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Abstract

Drug resistance, either intrinsic or acquired, can impair treatment effects and result in
increased cell motility and death. MicroRNA-21 (miR-21), a proto-oncogene, may facilitate
the development or maintenance of drug resistance in cancer cells. Restoring drug sensitiv-
ity can improve therapeutic strategies, a possibility that requires functional evaluation and
mechanistic exploration. For miR-21 detection, matched tissue samples from 30 head and
neck squamous cell carcinoma (HNSCC) patients and 8 head and neck cancer (HNC) cell
lines were obtained. Reverse transcription-PCR to detect expression, MTT and clonogenic
assays to evaluate cell proliferation, apoptosis assays, resazurin cell viability assays, west-
ern blot and luciferase reporter assays to detect protein expression, and flow cytometry to
analyse the cell cycle were adopted. Compared to the corresponding normal control (NC)
tissues, 25 cancer tissues had miR-21 upregulation among the 30 matched pair tissues (25/
30, 83.8%); furthermore, among the 8 HNC cell lines, miR-21 expression that was notably
upregulated in three: UPCI-4B, UMSCC-1, and UPCI-15B. In both the UMSCC-1 and UPCI-
4B cell lines, the miR-21 mimic enhanced cell proliferation with reduced apoptosis and
increased viability, whereas the miR-21 inhibitor resulted in the opposite effects (all
P<0.001); additionally, miR-21 directly targeted the tumour suppressor phosphatase and
tensin homologue (PTEN) and inhibited PTEN expression. Furthermore, the miR-21 mimic
induced cisplatin resistance, while the miR-21 inhibitor restored cisplatin sensitivity. Overex-
pression of miR-21 can enhance cell proliferation, reduce apoptosis, and induce drug resis-
tance by inhibiting PTEN expression. Targeting miR-21 may facilitate cancer diagnosis,
restore drug sensitivity, and improve therapeutic effects.

Introduction

Head and neck cancer (HNC) ranks as the 6™ most common malignancy worldwide, with
over 650,000 new cases diagnosed and 330, 000 deaths reported annually [1]. In the United
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States, there are approximately 53,000 new cases annually and 10,800 deaths from the disease,
accounting for 3% of deaths from all malignancies [2]. Aggravating risk factors most fre-
quently related to this disease include tobacco product (cigarettes, cigars, pipes) smoking, alco-
hol consumption, betel nut chewing, human papillomavirus (HPV) infection (especially for
oropharyngeal cancers), and Epstein-Barr virus (EBV) infection (especially for nasopharyngeal
cancers in Asia) [3]. Chronic exposure of the upper aerodigestive tract to these carcinogenic
factors leads to dysplastic or premalignant lesions in the oropharyngeal mucosa and ultimately
results in HNC. The relative prevalence of these risk factors contributes to the variations in the
observed distribution of HNC:s in different regions of the world.

Despite the decrease in the overall incidence of HNC in the United States over the past 30
years, there has been a drastic increase in the incidence of head and neck squamous cell carci-
noma (HNSCC) of the base of the tongue and tonsils, especially in young to middle-aged pop-
ulations due to the rising incidence of HPV-associated HNSCC [4]. Although HNC
treatments include surgery, radiotherapy, chemotherapy, targeted therapy, or a combination
of treatments, drug resistance results in a low survival rate in locoregionally advanced HNSCC
[5]. However, the resistance mechanism remains unclear.

MicroRNAs (miRNAs), a class of small, single-stranded, ~19-23 nt RNA molecules, play
pivotal roles in modulating neoplastic processes in cancers, including HNC [6] by regulating
pathogenesis by inhibiting target genes [7]. The expression patterns of miRNAs may become
robust biomarkers for the diagnosis and prognosis of HNC. In addition, miRNA therapy
could be a novel strategy for HNC prevention and therapy [8]. Therefore, understanding how
miRNAs are involved in HNC pathogenesis will help validate potential clinical applications to
target these entities. Previous study identified that miR-21 was dramatically upregulated in
HNC tissues compared with the corresponding matched NC tissues [9]. Due to the capability
of increasing cell proliferation and invasion and reducing apoptosis by targeting the 3’-UTR of
the genes tropomyosin 1 (TPM1), phosphatase and tensin homolog (PTEN), cyclin dependent
kinase 2 associated protein 1 (CDK2AP1), reversion inducing cysteine rich protein with kazal
motifs (RECK), and Clusterin (CLU) [9-12], upregulation of miR-21 has been associated with
resistance to the favoring HNSCC, ovarian cancer, oral squamous cell cancer, gastric malig-
nancy and non-small cell lung cancer (NSCLC) development and patients’ poor prognosis
[13]. However, the function of miR-21 in in drug resistance in HNSCC tissues and cell lines
remains unclear.

