51 (1H, d, J = 7.6 Hz, CH, A), 6.16 (1H, s, CH, B), 6.03 (1H, s, CH, A), 4.13-4.04 (2H, m, CH<sub>2</sub>, B), 4.00-3.77 (4H, m, CH<sub>2</sub>, **A**), 3.45-3.38 (1H, m, CH<sub>2</sub>, **B**), 3.36-3.30 (1H, m, CH<sub>2</sub>, **B**), 2.86-2.62 (4H, m, CH<sub>2</sub>, **A**, 4H, m, CH<sub>2</sub>, **B**), 2.10-2.00 (1H, m, CH<sub>2</sub>, **A**), 1.94-1.84 (1H, m, CH<sub>2</sub>, **A**), 1,84-1.77 (2H, m, CH<sub>2</sub>, **B**), 1.70-1.55 (2H, m, CH<sub>2</sub>, **A**, 2H, m, CH<sub>2</sub>, **B**), 1.19 (3H, t, J = 7.5 Hz, CH<sub>3</sub>, **B**), 1.11 (3H, t, J = 7.7 Hz, CH<sub>3</sub>, **A**),  $0.87 (3H, t, J = 7.4 Hz, CH_3, A), 0.84 (3H, t, J = 7.2 Hz, CH_3, B)$ . Isomer A: <sup>13</sup>C NMR (150 MHz, DMSO) δ 163.6, 160.0, 158.5, 158.1, 150.9, 138.6, 133.2, 128.6, 127.0, 125.7, 125.7, 122.9, 115.3, 112.6, 109.9, 109.2, 70.7, 42.9, 26.7, 24.5, 23.7, 22.3, 12.6, 10.7. **Isomer B**:  $^{13}$ C NMR (150 MHz, DMSO)  $\delta$  163.4, 160.2, 158.7, 157.5, 150.5, 137.9, 130.3, 129.7, 127.0, 126.0, 125.0, 124.3, 115.1, 113.2, 110.3, 109.7, 70.7, 46.8, 26.8, 24.6, 23.8, 22.5, 12.8, 10.7. HRMS (m/z): [M+H]<sup>+</sup> calcd. for C<sub>24</sub>H<sub>26</sub>NO<sub>4</sub>, 392.1856; found, 392.1856; Elem. Anal. Calcd for C<sub>24</sub>H<sub>25</sub>NO<sub>4</sub>: C, 73.64; H, 6.44; N, 3.58. Found: C, 73.27; H, 6.54; N 3.55.

7-Propoxy-4-propyl-8-(1,2,3,4-tetrahydroquinolin-1-carbonyl)-2H-chromen-2-one (4c): The product was prepared according to General Method 5. Compound 2c was used as starting material. Yield: 73% as a white solid; mp 122-123 °C as a dynamic equilibrium of cis-trans amide bond rotamers distinguishable by NMR in a ratio 2:1. <sup>1</sup>H NMR (500 MHz, DMSO)  $\delta$  8.06 (1H, d, J = 8.5 Hz, CH, **B**), 7.86 (1H, d, J = 8.5 Hz, CH, **B**), 7.71 (1H, d, J = 8.9 Hz, CH, **A**), 7.24-7.15 (3H, m, CH, **B**), 7.14-7.01 (1H, m, CH, **A**, 1H, m, CH, **B**), 6.97 (1H, d, J = 8.9 Hz, CH, A), 6.90 (1H, t, J = 7.5 Hz, CH, A), 6.69 (1H, t, J = 7.5 Hz, CH, A), 6.55 (1H, d, J = 7.5 Hz, CH, A), 6.21 (1H, s, CH, B), 6.08 (1H, s, CH, A), 4.13 (2H, t, J = 5.8 Hz, CH<sub>2</sub>, B), 4.04-3.81 (4H, m, CH<sub>2</sub>, **A**), 3.52-3.43 (1H, m, CH<sub>2</sub>, **B**), 3.42-3.35 (1H, m, CH<sub>2</sub>, **B**), 2.93-2.59 (4H, m, CH<sub>2</sub>, **A**, 4H, m, CH<sub>2</sub>, **B**), 2.15-2.06 (1H, m, CH<sub>2</sub>, **A**), 2.00-1.91 (1H, m, CH<sub>2</sub>, **A**), 1.91-1.84 (2H, m, CH<sub>2</sub>, **B**), 1.75-1.47 (4H, m, CH<sub>2</sub>, **A**, 4H, m, CH<sub>2</sub>, **B**), 0.99 (3H, t, J = 7.5 Hz, CH<sub>3</sub>, **B**), 0.92 (3H, t, J = 7.5 Hz, CH<sub>3</sub>, **A**), 0.91 (3H, t, J = 7.2 Hz, CH<sub>3</sub>, A), 0.91 (3H, t, J = 7.2 Hz, CH<sub>3</sub>, B). Isomer A: <sup>13</sup>C NMR (125 MHz, DMSO)  $\delta$  163.3, 159.5, 157.8, 156.8, 150.6, 138.2, 132.9, 128.2, 126.9, 125.4, 125.3, 122.6, 115.0, 112.3, 110.5, 108.8, 70.3, 42.6, 32.8, 26.3, 23.3, 22.0, 21.3, 13.7, 10.3. **Isomer B:** <sup>13</sup>C NMR (125 MHz, DMSO) δ 163.1, 159.7, 157.2, 156.9, 150.2, 137.5, 129.9, 129.3, 126.9, 125.6, 124.7, 124.0, 114.8, 112.9, 110.9, 109.3, 70.4, 46.4, 33.0, 26.5, 23.5, 22.1, 21.5, 13.9, 10.3. HRMS (m/z): [M+H]<sup>+</sup> calcd. for C<sub>25</sub>H<sub>28</sub>NO<sub>4</sub>, 406.2013; found, 406.2015; Elem. Anal. Calcd for C<sub>25</sub>H<sub>27</sub>NO<sub>4</sub>: C, 74.05; H, 6.71; N, 3.45. Found: C, 74.24; H, 6.93; N 3.70.

4-Butyl-7-propoxy-8-(1,2,3,4-tetrahydroquinolin-1-carbonyl)-2H-chromen-2-one (4d): The product was prepared according to General Method 5. Compound 2d was used as starting material. Yield: 59% as a white solid; mp 116-117 °C as a dynamic equilibrium of *cis-trans* amide bond rotamers distinguishable by NMR in a ratio 2.5:1. <sup>1</sup>H NMR (600 MHz, DMSO) δ 8.03 (1H, d, J = 9.0 Hz, CH, **B**), 7.82 (1H, d, J = 9.0 Hz, CH, **B**), 7.67 (1H, d, J = 8.7 Hz, CH, **A**), 7.21-7.12 (3H, m, CH, **B**), 7.11-7.03 (1H, m, CH, **A**, 1H, m, CH, **B**), 6.94 (1H, d, J = 8.7 Hz, CH, **A**), 6.87 (1H, t, J = 7.4 Hz, CH, **A**), 6.66 (1H, t, J = 7.4 Hz, CH, **A**), 6.51 (1H, d, J = 7.4 Hz, CH, **A**), 6.18 (1H, s, CH, **B**), 6.05 (1H, s, CH, **A**), 4.12-4.07 (2H, m, CH<sub>2</sub>, **B**), 4.00-3.94 (1H, m, CH<sub>2</sub>, **A**), 3.94-3.78 (3H, m, CH<sub>2</sub>, **A**), 3.46-3.40 (1H, m, CH<sub>2</sub>, **B**), 3.38-3.31 (1H, m, CH<sub>2</sub>, **B**),

2.88-2.60 (4H, m, CH<sub>2</sub>, **A**, 4H, m, CH<sub>2</sub>, **B**), 2.11-2,03 (1H, m, CH<sub>2</sub>, **A**,), 1.97-1.87 (1H, m, CH<sub>2</sub>, **A**), 1,87-1.81 (2H, m, CH<sub>2</sub>, **B**), 1.70-1.43 (4H, m, CH<sub>2</sub>, **A**, 4H, m, CH<sub>2</sub>, **B**), 1.41-1,35 (2H, m, CH<sub>2</sub>, **B**), 1.35-1,26 (2H, m, CH<sub>2</sub>, **A**), 0.90 (3H, t, J = 7.5 Hz, CH<sub>3</sub>, **B**), 0.89 (3H, t, J = 7.5 Hz, CH<sub>3</sub>, **A**), 0.89 (3H, t, J = 7.5 Hz, CH<sub>3</sub>, **B**), 0.86 (3H, t, J = 7.5 Hz, CH<sub>3</sub>, **A**). **Isomer A**: <sup>13</sup>C NMR (150 MHz, DMSO)  $\delta$  163.3, 159.5, 157.7, 157.0, 150.6, 138.2, 132.9, 128.2, 126.9, 125.3, 125.3, 122.6, 115.0, 112.2, 110.4, 108.8, 70.3, 42.6, 30.7, 30.2, 26.3, 23.3, 22.0, 22.0, 13.8, 10.3. **Isomer B**: <sup>13</sup>C NMR (150 MHz, DMSO)  $\delta$  163.1, 159.7, 157.2, 157.2, 150.2, 137.5, 129.9, 129.3, 126.9, 125.6, 124.7, 124.0, 114.8, 112.9, 110.8, 109.3, 70.3, 46.4, 30.9, 30.4, 26.4, 23.4, 22.1, 22.1, 13.9, 10.3. HRMS (m/z): [M+H]<sup>+</sup> calcd. for C<sub>26</sub>H<sub>30</sub>NO<sub>4</sub>, 420.2169; found, 420.2176; Elem. Anal. Calcd for C<sub>26</sub>H<sub>29</sub>NO<sub>4</sub>: C, 74.44; H, 6.97; N, 3.34. Found: C, 74.69; H, 6.97; N 3.27.