The purpose of this study was to address the functional importance and molecular mecha-
nisms of miR-21 in regulating HNC cell growth and proliferation and the association of this
miRNA with drug resistance.

Materials and methods
Patients and samples

Paired HNC tissue samples from thirty patients were obtained from the First Affiliated Hospi-
tal of Anhui Medical University with informed consent and agreement, and the characteristics
of those patients had been described in the Table 1. All specimens were snap frozen in liquid
nitrogen immediately after surgical resection and stored at -80°C until use. According to fed-
eral and institutional guidelines, written informed consent was obtained for each participant.

Reagents and antibodies

The RT-PCR primer pairs for miR-21 (AM30102) and 5S rRNA (AM30302) were procured
from Ambion Inc. (Austin, TX). The miRNA-21 mimics (MCHO01533) were obtained from
Applied Biological Materials Inc. (Richmond, BC, USA). The miRNA-21 inhibitors
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Table 1. Characteristics of the LC patients (n = 30).

Characteristic n (%)
No. of patients 30
Age,y
Median 69
Range 50-86
Sex
Male 24 (80)
Female 6 (20)
Tobacco smoking
Ever 26 (87)
Never 4(13)
Primary tumor location
Tongue base 13 (43)
Larynx 15 (50)
Hypopharynx 2(7)
TNM stage
T category
1-2 2(7)
3-4 28 (93)
N category
0 10 (33)
1-3 20 (67)
M category
0 29 (97)
1 1(3)
Tumor stage
I-11 0(0)
II-1v 30 (100)
Histological differentiation
WD 12 (40)
Moderately differentiated 14 (47)
Poorly differentiated 4(13)
HPYV status
HPV positivity 2(7)
HPYV negativity 28(93)
Treatment
Surgery only 18 (60)
Surgery + adjuvant treatment * 12 (40)

“radiotherapy and/or concurrent chemotherapy

https://doi.org/10.1371/journal.pone.0267017.t001

(MH10206) were purchased from Thermo Fisher Scientific (Waltham, MA, USA). The rabbit
polyclonal anti-PTEN antibody (9552) was obtained from Cell Signaling Technology, Inc.
(Danvers, MA, USA).

Cell culture and transfection

The human HNC cell lines UMSCC-1, UMSCC-10A, UMSCC-22B, Cal33, UPCI-4B, UPCI-
15B, 1483, and 686LN were authenticated and maintained as described previously [14]. Most
of these cell lines were obtained from ATCC, and some were provided by Dr. Grandis
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Table 2. The constructed primers of miR-21 and PTEN for Q-RT-PCR.

Primer forward reverse

hu miR-21 5’ -GCCAGGCATAGCTTATCAGACTG-3’ 5’ -CCACTGTCTAGCACGACACTAA-3'
hu PTEN 5’ -AAAGGGACGAACTGGTGTAATG-3" 5’ -TGGTCCTTACTTCCCCATAGAA-3’
hu B-actin 5’ -GCATGGGTCAGAAGGATTCCT-3" 5’ -TCGTCCCAGTTGGTGACGAT-3"’
hu 5sRNA 5’ ~-GTCTACGGCCATACCACCCTG-3" 5’ ~-AAAGCCTACAGCACCCGGTAT-3"

https://doi.org/10.1371/journal.pone.0267017.t002

(Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Med-
icine, Pittsburgh, PA, USA). The in vitro experiments in cancer cell lines were approved by the
medical ethics committees of Anhui Medical University and the University of Pittsburgh
School of Medicine. UMSCC-1 is a unique human HNSCC cell line, and UPCI-4B (SCC090)
is a cell line derived from squamous cell carcinoma of the base of the tongue. The miRNA-21
mimics, inhibitors, and negative controls were introduced into cells by transfection using
LipofectamineTM 2000 (Invitrogen, Carlsbad, CA) according to the instructions of the manual
as described previously [15]. Cells were incubated for 24 hours at 37°C in a humidified incuba-
tor containing 5% CO, before testing and further experiments.