**General Method 6. Synthesis of compounds 5a-d.** 2-Bromoethan-1-ol (0.23 g, 0.13 mL, 1.8 mmol) was added to a solution of corresponding 4-alkyl-7-hydroxy-8-(1,2,3,4-tetrahydroquinoline-1-carbonyl)-2*H*-chromen-2-one **2a-d** (0.6 mmol) and potassium carbonate (0.25 g, 1.8 mmol) in DMF (7 mL). The reaction mixture was heated to 100 °C for 12 h. After cooling, the reaction mixture was diluted with EtOAc (50 mL), washed with water (3 × 30 mL) and brine (1 × 30 mL), organic layer was dried over anhydrous sodium sulfate, and concentrated under reduced pressure. The product was purified by column chromatography (mobile phase: hexane/EtOAc, 1:1; then hexane/EtOAc/acetic acid, 5:5:1).

7-(2-Hydroxyethoxy)-4-methyl-8-(1,2,3,4-tetrahydroquinolin-1-carbonyl)-2H-chromen-2-one (5a): The product was prepared according to General Method 6. Compound 2a was used as starting material. Yield: 29% as a white solid; mp 171-172 °C as a dynamic equilibrium of cis-trans amide bond rotamers distinguishable by NMR in a ratio 2.5:1. <sup>1</sup>H NMR (500 MHz, DMSO)  $\delta$  8.09 (1H, d, J = 8.6 Hz, CH, **B**), 7.80 (1H, d, J = 8.6 Hz, CH, **B**), 7.65 (1H, d, J = 8.8 Hz, CH, **A**), 7.25-7.18 (3H, m, CH, **B**), 7.13-7.06 (1H, m, CH, A, 1H, m, CH, B), 7.03 (1H, d, J = 8.8 Hz, CH, A), 6.90 (1H, t, J = 7.5 Hz, CH, A), 6.70 (1H, t, J = 7.5 Hz, CH, A), 6.70 (1H, t, J = 7.5 Hz, CH, A), 6.70 (1H, t, J = 7.5 Hz, CH, A), 6.70 (1H, t, J = 7.5 Hz, CH, A), 6.70 (1H, t, J = 7.5 Hz, CH, A), 6.70 (1H, t, J = 7.5 Hz, CH, A), 6.70 (1H, t, J = 7.5 Hz, CH, A), 6.70 (1H, t, J = 7.5 Hz, CH, A), 6.70 (1H, t, J = 7.5 Hz, CH, A), 6.70 (1H, t, J = 7.5 Hz, CH, A), 6.70 (1H, t, J = 7.5 Hz, CH, A), 6.70 (1H, t, J = 7.5 Hz, CH, A), 6.70 (1H, t, J = 7.5 Hz, CH, A), 6.70 (1H, t, J = 7.5 Hz, CH, A), 6.70 (1H, t, J = 7.5 Hz, CH, A), 6.70 (1H, t, J = 7.5 Hz, CH, A), 6.70 (1H, t, J = 7.5 Hz, CH, A), 6.70 (1H, t, J = 7.5 Hz, CH, A), 6.70 (1H, t, J = 7.5 Hz, CH, A), 6.70 (1H, t, J = 7.5 Hz, CH, A), 6.70 (1H, t, J = 7.5 Hz, CH, A), 6.70 (1H, t, J = 7.5 Hz, CH, A), 6.70 (1H, t, J = 7.5 Hz, CH, A), 6.70 (1H, t, J = 7.5 Hz, CH, A), 6.70 (1H, t, J = 7.5 Hz, CH, A), 6.70 (1H, t, J = 7.5 Hz, CH, A), 6.70 (1H, t, J = 7.5 Hz, CH, A), 6.70 (1H, t, J = 7.5 Hz, CH, A), 6.70 (1H, t, J = 7.5 Hz, CH, A), 6.70 (1H, t, J = 7.5 Hz, CH, A), 6.70 (1H, t, J = 7.5 Hz, CH, A), 6.70 (1H, t, J = 7.5 Hz, CH, A), 6.70 (1H, t, J = 7.5 Hz, CH, A), 6.70 (1H, t, J = 7.5 Hz, CH, A), 6.70 (1H, t, J = 7.5 Hz, CH, A), 6.70 (1H, t, J = 7.5 Hz, CH, A), 6.70 (1H, t, J = 7.5 Hz, CH, A), 6.70 (1H, t, J = 7.5 Hz, CH, A), 6.70 (1H, t, J = 7.5 Hz, CH, A), 6.70 (1H, t, J = 7.5 Hz, CH, A), 6.70 (1H, t, J = 7.5 Hz, CH, A), 6.70 (1H, t, J = 7.5 Hz, CH, A), 6.70 (1H, t, J = 7.5 Hz, CH, A), 6.70 (1H, t, J = 7.5 Hz, CH, A), 6.70 (1H, t, J = 7.5 Hz, CH, A), 6.70 (1H, t, J = 7.5 Hz, CH, A), 6.70 (1H, t, J = 7.5 Hz, CH, A), 6.70 (1H, t, J = 7.5 Hz, CH, A), 6.70 (1H, t, J = 7.5 Hz, CH, A), 6.70 (1H, t, J = 7.5 Hz, CH, A), 6.70 (1H, t, J = 7.5 Hz, CH, A), 6.70 (1H, t, J = 7.5 Hz, CH, A), 6.70 (1H, t, J = 7.5 Hz, CH, A), 6.70 (1H, t, J = 7.5 Hz, CH, A), 6.70 (1H, t, J = 7.5 Hz, CH, A), 6.70 (1H, t, J = 7.5 Hz = 7.5 Hz, CH,  $\mathbf{A}$ ), 6.63 (1H, d, J = 7.5 Hz, CH,  $\mathbf{A}$ ), 6.27 (1H, s, CH,  $\mathbf{B}$ ), 6.14 (1H, s, CH,  $\mathbf{A}$ ), 4.23-4.18 (2H, m, CH<sub>2</sub>, **B**), 4.13-4.06 (1H, m, CH<sub>2</sub>, **A**), 4.02-3.92 (1H, m, CH<sub>2</sub>, **A**, 1H, m, CH<sub>2</sub>, **A**), 3.83-3.76 (1H, m, CH<sub>2</sub>, **A**), 3.69 (2H, t, J = 4.9 Hz, CH<sub>2</sub>, **B**), 3.64 (2H, t, J = 4.9 Hz, CH<sub>2</sub>, **A**), 3.50-3.45 (2H, m, CH<sub>2</sub>, **B**), 2.92-2.71 (2H, m, CH<sub>2</sub>, **A**, 2H, m, CH<sub>2</sub>, **B**), 2.44 (3H, s, CH<sub>3</sub>, **B**), 2.33 (3H, s, CH<sub>3</sub>, **A**), 2.17-2.07 (1H, m, CH<sub>2</sub>, **A**,), 2.00-1.89 (1H, m, CH<sub>2</sub>, **A**), 1.89-1.72 (2H, m, CH<sub>2</sub>, **B**). **Isomer A**: <sup>13</sup>C NMR (125 MHz, DMSO) δ 163.3, 159.4, 158.1, 153.5, 150.3, 138.3, 133.0, 128.1, 127.1, 125.4, 125.4, 122.9, 114.9, 113.1, 111.5, 109.1, 70.8, 59.4, 42.6, 26.3, 23.4, 18.3. **Isomer B:** <sup>13</sup>C NMR (125 MHz, DMSO) δ 163.1, 159.6, 157.4, 153.6, 150.0, 137.6, 130.1, 129.3, 127.1, 125.6, 124.7, 124.2, 114.7, 113.8, 111.9, 109.6, 71.0, 59.6, 46.4, 26.5, 23.4, 18.4. HRMS (m/z): [M+H]<sup>+</sup> calcd. for C<sub>22</sub>H<sub>22</sub>NO<sub>5</sub>, 380.1492; found, 380.1490; Elem. Anal. Calcd for C<sub>22</sub>H<sub>27</sub>NO<sub>8</sub> (trihydrate): C, 60.96; H, 6.28; N 3.23. Found: C, 60.82; H, 6.03; N 3.21.

4-Ethyl-7-(2-hydroxyethoxy)-8-(1,2,3,4-tetrahydroquinolin-1-carbonyl)-2H-chromen-2-one (5b): The product was prepared according to General Method 6. Compound 2b was used as starting material. Yield: 60% as a white solid; mp 130-131 °C as a dynamic equilibrium of *cis-trans* amide bond rotamers distinguishable by NMR in a ratio 2.5:1.  $^{1}$ H NMR (500 MHz, DMSO) δ 8.09 (1H, d, J = 8.6 Hz, CH, B), 7.85 (1H, d, J = 8.6 Hz, CH, B), 7.70 (1H, d, J = 9.0 Hz, CH, A), 7.25-7.18 (3H, m, CH, B), 7.14-7.06 (1H, m, CH, A, 1H, m, CH, B), 7.02 (1H, d, J = 9.0 Hz, CH, A), 6.90 (1H, dt, J = 7.3 Hz, J = 1.0 Hz, CH, A),

6.69 (1H, t, J = 7.3 Hz, CH, **A**), 6.63 (1H, d, J = 7.3 Hz, CH, **A**), 6.22 (1H, s, CH, **B**), 6.07 (1H, s, CH, **A**), 4.23-4.18 (2H, m, CH<sub>2</sub>, **B**), 4.13-4.06 (1H, m, CH<sub>2</sub>, **A**), 4.02-3.92 (1H, m, CH<sub>2</sub>, **A**, 1H, m, CH<sub>2</sub>, **A**), 3.83-3.76 (1H, m, CH<sub>2</sub>, **A**), 3.70-3.67 (2H, m, CH<sub>2</sub>, **B**), 3.64 (2H, t, J = 5.1 Hz, CH<sub>2</sub>, **A**), 3.51-3.34 (2H, m, CH<sub>2</sub>, **B**), 2.93-2.63 (4H, m, CH<sub>2</sub>, **A**, 4H, m, CH<sub>2</sub>, **B**), 2.18-2.05 (1H, m, CH<sub>2</sub>, **A**), 2.02-1.88 (1H, m, CH<sub>2</sub>, **A**), 1.88-1.79 (2H, m, CH<sub>2</sub>, **B**), 1.24 (3H, t, J = 7.3 Hz, CH<sub>3</sub>, **B**), 1.16 (3H, t, J = 7.3 Hz, CH<sub>3</sub>, **A**). **Isomer A**:  $^{13}$ C NMR (125 MHz, DMSO)  $\delta$  163.4, 159.7, 158.2, 158.0, 150.4, 138.3, 133.0, 128.2, 126.7, 125.5, 125.4, 122.9, 115.1, 112.3, 109.6, 109.2, 70.8, 59.4, 42.7, 26.3, 24.1, 23.4, 12.2. **Isomer B**:  $^{13}$ C NMR (125 MHz, DMSO)  $\delta$  163.1, 159.9, 158.4, 157.3, 150.2, 137.6, 130.1, 129.3, 126.7, 125.6, 124.7, 124.2, 114.9, 113.0, 110.0, 109.6, 71.0, 59.6, 46.5, 26.5, 24.3, 23.4, 12.5. HRMS (m/z): [M+H]<sup>+</sup> calcd. for C<sub>23</sub>H<sub>24</sub>NO<sub>5</sub>, 394.1649; found, 394.1660; Elem. Anal. Calcd for C<sub>23</sub>H<sub>23</sub>NO<sub>5</sub>: C, 70.21; H, 5.89; N, 3.56. Found: C, 70.0; H, 6.2; N 3.55.

7-(2-Hydroxyethoxy)-4-propyl-8-(1,2,3,4-tetrahydroquinolin-1-carbonyl)-2H-chromen-2-one (5c): The product was prepared according to General Method 6. Compound 2c was used as starting material. Yield: 82% as a white solid; mp 148-149 °C as a dynamic equilibrium of cis-trans amide bond rotamers distinguishable by NMR in a ratio 2.2:1. <sup>1</sup>H NMR (500 MHz, DMSO)  $\delta$  8.10 (1H, d, J = 8.8 Hz, CH, **B**), 7.86 (1H, d, J = 8.8 Hz, CH, **B**), 7.70 (1H, d, J = 9.0 Hz, CH, **A**), 7.24-7.18 (3H, m, CH, **B**), 7.13-7.06 (1H, m, CH, A, 1H, m, CH, B), 7.01 (1H, d, J = 9.0 Hz, CH, A), 6.90 (1H, dt, J = 7.6 Hz, J = 1.5 Hz, CH, A), 6.69 (1H, dt, J = 7.6 Hz, J = 1.5 Hz, CH, A), 6.62 (1H, d, J = 7.6 Hz, CH, A), 6.22 (1H, s, CH, B), 6.08 (1H, s, CH, A), 4.23-4.18 (2H, m, CH<sub>2</sub>, B), 4.13-4.06 (1H, m, CH<sub>2</sub>, A), 4.03-3.92 (1H, m, CH<sub>2</sub>, A, 1H, m, CH<sub>2</sub>, **A**), 3.82-3.75 (1H, m, CH<sub>2</sub>, **A**), 3.71-3.67 (2H, m, CH<sub>2</sub>, **B**), 3.65 (2H, t, J = 5.1 Hz, CH<sub>2</sub>, **A**), 3.51-3.34 (2H, m, CH<sub>2</sub>, **B**), 2.92-2.59 (4H, m, CH<sub>2</sub>, **A**, 4H, m, CH<sub>2</sub>, **B**), 2.18-2.06 (1H, m, CH<sub>2</sub>, **A**), 2.02-1.89 (1H, m, CH<sub>2</sub>, A), 1.89-1.80 (2H, m, CH<sub>2</sub>, B), 1.71-1.49 (2H, m, CH<sub>2</sub>, A, 2H, m, CH<sub>2</sub>, B), 0.99 (3H, t, J =7.3 Hz, CH<sub>3</sub>, **B**), 0.91 (3H, t, J = 7.3 Hz, CH<sub>3</sub>, **A**). **Isomer A**: <sup>13</sup>C NMR (125 MHz, DMSO)  $\delta$  163.4, 159.5, 158.0, 156.8, 150.5, 138.2, 133.0, 128.1, 126.9, 125.4, 125.3, 122.9, 115.1, 112.4, 110.5, 109.1, 70.8, 59.4, 42.7, 32.8, 26.3, 23.4, 21.3, 13.7. **Isomer B**: <sup>13</sup>C NMR (125 MHz, DMSO) δ 163.1, 159.8, 157.3, 156.9, 150.3, 137.6, 130.1, 129.3, 126.8, 125.6, 124.7, 124.2, 114.9, 113.0, 111.0, 109.6, 71.0, 59.6, 46.5, 33.0, 26.5, 23.4, 21.5, 13.9. HRMS (m/z): [M+H]<sup>+</sup> calcd. for C<sub>24</sub>H<sub>26</sub>NO<sub>5</sub>, 408.1805; found, 408.1812; Elem. Anal. Calcd for C<sub>24</sub>H<sub>27</sub>NO<sub>6</sub> (hydrate): C, 67.75; H, 6.40; N, 3.29. Found: C, 68.13; H, 6.05; N 3.14.

4-Butyl-7-(2-hydroxyethoxy)-8-(1,2,3,4-tetrahydroquinolin-1-carbonyl)-2H-chromen-2-one (5d): The product was prepared according to General Method 6. Compound 2d was used as starting material. Yield: 78% as a white solid; mp 114-115 °C as a dynamic equilibrium of *cis-trans* amide bond rotamers distinguishable by NMR in a ratio 2.2:1. ¹H NMR (500 MHz, DMSO) δ 8.09 (1H, d, *J* = 8.3 Hz, CH, **B**), 7.85 (1H, d, *J* = 8.3 Hz, CH, **B**), 7.70 (1H, d, *J* = 8.8 Hz, CH, **A**), 7.24-7.18 (3H, m, CH, **B**), 7.13-7.05 (1H, m, CH, **A**, 1H, m, CH, **B**), 7.02 (1H, d, *J* = 8.8 Hz, CH, **A**), 6.90 (1H, dt, *J* = 7.6 Hz, *J* = 1.0 Hz, CH, **A**), 6.69 (1H, dt, *J* = 7.6 Hz, *J* = 1.0 Hz, CH, **A**), 6.61 (1H, d, *J* = 7.6 Hz, CH, **A**), 6.22 (1H, s, CH, **B**), 6.08 (1H, s, CH, **A**), 4.23-4.19 (2H, m, CH<sub>2</sub>, **B**), 4.13-4.06 (1H, m, CH<sub>2</sub>, **A**), 4.03-3.92 (1H, m, CH<sub>2</sub>, **A**, 1H, m, CH<sub>2</sub>, **A**), 3.83-3.76 (1H, m, CH<sub>2</sub>, **A**), 3.70-3.67 (2H, m, CH<sub>2</sub>, **B**), 3.64 (2H, t, *J* = 5.2 Hz, CH<sub>2</sub>, **A**), 3.51-3.36 (2H, m, CH<sub>2</sub>, **B**), 2.92-2.61 (4H, m, CH<sub>2</sub>, **A**, 4H, m, CH<sub>2</sub>, **B**), 2.18-2.07 (1H, m, CH<sub>2</sub>, **A**), 2.02-1.80 (1H, m, CH<sub>2</sub>, **A**), 1.80-1.72 (2H, m, CH<sub>2</sub>, **B**), 1.67-1.45 (2H, m, CH<sub>2</sub>, **A**, 2H, m, CH<sub>2</sub>, **B**), 1.45-1.37 (2H, m, CH<sub>2</sub>, **B**), 1.37-1.28 (2H, m, CH<sub>2</sub>, **A**), 0.93 (3H, t, *J* = 7.2 Hz, CH<sub>3</sub>, **B**), 0.88 (3H, t, *J* = 7.2 Hz, CH<sub>3</sub>, **A**).

**Isomer A**: <sup>13</sup>C NMR (125 MHz, DMSO) δ 163.4, 159.5, 158.0, 157.1, 150.5, 138.2, 133.0, 128.1, 126.9, 125.4, 125.3, 122.9, 115.1, 112.3, 110.4, 109.1, 70.8, 59.4, 42.6, 30.7, 30.2, 26.3, 23.4, 22.0, 13.9. **Isomer B**: <sup>13</sup>C NMR (125 MHz, DMSO) δ 163.1, 159.8, 157.3, 157.2, 150.3, 137.6, 130.1, 129.3, 126.8, 125.6, 124.7, 124.2, 114.9, 113.0, 110.9, 109.6, 71.0, 59.6, 46.5, 30.9, 30.4, 26.5, 23.4, 22.1, 13.9. HRMS (m/z): [M+H]<sup>+</sup> calcd. for C<sub>25</sub>H<sub>28</sub>NO<sub>5</sub>, 422.1962; found, 422.1965; Elem. Anal. Calcd for C<sub>25</sub>H<sub>31</sub>NO<sub>7</sub> (dihydrate): C, 65.63; H, 6.83; N 3.06. Found: C, 65.25; H, 6.46; N, 3.21.