Reverse transcription-PCR

As previous described [16], total RNA was extracted using a mirVana miRNA Isolation Kit
(AM1560, Ambion Inc., Austin, TX). We used 15% denaturing polyacrylamide gel electropho-
resis and spectrophotometry (Eppendorf BioPhotometer, Eppendorf, Hamburg, Germany) to
assess the integrity of the extracted RNA. The absorbance at 260 nm (A260) was used to deter-
mine the RNA concentration, and the A260/A280 ratio was used to indicate the RNA purity.
Moreover, the A260/A280 ratio was used to indicate the RNA purity. Reverse transcription-
PCR (RT-PCR) was performed according to the instructions of the mirVana qRT-PCR
miRNA Detection Kit (1558, Ambion, Austin, TX). The constructed primers of miR-21 and
PTEN was shown in the Table 2.

Cell proliferation assay

Cells transiently transfected with the miR-21 mimic, inhibitor, and negative controls were
digested with trypsin and inoculated in 96-well plates at a concentration of 1x10° cells/well
after counting. Cell proliferation was monitored by an MTS assay using a CellTiter 96 AQue-
ous Non-Radioactive Cell Proliferation Assay Kit (G5421, Promega, Madison, WT).

Clonogenic assay

Cells transiently transfected with the miR-21 mimic, inhibitor, and negative controls were
digested with trypsin and plated in 10-cm dishes at a concentration of 500 cells/well after
counting. The experiments were performed as previously described [17].

Flow cytometry assay

Flow cytometry assays were performed with BrdU and propidium iodide (PI) double staining
(MP Biomedicals, Inc., Santa Ana, CA), as described previously [18]. Cisplatin was added at 5
ng/ml to 1x10° cancer cells seeded in 10-cm dishes, and cells were harvested for flow cyto-
metric detection after 24 hours of culture.
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Apoptosis detection assay

Cells transiently transfected with the miR-21 mimic, inhibitor, and negative controls were
digested with trypsin and plated in 96-well plates at a concentration of 1x10° cells/well after
counting. A Cell Apoptosis PI Detection Kit (Cat. # L00311, Genscript, Piscataway, NJ) was
used to evaluate apoptosis according to the instructions of the manual. Briefly, cells were incu-
bated at 37°C in a humidified incubator containing 5% CO,. After incubation for the desig-
nated durations, cells were harvested by centrifugation at 2, 000 rpm for 5 minutes (min).
Then, the cells were resuspended and adjusted to 1x10° cells/ml after washing. Five microlitres
of PI was added to 95 pl of the cell suspension prepared as described above, and the cells were
incubated in the dark at room temperature for 5 min. After incubation, fluorescence was
recorded using a H1 Synergy Hybrid Reader (BioTek, Winooski, VT). Experiments were car-
ried out in quadruplicate, and the data were processed with GraphPad Prism. The results are
shown as the mean+SD of three independent experiments. We adopted relative fluorescence
units (RFUs) to express fluorescence values, as previously described [19].

Western blotting

Cells transiently transfected with the miR-21 mimic, inhibitor, and negative controls were col-
lected, and total cell lysates were prepared. After quantitation using a Bicinchoninic Acid Pro-
tein Assay Kit (Pierce, Rockford, IL), equal amounts of protein samples which was incubated
with the primary antibody at 1: 2000 dilution in PBST, were subjected to western blotting for
the measurement of PTEN expression levels.

Luciferase reporter assay

pGL3-PTEN-3’-UTR vectors, which contained the putative binding site for miR-21 down-
stream of the stop codon in the pGL3 firefly luciferase reporter, were constructed. UMSCC-1
and UPCI-4B cells were plated at 1x10° cells/well, and transfection was performed using one
microgram of the pGL3-PTEN-3’-UTR vector and one microgram of the URL-TK Renilla
luciferase expression vector (Promega, Beijing). Luciferase assays were performed 48 hours
after transfection using a dual-luciferase reporter assay system (Promega, Beijing). Firefly lucif-
erase activity was normalized to Renilla luciferase activity.

Database selection and miRNA target prediction

During the process of identification, bioinformatic predictions were performed according to
the mature miRNA sequence (5’-uagcuuaucagacugauguuga-3’) using TargetScan Release 7.2
(http://www.targetscan.org/vert_72/).

Statistical analysis

Results are shown as the mean + SD values. Student’s ¢ test was used to evaluate comparisons
unless another test is specified. (For all analyses, statistical significance was set at P<0.05, and
all tests were two-sided. *, P< 0.05; **, P<0.01; ***, P<0.001; ****, P<0.0001; ns,
nonsignificant.)