## Scheme 4. Synthesis of compounds 6-8.

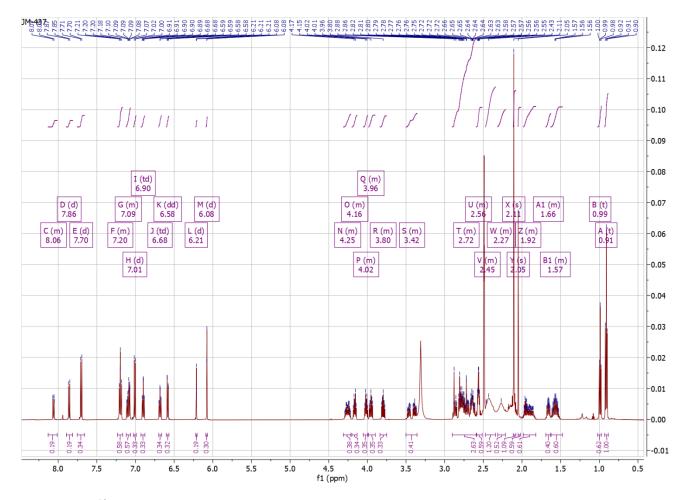
Tert-Butyl (2-((2-oxo-4-propyl-8-(1,2,3,4-tetrahydroquinolin-1-carbonyl)-2H-chromen-7yl)oxy)ethyl)carbamate (11): Tert-Butyl (2-bromoethyl)carbamate (0.45 g, 2 mmol) was added to a suspension of compound 2c (0.47 g, 1.3 mmol) and potassium carbonate (0.36 g, 2.6 mmol) in DMF (10 mL). The reaction mixture was heated to 130 °C for 24 h. After cooling, the reaction mixture was diluted with EtOAc (50 mL) and washed with water (3 × 70 mL) and brine (1 × 50 mL). The organic layer was dried over anhydrous sodium sulfate and concentrated under reduced pressure. Product 11 was purified by column chromatography (mobile phase: hexane/EtOAc, 1:1). Yield: 47% as a white solid; mp 73-74 °C as a dynamic equilibrium of *cis-trans* amide bond rotamers distinguishable by NMR in a ratio 2.4:1. <sup>1</sup>H NMR  $(500 \text{ MHz}, \text{DMSO}) \delta 8.07 (1\text{H}, \text{d}, J = 8.7 \text{ Hz}, \text{CH}, \textbf{B}), 7.88 (1\text{H}, \text{d}, J = 8.7 \text{ Hz}, \text{CH}, \textbf{B}), 7.72 (1\text{H}, \text{d}, J = 9.0 \text{Hz}, \text{CH}, \textbf{B}), 7.88 (1\text{H}, \text{d}, J = 8.7 \text{Hz}, \text{CH}, \textbf{B}), 7.72 (1\text{H}, \text{d}, J = 9.0 \text{Hz}, \text{CH}, \textbf{B}), 7.88 (1\text{H}, \text{d}, J = 8.7 \text{Hz}, \text{CH}, \textbf{B}), 7.72 (1\text{H}, \text{d}, J = 9.0 \text{Hz}, \text{CH}, \textbf{B}), 7.88 (1\text{H}, \text{d}, J = 8.7 \text{Hz}, \text{CH}, \textbf{B}), 7.72 (1\text{H}, \text{d}, J = 9.0 \text{Hz}, \text{CH}, \textbf{B}), 7.88 (1\text{H}, \text{d}, J = 8.7 \text{Hz}, \text{CH}, \textbf{B}), 7.72 (1\text{H}, \text{d}, J = 9.0 \text{Hz}, \text{CH}, \textbf{B}), 7.88 (1\text{H}, \text{d}, J = 8.7 \text{Hz}, \text{CH}, \textbf{B}), 7.72 (1\text{H}, \text{d}, J = 9.0 \text{Hz}, \textbf{CH}, \textbf{B}), 7.88 (1\text{H}, \textbf{d}, J = 8.7 \text{Hz}, \textbf{CH}, \textbf{B}), 7.72 (1\text{H}, \textbf{d}, J = 9.0 \text{Hz}, \textbf{CH}, \textbf{B}), 7.72 (1\text{H}, \textbf{d}, J = 9.0 \text{Hz}, \textbf{CH}, \textbf{B}), 7.72 (1\text{H}, \textbf{d}, J = 9.0 \text{Hz}, \textbf{CH}, \textbf{B}), 7.72 (1\text{H}, \textbf{d}, J = 9.0 \text{Hz}, \textbf{CH}, \textbf{B}), 7.88 (1\text{H}, \textbf{d}, J = 8.7 \text{Hz}, \textbf{CH}, \textbf{B}), 7.72 (1\text{H}, \textbf{d}, J = 9.0 \text{Hz}, \textbf{CH}, \textbf{B}), 7.72 (1\text{H}, \textbf{d}, J = 9.0 \text{Hz}, \textbf{CH}, \textbf{B}), 7.72 (1\text{H}, \textbf{d}, J = 9.0 \text{Hz}, \textbf{CH}, \textbf{B}), 7.72 (1\text{H}, \textbf{d}, J = 9.0 \text{Hz}, \textbf{CH}, \textbf{B}), 7.72 (1\text{H}, \textbf{d}, J = 9.0 \text{Hz}, \textbf{CH}, \textbf{B}), 7.72 (1\text{H}, \textbf{d}, J = 9.0 \text{Hz}, \textbf{CH}, \textbf{B}), 7.72 (1\text{H}, \textbf{d}, J = 9.0 \text{Hz}, \textbf{CH}, \textbf{B}), 7.72 (1\text{H}, \textbf{d}, J = 9.0 \text{Hz}, \textbf{CH}, \textbf{B}), 7.72 (1\text{H}, \textbf{d}, J = 9.0 \text{Hz}, \textbf{CH}, \textbf{B}), 7.72 (1\text{H}, \textbf{d}, J = 9.0 \text{Hz}, \textbf{CH}, \textbf{B}), 7.72 (1\text{H}, \textbf{d}, J = 9.0 \text{Hz}, \textbf{CH}, \textbf{B}), 7.72 (1\text{H}, \textbf{d}, J = 9.0 \text{Hz}, \textbf{CH}, \textbf{B}), 7.72 (1\text{H}, \textbf{d}, J = 9.0 \text{Hz}, \textbf{CH}, \textbf{B}), 7.72 (1\text{H}, \textbf{d}, J = 9.0 \text{Hz}, \textbf{CH}, \textbf{B}), 7.72 (1\text{H}, \textbf{d}, J = 9.0 \text{Hz}, \textbf{CH}, \textbf{B}), 7.72 (1\text{H}, \textbf{d}, J = 9.0 \text{Hz}, \textbf{CH}, \textbf{B}), 7.72 (1\text{H}, \textbf{d}, J = 9.0 \text{Hz}, \textbf{CH}, \textbf{B}), 7.72 (1\text{H}, \textbf{d}, J = 9.0 \text{Hz}, \textbf{CH}, \textbf{B}), 7.72 (1\text{H}, \textbf{d}, J = 9.0 \text{Hz}, \textbf{CH}, \textbf{B}), 7.72 (1\text{H}, \textbf{d}, J = 9.0 \text{Hz}, \textbf{CH}, \textbf{B}), 7.72 (1\text{H}, \textbf{d}, J = 9.0 \text{Hz}, \textbf{CH}, \textbf{B}), 7.72 (1\text{H}, \textbf{d}, J = 9.0 \text{Hz}, \textbf{CH}, \textbf{B}), 7.72 (1\text{H}, \textbf{d}, J = 9.0 \text{Hz}, \textbf{CH}, \textbf{B}), 7$ Hz, CH, A), 7.24-7.16 (3H, m, CH, B), 7.14-7.08 (1H, m, CH, A, 1H, m, CH, B), 7.01 (1H, d, J = 9.0 Hz, CH, A), 6.94-6.86 (1H, NH, A, 1H, NH, B), 6.90 (1H, td overlapped, J = 7.7 Hz, J = 1.2 Hz, CH, A), 6.69 (1H, td, J = 7.7 Hz, J = 1.2 Hz, CH, A), 6.56 (1H, dd, J = 7.7 Hz, J = 1.2 Hz, CH, A), 6.23 (1H, s, CH, B),6.09 (1H, s, CH, A), 4.27-4.13 (2H, m, CH<sub>2</sub>, B), 4.08-4.00 (1H, m, CH<sub>2</sub>, A), 4.00-3.89 (2H, m, CH<sub>2</sub>, A), 3.86-3.78 (1H, m, CH<sub>2</sub>, **A**), 3.42 (2H, t, J = 6.5 Hz, CH<sub>2</sub>, **B**), 3.30-3.25 (2H, m, CH<sub>2</sub>, **B**), 3.23-3.17 (2H, m CH<sub>2</sub>, **A**), 2.91-2.60 (4H, m CH<sub>2</sub>, **A**, 4H, m CH<sub>2</sub>, **B**), 2.16-2.25 (1H, m CH<sub>2</sub>, **A**), 1.99-1.83 (1H, m CH<sub>2</sub>, **A**, 2H, m CH<sub>2</sub>, **B**), 1.71-1.50 (2H, m CH<sub>2</sub>, **A**, 2H, m CH<sub>2</sub>, **B**), 1.36 (9H, s, CH<sub>3</sub>, **A**), 1.35 (9H, s, CH<sub>3</sub>, **B**), 0.99 (3H, t, J = 7.3 Hz, CH<sub>3</sub>, **B**), 0.91 (3H, t, J = 7.3 Hz, CH<sub>3</sub>, **A**). **Isomer A:** <sup>13</sup>C NMR (125 MHz, DMSO)  $\delta$ 163.2, 159.4, 157.5, 156.8, 155.8, 150.6, 138.2, 133.0, 128.1, 127.0, 125.4, 125.3, 122.8, 115.1, 112.5,

110.7, 108.9, 78.1, 67.5, 42.6, 39.2, 32.8, 28.3, 26.3, 23.4, 21.3, 13.7. **Isomer B:**  $^{13}$ C NMR (125 MHz, DMSO)  $\delta$  162.9, 159.7 156.9, 156.8, 155.7, 150.3, 137.6, 130.0, 129.2, 126.9, 125.5, 124.7, 124.3, 114.9, 113.2, 111.1, 109.4, 78.0, 67.5, 46.4, 39.4, 33.0, 28.3, 26.5, 23.5, 21.5, 13.9. HRMS (m/z): [M+H]<sup>+</sup> calcd. for  $C_{29}H_{35}N_2O_6$ , 507.2490; found, 507.2498; Elem. Anal. Calcd for  $C_{29}H_{34}N_2O_6$ : C, 68.76; H, 6.77; N, 5.53. Found: C, 68.55; H, 6.74; N, 5.44.

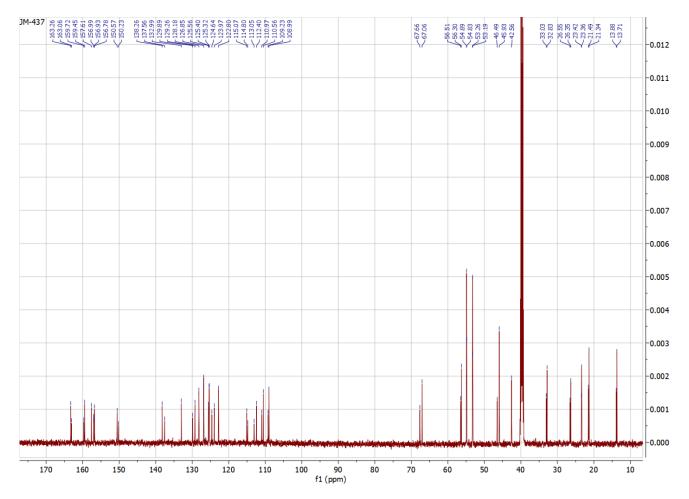
2-((2-Oxo-4-propyl-8-(1,2,3,4-tetrahydroquinoline-1-carbonyl)-2H-chromen-7-yl)oxy)ethan-1-amin hydrochloride (6): Compound 11 (0.4 g, 0.8 mmol) was dissolved in acetic acid (5 mL), bubbled with hydrogen chloride and stirred at RT for 2 h. The reaction mixture was diluted with diethyl ether (20 mL) and concentrated under reduced pressure. The product was dried over P<sub>2</sub>O<sub>5</sub> in a desiccator. Yield: 70% as a white solid; mp 129-130 °C as a dynamic equilibrium of cis-trans amide bond rotamers distinguishable by NMR in a ratio 2.7:1. <sup>1</sup>H NMR (500 MHz, DMSO) δ 8.34 (3H, bs, NH<sub>3</sub>, **A**, 3H, bs, NH<sub>3</sub>, **B**), 8.12 (1H, d, J = 8.6 Hz, CH, **B**), 7.91 (1H, d, J = 8.6 Hz, CH, **B**), 7.77 (1H, d, J = 9.0 Hz, CH, **A**), 7.28 (1H, d, J = 9.1 Hz) Hz, CH, **B**), 7.24-7.18 (2H, m, CH, **B**), 7.12 (1H, d, J = 9.0 Hz, CH, **A**), 7.11-7.07 (1H, m, CH, **A**, 1H, m, CH, **B**), 6.91 (1H, t, J = 7.7 Hz, CH, **A**), 6.70 (1H, t, J = 7.7 Hz, CH, **A**), 6.56 (1H, d, J = 7.7 Hz, CH, **A**), 6.26 (1H, s, CH, **B**), 6.08 (1H, s, CH, **A**), 4.43 (2H, d, J = 5.7 Hz, CH, **B**), 4.40-4.32 (1H, m, CH<sub>2</sub>, **A**), 4.27-4.20 (1H, m, CH<sub>2</sub>, **A**), 4.20-4.11 (1H, m, CH<sub>2</sub>, **A**), 3.71-3.63 (1H, m, CH<sub>2</sub>, **A**), 3.51-3.41 (2H, m, CH<sub>2</sub>, **B**), 3.20-3.08 (2H, m, CH<sub>2</sub>, **A**, 2H, m, CH<sub>2</sub>, **B**), 2.95-2.59 (4H, m, CH<sub>2</sub>, **A**, 4H, m, CH<sub>2</sub>, **B**), 2.23-2.12 (1H, m CH<sub>2</sub>, **A**), 1.96-1.83 (1H, m, CH<sub>2</sub>, **A**, 2H, m, CH<sub>2</sub>, **B**), 1.72-1.48 (2H, m CH<sub>2</sub>, **A**, 2H, m CH<sub>2</sub>, **B**), 0.99 (3H, t, J = 7.3 Hz, CH<sub>3</sub>, **B**), 0.90 (3H, t, J = 7.3 Hz, CH<sub>3</sub>, **A**). **Isomer A**: <sup>13</sup>C NMR (125 MHz, DMSO)  $\delta$  163.2, 159.2 157.3, 156.6, 150.2, 138.1, 133.2, 128.1, 127.2, 125.5, 125.3, 123.1, 115.5, 113.1, 111.0, 109.9, 66.1, 42.8, 38.0, 32.8, 26.3, 23.4, 21.3, 13.7. **Isomer B**: <sup>13</sup>C NMR (125 MHz, DMSO) δ 162.8, 159.6 156.9, 156.4, 150.2, 137.6, 130.1, 129.3, 127.0, 125.6, 124.8, 124.3, 115.3, 113.7, 111.4, 110.2, 66.2, 46.5, 38.1, 33.0, 26.6, 23.4, 21.5, 13.9. HRMS (m/z): [M+H]<sup>+</sup> calcd. for C<sub>24</sub>H<sub>27</sub>N<sub>2</sub>O<sub>4</sub>, 407.1965; found, 407.1978; Elem. Anal. Calcd for C<sub>24</sub>H<sub>27</sub>ClN<sub>2</sub>O<sub>4</sub>: C, 65.08; H, 6.14; N, 6.32. Found: C, 64.88; H, 6.17; N, 6.24.

7-(2-(Dimethylamino)ethoxy)-4-propyl-8-(1,2,3,4-tetrahydroquinolin-1-carbonyl)-2H-chromen-2-one (7): 2-Chloro-N,N-dimethylethan-1-amine hydrochloride (0.18 g, 1.25 mmol) was added to a suspension of compound 2c (0.3 g, 0.82 mmol) and potassium carbonate (0.23 g, 1.64 mmol) in DMF (10 mL). The reaction mixture was heated to 130 °C for 24 h. After cooling to RT, the reaction mixture was diluted with EtOAc (50 mL) and washed with water (3  $\times$  50 mL) and brine (1  $\times$  50 mL). The organic layer was dried over anhydrous sodium sulfate and concentrated under reduced pressure. Product 7 was suspended with diethyl ether (15 mL), filtered off and obtained in high quality without additional purification. Yield: 74% as a white solid; mp 128-129 °C as a dynamic equilibrium of cis-trans amide bond rotamers distinguishable by NMR in a ratio 2:1. <sup>1</sup>H NMR (500 MHz, DMSO)  $\delta$  8.06-8.03 (1H, m, CH, **B**), 7.86 (1H, d, J = 8.4 Hz, CH, **B**), 7.71 (1H, d, J = 9.3 Hz, CH, **A**), 7.23-7.18 (3H, m, CH, **B**), 7.13-7.06 (1H, m, CH, **A**, 1H, m, CH, **B**), 7.01 (1H, d, J = 9.1 Hz, CH, **A**), 6.90 (1H, dt, J = 7.7 Hz, J = 1.0 Hz, CH, **A**), 6.69 (1H, dt, J = 7.7 Hz, J = 1.0 Hz, CH, A), 6.59 (1H, dd, J = 7.7 Hz, J = 0.9 Hz, CH, A), 6.22 (1H, s, CH, B), 6.09 (1H, s, CH, A), 4.30-4.21 (2H, m, CH<sub>2</sub>, **B**), 4.18-4.10 (1H, m, CH<sub>2</sub>, **A**), 4.01-3.89 (1H, m, CH<sub>2</sub>, **A**, 1H, m, CH<sub>2</sub>, **A**), 3.88-3.81 (1H, m, CH<sub>2</sub>, **A**), 3.50-3.30 (2H, m, CH<sub>2</sub>, **B**), 2.91-2.57 (4H, m, CH<sub>2</sub>, **A**, 6H, m, CH<sub>2</sub>, **B**), 2.53-2.48 (2H, m, CH<sub>2</sub>, **A**), 2.18 (6H, s, CH<sub>3</sub>, **B**), 2.15 (6H, s, CH<sub>3</sub>, **A**), 2.14-2.05 (1H, m, CH<sub>2</sub>, **A**), 2.00-1.83 (1H, m,  $CH_2$ , **A**, 2H, m,  $CH_2$ , **B**), 1.71-1.50 (2H, m,  $CH_2$ , **A**, 2H, m,  $CH_2$ , **B**), 0.99 (3H, t, J = 7.4 Hz,  $CH_3$ , **B**), 0.92