Results
Prevalence of miR-21 overexpression in HNSCC tissues and cell lines

The discovery of tumour-specific miRNA expression profiles with widespread dysregulation
and differential expression of miRNA molecules can enhance the understanding of the diverse
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Fig 1. miR-21 overexpression is prevalent in human head and neck cancer. (A) RT-PCR analysis of miR-21
expression in matched head and neck tissue samples from patients, in which case-1, -2, and -3 and -6 were tongue base
squamous cell cancer, case-4, -5, and -7 and -8 were laryngeal squamous cell cancer, and case-9 and -10 were
hypopharyngeal squamous cell cancer. (B) and (C) Comparison of miR-21 and PTEN expression between cancer
tissues and the corresponding matched adjacent NC tissues, respectively. P< 0.0001. (D) Among 8 head and neck SCC
cell lines, miR-21 was significantly overexpressed in UMSCC-1, UPCI-4B, and UPCI-15B cells. CT, cancer tissue; NC,
normal control, referring to the adjacent normal tissue. ****, P<0.0001.

https://doi.org/10.1371/journal.pone.0267017.g001

characteristics of cancers and their underlying mechanisms. In our previous study on miRNA
expression profiles, based on matched cancer and adjacent NC tissues from five HNSCC
patients, a total of 471 miRNA transcripts were identified (S1 Fig; S1 Table). Among these
miRNAs, miR-21 was one of the most abundantly expressed miRNAs in tumour tissues com-
pared to their NC counterparts. However, the underlying mechanisms of miR-21 remain
unclear.

In this study, we assessed the expression levels of miRNA-21 in matched tissues from 30 dif-
ferent individuals with HNSCC, among which 25 cancer tissues had miR-21 upregulation
compared to the corresponding matched NC tissues (25/30, 83.3%) (Fig 1A and 1B). Further-
more, we detected miR-21 expression in 8 HNC cell lines and found that it was notably upre-
gulated in UPCI-4B, UMSCC-1, and UPCI-15B cells (Fig 1C). These results demonstrated that
miR-21 overexpression was prevalent among HNSCC tissues and HNSCC cell lines.

MiR-21 enhances cell proliferation and reduces cell apoptosis

Since miR-21 upregulation in human head and neck SCC tissues and cell lines is a prevalent
phenomenon, particularly in the cell lines UMSCC-1 and UPCI-4B, we both overexpressed
and downregulated miR-21 and tested UMSCC-1 and UPCI-4B cell proliferation.

Upon cell proliferation assessment, the MTT assay showed that the miR-21 mimic signifi-
cantly enhanced cancer cell growth and proliferation, while the miR-21 inhibitor decreased
cell growth and proliferation in both the UMSCC-1 and UPCI-4B cell lines (Fig 2C and 2D).

Similarly, the clonogenic assay also demonstrated miR-21’s strong promotive effect on cell
proliferation, while the miR-21 inhibitor exhibited different effects (Fig 3C and 3D).

In the apoptosis detection assay, PI staining showed that the miR-21 mimic significantly
reduced apoptosis, while the miR-21 inhibitor significantly increased apoptosis in both the
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Fig 2. The MTT assay demonstrated that miR-21 can enhance cell growth and proliferation. (A) and (B) The miR-
21 transfection efficiency was detected by PCR. UMSCC-1 and UPCI-4B cancer cells were transfected with the miR-21
mimic, inhibitor, and mock or liposome control. (C) and (D) MTT assays were performed to detect cell proliferation
in UMSCC-1 and UPCI-4B cells, respectively. Compared to the corresponding mock or liposome control, the miR-21
mimic significantly increased cell proliferation, while the miR-21 inhibitor decreased cell growth in both cell lines.
Mock, negative control; Lipo: Liposome control. **, P<0.01; ***, P<0.001; ****, P<0.0001. ns, nonsignificant.

https://doi.org/10.1371/journal.pone.0267017.g002

UMSCC-1 and UPCI-4B cell lines (Fig 4A and 4B). Similarly, in the cell viability assay, the
miR-21 inhibitor significantly decreased cell viability, while the miR-21 mimic increased cell
viability in both cell lines (Fig 4C and 4D).

miR-21 can promote cell cycle progression and induce cisplatin resistance

Since miR-21 had a strong promotive effect on cell growth and proliferation, we adopted a
flow cytometry assay to test the impact of this miRNA on the cell cycle distribution via BrdU
and PI co-staining. In both the UMSCC-1 and UPCI-4B cell lines, the miR-21 mimic
enhanced cell entry into S (synthesis) phase and reduced cisplatin sensitivity, while the miR-21
inhibitor arrested cells in G2 and M phases and enhanced cisplatin sensitivity (Fig 5A, 5B and
5C, S2 and S3 Figs). This result implied that miR-21 can promote cell cycle progression to S
phase and induce cisplatin resistance.