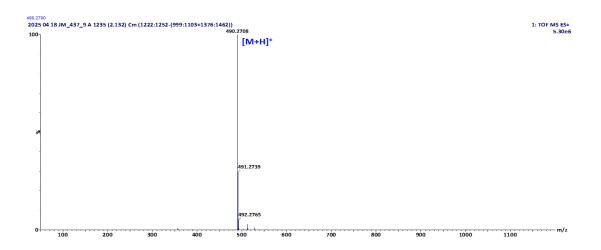
(3H, t, J = 7.2 Hz, CH<sub>3</sub>, **A**). **Isomer A**: <sup>13</sup>C NMR (125 MHz, DMSO)  $\delta$  163.3, 159.5, 157.6, 156.8, 150.6, 138.2, 132.9, 128.2, 126.9, 125.4, 125.3, 122.8, 115.0, 112.4, 110.6, 108.9, 67.2, 57.4, 45.8, 45.7, 32.8, 26.4, 23.3, 21.3, 13.7. **Isomer B**: <sup>13</sup>C NMR (125 MHz, DMSO)  $\delta$  163.1, 159.7, 157.0, 156.9, 150.2, 137.5, 130.0, 129.3, 126.9, 125.6, 124.7, 124.1, 114.8, 113.0, 111.0, 109.2, 67.8, 57.6, 46.5, 42.6, 33.0, 26.5, 23.4, 21.5, 13.9. HRMS (m/z): [M+H]<sup>+</sup> calcd. for C<sub>26</sub>H<sub>31</sub>N<sub>2</sub>O<sub>4</sub>, 435.2278; found, 435.2285; Elem. Anal. Calcd for C<sub>26</sub>H<sub>30</sub>N<sub>2</sub>O<sub>4</sub>: C, 71.87; H, 6.96; N, 6.45. Found: C, 71.92; H, 6.57; N, 6.18.


7-(3-(Piperidin-1-yl)propoxy)-4-propyl-8-(1,2,3,4-tetrahydroquinolin-1-carbonyl)-2H-chromen-2-one (8): 1-(3-Chloropropyl)piperidine hydrochloride (0.25 g, 1.26 mmol) was added to a suspension of compound 2c (0.3 g, 0.82 mmol) and potassium carbonate (0.23 g, 1.64 mmol) in DMF (10 mL). The reaction mixture was heated to 130 °C for 24 h. After cooling to RT, the reaction mixture was diluted with EtOAc (50 mL) and washed with water (3  $\times$  50 mL) and brine (1  $\times$  50 mL). The organic layer was dried over anhydrous sodium sulfate and concentrated under reduced pressure. Product 8 was suspended with diethyl ether (15 mL), filtered off and obtained in high quality without additional purification. Yield: 98% as a white solid; mp 154-155 °C as a dynamic equilibrium of cis-trans amide bond rotamers distinguishable by NMR in a ratio 2:1. <sup>1</sup>H NMR (500 MHz, DMSO)  $\delta$  8.09-8.05 (1H, m, CH, **B**), 7.86 (1H, d, J = 9.0 Hz, CH, **B**), 7.71  $(1H, d, J = 9.0 \text{ Hz}, CH, \mathbf{A}), 7.23-7.17 (3H, m, CH, \mathbf{B}), 7.13-7.06 (1H, m, CH, \mathbf{A}, 1H, m, CH, \mathbf{B}), 6.98 (1H, M, CH, M, CH,$ d, J = 9.0 Hz, CH, A), 6.90 (1H, dt, J = 7.8 Hz, J = 1.4 Hz, CH, A), 6.69 (1H, t, J = 7.8 Hz, CH, A), 6.54 $(1H, d, J = 7.8 \text{ Hz}, CH, \mathbf{A}), 6.22 (1H, s, CH, \mathbf{B}), 6.09 (1H, s, CH, \mathbf{A}), 4.19 (2H, t, J = 6.2, CH<sub>2</sub>, \mathbf{B}), 4.11$ 4.05 (1H, m, CH<sub>2</sub>, **A**), 3.99-3.90 (1H, m, CH<sub>2</sub>, **A**, 1H, m **A**), 3.88-3.81 (1H, m, CH<sub>2</sub>, **A**), 3.51-3.44 (1H, m, CH<sub>2</sub>, **B**), 3.40-3.31 (1H, m, CH<sub>2</sub>, **B**), 2.93-2.59 (4H, m, CH<sub>2</sub>, **A**, 4H, m, CH<sub>2</sub>, **B**), 2.37-2.15 (6H, m, CH<sub>2</sub>, **A**, 6H, m, CH<sub>2</sub>, **B**), 2.15-2.05 (1H, m, CH<sub>2</sub>, **A**), 2.01-1.91 (1H, m, CH<sub>2</sub>, **A**), 1.91-1.51 (4H, m, CH<sub>2</sub>, **A**, 6H, m, CH<sub>2</sub>, **B**), 1.51-1.25 (6H, m, CH<sub>2</sub>, **A**, 6H, m, CH<sub>2</sub>, **B**), 0.99 (3H, t, J = 7.4 Hz, CH<sub>3</sub>, **B**), 0.92 (3H, t, J = 7.4 Hz, CH<sub>3</sub>, **B**), 0.92 (3H, t, J = 7.4 Hz, CH<sub>3</sub>, **B**), 0.92 (3H, t, J = 7.4 Hz, CH<sub>3</sub>, **B**), 0.92 (3H, t, J = 7.4 Hz, CH<sub>3</sub>, **B**), 0.92 (3H, t, J = 7.4 Hz, CH<sub>3</sub>, **B**), 0.92 (3H, t, J = 7.4 Hz, CH<sub>3</sub>, **B**), 0.92 (3H, t, J = 7.4 Hz, CH<sub>3</sub>, **B**), 0.92 (3H, t, J = 7.4 Hz, CH<sub>3</sub>, **B**), 0.92 (3H, t, J = 7.4 Hz, CH<sub>3</sub>, **B**), 0.92 (3H, t, J = 7.4 Hz, CH<sub>3</sub>, **B**), 0.92 (3H, t, J = 7.4 Hz, CH<sub>3</sub>, **B**), 0.92 (3H, t, J = 7.4 Hz, CH<sub>3</sub>, **B**), 0.92 (3H, t, J = 7.4 Hz, CH<sub>3</sub>, **B**), 0.92 (3H, t, J = 7.4 Hz, CH<sub>3</sub>, **B**), 0.92 (3H, t, J = 7.4 Hz, CH<sub>3</sub>, **B**), 0.92 (3H, t, J = 7.4 Hz, CH<sub>3</sub>, **B**), 0.92 (3H, t, J = 7.4 Hz, CH<sub>3</sub>, **B**), 0.92 (3H, t, J = 7.4 Hz, CH<sub>3</sub>, **B**), 0.92 (3H, t, J = 7.4 Hz, CH<sub>3</sub>, **B**), 0.92 (3H, t, J = 7.4 Hz, CH<sub>3</sub>, **B**), 0.92 (3H, t, J = 7.4 Hz, CH<sub>3</sub>, **B**), 0.92 (3H, t, J = 7.4 Hz, CH<sub>3</sub>, **B**), 0.92 (3H, t, J = 7.4 Hz, CH<sub>3</sub>, **B**), 0.92 (3H, t, J = 7.4 Hz, CH<sub>3</sub>, **B**), 0.92 (3H, t, J = 7.4 Hz, CH<sub>3</sub>, **B**), 0.92 (3H, t, J = 7.4 Hz, CH<sub>3</sub>, **B**), 0.92 (3H, t, J = 7.4 Hz, CH<sub>3</sub>, **B**), 0.92 (3H, t, J = 7.4 Hz, CH<sub>3</sub>, **B**), 0.92 (3H, t, J = 7.4 Hz, CH<sub>3</sub>, **B**), 0.92 (3H, t, J = 7.4 Hz, CH<sub>3</sub>, **B**), 0.92 (3H, t, J = 7.4 Hz, CH<sub>3</sub>, **B**), 0.92 (3H, t, J = 7.4 Hz, CH<sub>3</sub>, **B**), 0.92 (3H, t, J = 7.4 Hz, CH<sub>3</sub>, **B**), 0.92 (3H, t, J = 7.4 Hz, CH<sub>3</sub>, **B**), 0.92 (3H, t, J = 7.4 Hz, CH<sub>3</sub>, **B**), 0.92 (3H, t, J = 7.4 Hz, CH<sub>3</sub>, **B**), 0.92 (3H, t, J = 7.4 Hz, CH<sub>3</sub>, **B**), 0.92 (3H, t, J = 7.4 Hz, CH<sub>3</sub>, **B**), 0.92 (3H, t, J = 7.4 Hz, CH<sub>3</sub>, **B**), 0.92 (3H, t, J = 7.4 Hz, CH<sub>3</sub>, **B**), 0.92 (3H, t, J = 7.4 Hz, CH<sub>3</sub>, **B**), 0.92 (3H, t, J = 7.4 Hz, CH<sub>3</sub>, **B**), 0.92 (3H, t, J = 7.4 Hz, CH<sub>3</sub>, **B**), 0.92 (3H, t, J = 7.4 Hz, CH<sub>3</sub>, **B**), 0.92 (3H, t, J = 7.4 Hz, CH<sub>3</sub>, **B**), 0.92 (3H, t, J = 7.4 Hz, CH<sub>3</sub>, **B**), 0.93 (3H, t, J = 7.4 Hz, CH<sub>3</sub>, **B**), 0.93 (3H, t, J = 7.4 Hz, CH<sub>3</sub>, **B**), 0.93 (3H, t, J = 77.2 Hz, CH<sub>3</sub>, **A**). **Isomer A**: <sup>13</sup>C NMR (125 MHz, DMSO) δ 163.3, 159.5, 157.7, 156.8, 150.6, 138.2, 132.9, 128.2, 126.9, 125.4, 125.3, 122.7, 115.0, 112.3, 110.5, 108.9, 67.2, 54.7, 54.2, 42.6, 32.8, 26.4, 26.1, 25.8, 24.3, 23.4, 21.3, 13.7. **Isomer B**: <sup>13</sup>C NMR (125 MHz, DMSO) δ 163.1, 159.7, 157.2, 156.9, 150.2, 137.5, 129.9, 129.3, 126.9, 125.6, 124.7, 124.0, 114.8, 113.0, 110.9, 109.3, 67.3, 54.9, 54.2, 46.5, 33.0, 26.5, 26.3, 25.7, 24.2, 23.5, 21.5, 13.9. HRMS (m/z): [M+H]<sup>+</sup> calcd. for C<sub>30</sub>H<sub>37</sub>N<sub>2</sub>O<sub>4</sub>, 489.2748; found, 489.2750; Elem. Anal. Calcd for C<sub>30</sub>H<sub>36</sub>N<sub>2</sub>O<sub>4</sub>: C, 73.74; H, 7.43; N, 5.73. Found: C, 73.90; H, 7.40; N, 5.71.

## **Scheme 5.** Synthesis of topobexin (9).


7-(2-Bromoethoxy)-4-propyl-8-(1,2,3,4-tetrahydroquinolin-1-carbonyl)-2H-chromen-2-one *(12):* Tetrabromomethane (0.53 g, 1.6 mmol) was added to a solution of compound 5c (0.5 g, 1.23 mmol) and triphenylphosphine (0.42 g, 1.6 mmol) in acetonitrile (50 mL). The reaction mixture was stirred at RT for 48 h. Then, the reaction mixture was concentrated under reduced pressure. The product 12 was purified by column chromatography (mobile phase: hexane/EtOAc, 2:1). Yield: 52% as a white solid; mp 128-129 °C as a dynamic equilibrium of *cis-trans* amide bond rotamers distinguishable by NMR in a ratio 1.6:1. <sup>1</sup>H NMR (500 MHz, DMSO)  $\delta$  8.09 (1H, d, J = 8.5 Hz, CH, **B**), 7.87 (1H, d, J = 8.5 Hz, CH, **B**), 7.73 (1H, d, J = 9.0 Hz, CH, A), 7.24-7.18 (3H, m, CH, B), 7.13-7.07 (1H, m, CH, A, 1H, m, CH, B), 7.02 (1H, d, J =9.0 Hz, CH, A), 6.90 (1H, td, J = 7.6 Hz, J = 1.3 Hz, CH, A), 6.72-6.67 (1H, m, CH, A), 6.65 (1H, dd, J =7.6 Hz, J = 1.3 Hz CH, A), 6.24 (1H, s, CH, B), 6.10 (1H, s, CH, A), 4.59-4.27 (2H, m, CH<sub>2</sub>, A, 2H, m, CH<sub>2</sub>, **B**), 4.05-3.97 (1H, m, CH<sub>2</sub>, **A**), 3.84-3.66 (3H, m, CH<sub>2</sub>, **A**, 2H, m, CH<sub>2</sub>, **B**), 3.49-3.42 (2H, m, CH<sub>2</sub>, **B**), 2.93-2.59 (4H, m, CH<sub>2</sub>, **A**, 4H, m, CH<sub>2</sub>, **B**), 2.18-2.07 (1H, m CH<sub>2</sub>, **A**), 2.02-1.81 (1H, m CH<sub>2</sub>, **A**, 2H, m CH<sub>2</sub>, **B**), 1.72-1.49 (2H, m CH<sub>2</sub>, **A**, 2H, m CH<sub>2</sub>, **B**), 0.99 (3H, t, J = 7.4 Hz, CH<sub>3</sub>, **B**), 0.91 (3H, t, J = 7.3Hz, CH<sub>3</sub>, **A**). **Isomer A:** <sup>13</sup>C NMR (125 MHz, DMSO) δ 163.0, 159.4 157.0, 156.7, 150.5, 138.2, 132.9, 128.2, 126.9, 125.4, 125.3, 122.9, 115.2, 112.8, 110.8, 109.0, 69.0, 42.7, 32.8, 30.8, 26.3, 23.4, 21.3, 13.7. **Isomer B:** <sup>13</sup>C NMR (125 MHz, DMSO) δ 162.8, 159.7 156.9, 156.3, 150.2, 137.5, 130.1, 129.2, 126.1, 125.6, 124.7, 124.2, 115.0, 113.4, 111.2, 109.5, 69.0, 46.5, 33.0, 31.3, 26.5, 23.5, 21.5, 13.9. HRMS (m/z): [M+H]<sup>+</sup> calcd. for C<sub>24</sub>H<sub>25</sub>BrNO<sub>4</sub>, 470.0961; found, 470.0970; Elem. Anal. Calcd for C<sub>24</sub>H<sub>24</sub>BrNO<sub>4</sub>: C, 61.29; H, 5.14; N 2.98. Found: C, 61.47; H, 5.02; N 2.92.

7-(2-(4-Methylpiperazin-1-yl)ethoxy)-4-propyl-8-(1,2,3,4-tetrahydroquinolin-1-carbonyl)-2H-chromen-2-one (9, topobexin): 1-Methylpiperazine (0.18 g, 0.2 mL, 1.8 mmol) was added to a suspension of compound 12 (0.28 g, 0.6 mmol) and potassium carbonate (0.25 g, 1.8 mmol) in DMF (5 mL). The reaction mixture was heated to 60 °C for 5 h. After cooling, the reaction mixture was diluted with EtOAc (50 mL) and washed with water (3 × 70 mL) and brine (1 × 50 mL). The organic layer was dried over anhydrous sodium sulfate and concentrated under reduced pressure. Product 9 was suspended with diethyl ether (10 mL), filtered off and obtained in high quality without additional purification. Yield: 78% as a white solid; mp 45-46 °C as a dynamic equilibrium of *cis-trans* amide bond rotamers distinguishable by NMR in a ratio 1.7:1.


<sup>1</sup>H NMR (500 MHz, DMSO) δ 8.09-8.00 (1H, m, CH, **B**), 7.86 (1H, d, J = 9.0 Hz, CH, **B**), 7.71 (1H, d, J = 9.0 Hz, CH, **A**), 7.23-7.17 (3H, m, CH, **B**), 7.13-7.07 (1H, m, CH, **A**, 1H, m, CH, **B**), 7.01 (1H, d, J = 9.0 Hz, CH, **A**), 6.90 (1H, td, J = 7.8 Hz, J = 1.3 Hz, CH, **A**), 6.69 (1H, td, J = 7.8 Hz, J = 1.3 Hz, CH, **A**), 6.59 (1H, dd, J = 7.8 Hz, J = 1.3 Hz, CH, **A**), 6.22 (1H, s, CH, **B**), 6.08 (1H, s, CH, **A**), 4.31-4.20 (2H, m, CH<sub>2</sub>, **B**), 4.20-4.13 (1H, m, CH<sub>2</sub>, **A**), 4.05-3.93 (2H, m, CH<sub>2</sub>, **A**), 3.83-3.76 (1H, m, CH<sub>2</sub>, **A**), 3.51-3.43 (1H, m, CH<sub>2</sub>, **B**), 3.43-3.36 (1H, m, CH<sub>2</sub>, **B**), 2.91-2.54 (6H, m, CH<sub>2</sub>, **A**, 6H, m, CH<sub>2</sub>, **B**), 2.48-2.34 (4H, m, CH<sub>2</sub>, **A**, 4H, m, CH<sub>2</sub>, **B**), 2.34-2.21 (4H, m, CH<sub>2</sub>, **A**, 4H, m, CH<sub>2</sub>, **B**), 2.11 (3H, s, CH<sub>3</sub>, **A**), 2.06 (3H, s, CH<sub>3</sub>, **B**), 2.00-1.82 (2H, m CH<sub>2</sub>, **A**, 2H, m CH<sub>2</sub>, **B**), 1.71-1.62 (2H, m CH<sub>2</sub>, **B**), 1.62-1.50 (2H, m CH<sub>2</sub>, **A**), 0.99 (3H, t, J = 7.3 Hz, CH<sub>3</sub>, **B**), 0.91 (3H, t, J = 7.3 Hz, CH<sub>3</sub>, **A**).



**Isomer A**: <sup>13</sup>C NMR (125 MHz, DMSO) δ 163.3, 159.5, 157.6, 156.8, 150.6, 138.2, 133.0, 128.2, 126.9, 125.4, 125.3, 122.8, 115.0, 112.4, 110.6, 109.0, 67.0, 56.3, 54.9, 53.2, 45.9, 42.6, 32.8, 26.4, 23.4, 21.3, 13.7. **Isomer B**: <sup>13</sup>C NMR (125 MHz, DMSO) δ 163.1, 159.7, 157.0, 156.9, 150.2, 137.5, 129.9, 129.3, 126.9, 125.6, 124.6, 124.0, 114.8, 113.0, 111.0, 109.2, 67.7, 56.5, 54.8, 53.2, 46.5, 45.9, 33.0, 26.6, 23.4, 21.5, 13.9.



HRMS (m/z):  $[M+H]^+$  calcd. for  $C_{29}H_{36}N_3O_4$ , 490.2700; found, 490.2708.



Elem. Anal. Calcd for C<sub>29</sub>H<sub>35</sub>N<sub>3</sub>O<sub>4</sub>: C, 71.14; H, 7.21; N 8.58. Found: C, 71.06; H, 7.32; N 8.50.

## Scheme 6. Synthesis of compound 14.

2-((2-Oxo-4-propyl-8-(1,2,3,4-tetrahydroquinoline-1-carbonyl)-2H-chromen-7-yl)oxy)ethyl (tertbutoxycarbonyl)glycinate (13): EDC.HCl (1.41 g, 7.4 mmol) was added to the solution of compound 5c (1.00 g, 2.4 mmol), (tert-butoxycarbonyl)glycine (1.29 g, 7.4 mmol) and DMAP (0.015 g, 0.1 mmol) in CH<sub>2</sub>Cl<sub>2</sub> (15 mL). The reaction mixture was stirred under inert atmosphere at RT for 24 h. After completion, the reaction mixture was filtered off, filtrate was washed with 1 % aq. HCl (50 mL), water (50 mL), brine (50 mL) and water (50 mL). Organic layer was separated, dried over anhydrous sodium sulfate and evaporated under reduced pressure. The product was purified using column chromatography (mobile phase: hexane/EtOAc, 2:3). Yield: 87 % as a white solid; mp 94-95 °C as a dynamic equilibrium of cis-trans amide bond rotamers distinguishable by NMR in a ratio 2.3:1. <sup>1</sup>H NMR (600 MHz, DMSO- $d_6$ )  $\delta$  8.02 (1H, d, J =6.8 Hz, CH, **B**), 7.84 (1H, d, J = 7.5 Hz, CH, **B**), 7.69 (1H, d, J = 9.0 Hz, CH, **A**), 7.22-7.13 (3H, m, CH, **B**), 7.10-7.04 (1H, m, CH, **A**, 1H, m, CH, **B**), 6.99 (1H, d, J = 9.0 Hz, CH, **A**), 6.87 (1H, td, J = 7.3 Hz, J = 7.3 Hz 1.2 Hz, CH, A), 6.68 (1H, td, J = 7.3 Hz, J = 1.2 Hz, CH, A), 6.55 (1H, d, J = 7.3 Hz, CH, A), 6.20 (1H, s, CH, **B**), 6.07 (1H, s, CH, **A**), 4.44-4.32 (4H, m, CH<sub>2</sub>, **B**), 4.32-4.21 (3H, m, CH<sub>2</sub>, **A**), 4.19-4.12 (1H, m,  $CH_2$ , A), 3.97-3.89 (1H, m,  $CH_2$ , A), 3.84-3.75 (1H, m,  $CH_2$ , A), 3.64 (2H, d, J = 5.1 Hz,  $CH_2$ , A), 3.62-3.50 (2H, m, CH<sub>2</sub>, **B**), 3.42-3.37 (2H, m, CH<sub>2</sub>, **B**), 2.90-2.54 (4H, m, CH<sub>2</sub>, **A**, 4H, m, CH<sub>2</sub>, **B**), 2.13-2.03 (1H, m, CH<sub>2</sub>, **A**), 1.97-1.79 (1H, m, CH<sub>2</sub>, **A**, 2H, m, CH<sub>2</sub>, **B**), 1.69-1.46 (2H, m, CH<sub>2</sub>, **A**, 2H, m, CH<sub>2</sub>, **B**), 1.34 (9H, s, CH<sub>3</sub>, **A**), 1.32 (9H, s, CH<sub>3</sub>, **B**), 0.96 (3H, t, J = 7.3 Hz, CH<sub>3</sub>, **B**), 0.89 (3H, t, J = 7.3 Hz, CH<sub>3</sub>, A). Isomer A:  ${}^{13}$ C NMR (150 MHz, DMSO- $d_6$ )  $\delta$  170.5, 163.1, 159.4, 157.2, 156.7, 155.9, 150.5, 138.2, 133.0, 128.2, 126.9, 125.4, 125.4, 122.7, 115.5, 112.7, 110.8, 109.1, 78.4, 67.1, 62.8, 42.6, 41.9, 32.8, 28.3, 26.2, 23.4, 21.3, 13.7. **Isomer B**:  $^{13}$ C NMR (150 MHz, DMSO- $d_6$ )  $\delta$  170.4, 162.8, 159.6, 156.8, 156.6, 155.9, 150.2, 137.5, 130.0, 129.3, 126.9, 125.6, 124.7, 124.1, 115.0, 113.4, 111.2, 109.5, 78.4, 67.2, 62.9, 46.4, 41.8, 33.0, 28.3, 26.4, 23.4, 21.5, 13.9. HRMS (m/z): [M+H]<sup>+</sup> calcd. for C<sub>31</sub>H<sub>37</sub>N<sub>2</sub>O<sub>8</sub>, 565.2544; found, 565.2548; Elem. Anal. Calcd. for C<sub>31</sub>H<sub>36</sub>N<sub>2</sub>O<sub>8</sub>: C, 65.94; H, 6.43; N, 4.96. Found: C, 65.76; H, 6.29; N, 4.62.

2-Oxo-2-(2-((2-oxo-4-propyl-8-(1,2,3,4-tetrahydroquinoline-1-carbonyl)-2H-chromen-7-yl)oxy)ethoxy)ethoxy)ethan-1-aminium chloride (14): Compound 13 (0.50 g, 0.9 mmol) was dissolved in acetic acid (5 mL), bubbled with hydrogen chloride for 5 min and the reaction mixture was stirred at RT for additional 2 h. Diethyl ester (25 mL) was added and the formed solid was filtered off and dried under reduced pressure. Yield: 81 % yield as a white solid; mp 119-120 °C as a dynamic equilibrium of cis-trans

amide bond rotamers distinguishable by NMR in a ratio 2.4:1. <sup>1</sup>H NMR (500 MHz, DMSO- $d_6$ )  $\delta$  8.51 (3H, bs, -(NH<sub>3</sub>)<sup>+</sup>, **A**, 3H, bs, -(NH<sub>3</sub>)<sup>+</sup>, **B**), 8.06 (1H, d, J = 8.8 Hz, CH, **B**), 7.89 (1H, d, J = 8.8 Hz, CH, **B**), 7.74 (1H, d, J = 9.0 Hz, CH, **A**), 7.28-7.19 (3H, m, CH, **B**), 7.14-7.04 (1H, m, CH, **A**, 1H, m, CH, **B**), 7.06 (1H, d, J = 9.0 Hz, CH, **A**), 6.92 (1H, t, J = 7.4 Hz, CH, **A**), 6.72 (1H, t, J = 7.4 Hz, CH, **A**), 6.59 (1H, d, J = 7.4 Hz, CH, **A**), 6.24 (1H, s, CH, **B**), 6.10 (1H, s, CH, **A**), 4.51-4.32 (3H, m, CH<sub>2</sub>, **A**, 4H, m, CH<sub>2</sub>, **B**), 4.28-4.21 (1H, m, CH<sub>2</sub>, **A**), 4.07-3.98 (1H, m, CH<sub>2</sub>, **A**), 3.81-3.71 (1H, m, CH<sub>2</sub>, **A**), 3.77 (2H, s, CH<sub>2</sub>, **A**), 3.66 (2H, s, CH<sub>2</sub>, **B**), 3.47-3.39 (2H, m, CH<sub>2</sub>, **B**), 2.93-2.58 (4H, m, CH<sub>2</sub>, **A**, 4H, m, CH<sub>2</sub>, **B**), 2.20-2.07 (1H, m, CH<sub>2</sub>, **A**), 1.98-1.85 (1H, m, CH<sub>2</sub>, **A**, 2H, m, CH<sub>2</sub>, **B**), 1.71-1.49 (2H, m, CH<sub>2</sub>, **A**, 2H, m, CH<sub>2</sub>, **B**), 0.99 (3H, t, J = 7.2 Hz, CH<sub>3</sub>, **B**), 0.91 (3H, t, J = 7.5 Hz, CH<sub>3</sub>, **A**). **Isomer A:** <sup>13</sup>C NMR (125 MHz, DMSO- $d_6$ )  $\delta$  167.8, 163.2, 159.4, 157.3, 156.8, 150.4, 138.2, 133.1, 128.2, 127.0, 125.6, 125.4, 122.8, 115.3, 112.8, 110.8, 109.3, 67.0, 63.7, 42.7, 39.8, 32.8, 26.3, 23.4, 21.3, 13.7. **Isomer B:** <sup>13</sup>C NMR (125 MHz, DMSO- $d_6$ )  $\delta$  167.8, 162.9, 159.7, 156.9, 156.5, 150.2, 137.5, 130.1, 129.4, 127.0, 125.7, 124.8, 124.1, 115.1, 113.5, 111.3, 109.7, 67.2, 63.9, 46.5, 39.7, 33.1, 26.5, 23.4, 21.5, 13.9. HRMS (m/z): [M+H]<sup>+</sup> calcd. for C<sub>26</sub>H<sub>29</sub>N<sub>2</sub>O<sub>6</sub>, 465.2020; found, 465.2032; Elem. Anal. Calcd. for C<sub>26</sub>H<sub>29</sub>ClN<sub>2</sub>O<sub>6</sub>: C, 62.34; H, 5.84; N, 5.59. Found: C, 62.02; H, 5.62; N, 5.29.