miR-21 can directly target the 3’-UTR of PTEN and suppress PTEN
expression

To investigate the underlying mechanism by which miR-21 enhances cell proliferation,
reduces apoptosis, and induces cisplatin resistance, we adopted bioinformatic analysis to
screen potential candidates. The screened candidates, as the targets of miR-21 and miR-21%,
included a large number of oncogenic proteins and tumour suppressors, such as Ras, GRHL3,
CHL1, PDCD4, PTEN, RECK and HNRPK (S2 Table).

Structural analysis indicated that miR-21 can directly target the 3°>-UTR of PTEN with the
lowest free energy and that its binding to this site in PTEN may inhibit PTEN transcription
(Fig 6A). We further assessed the protein level of PTEN with an immunoblot assay and found
that the miR-21 mimic significantly inhibited PTEN expression, while the miR-21 inhibitor
exerted the opposite effects in both cell lines (Fig 6C and 6E). In addition, the luciferase activity
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https://doi.org/10.1371/journal.pone.0267017.9004
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Fig 5. miR-21 can promote cell cycle progression and induce cisplatin resistance. (A) Cells were subjected to BrdU
and PI double staining, and flow cytometry was used to analyse each phase of the cell cycle: cells in S phase (BrdU-
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(C) In both UMSCC-1 and UPCI-4B cells treated with 5 ng/ml cisplatin during culture for 24 hours, miR-21 enhanced
cell entry into S phase and induced cisplatin resistance, while the miR-21 inhibitor arrested cell cycle progression in
G1, or G2, or M phase and restored cisplatin sensitivity. *, P< 0.05; **, P< 0.01; ***, P< 0.001; ****, P< 0.0001. ns,
nonsignificant.

https://doi.org/10.1371/journal.pone.0267017.g005

assay with the pGL3-PTEN-3"-UTR plasmid validated miR-21’s suppressive effect on PTEN
expression (Fig 6F and 6G).

Discussion

Numerous studies have demonstrated that miRNAs participate in tumorigenesis and that dur-
ing this process, miRNAs play dual roles in either promoting or inhibiting tumour progression
[20]. Based on sequence complementarity, these regulatory miRNAs act as guides to recognize
specific mRNA sequences, resulting in site-specific cleavage or translational inhibition [21].
Among these miRNAs, miR-21 is a proto-oncogene, and its upregulation is often associated
with ineffective treatment and unfavourable prognosis [22]. However, in HNC, the mecha-
nisms of miR-21 remain unclear.

Cellular transcription driven by independent promotor elements can directly regulate miR-
21 expression; however, members of the transforming growth factor B (TGF-B) family can also
manipulate this regulation. Genome mapping and decoding indicate that pre-miR-21 is
located on chromosome 17q23.2 [20]. Although pre-miR-21’s chromosomal location overlaps
with that of TMEM49, pre-miR-21 has distinct promotor regions that contain specific binding
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Fig 6. miR-21 can directly target the 3>-UTR of PTEN and suppress PTEN expression. (A) The binding structure of
miR-21 and the 3’-UTR of PTEN. (B) RT-PCR analysis of miR-21 expression in UMSCC-1 cells transfected with the
miR-21 mimig, inhibitor, or negative controls. (C) and (E) Western blot analysis of PTEN expression in UMSCC-1
and UPCI-4B cells, respectively, transfected with the miR-21 mimic, inhibitor, or negative controls showed that miR-
21 significantly inhibited PTEN expression in both cell lines. (D) RT-PCR analysis of miR-21 expression in the UPCI-
4B cell line. (F) and (G) UMSCC-1 and UPCI-4B cells were transfected with the miR-21 mimic, inhibitor, or negative
controls; luciferase reporter assays showed that the miR-21 mimic significantly inhibited PTEN expression, while the
inhibitor had the opposite effect. ***, P< 0.001; ****, P< 0.0001. ns, nonsignificant.

https://doi.org/10.1371/journal.pone.0267017.9006

sequences for transcriptional activators (activator protein 1, AP1) and suppressors (nuclear
factor I, NFI). These binding structures indicate that miR-21 has independent promotor ele-
ments [23]. As an additional supplemental regulator, TGF- can upregulate pre-miR-21
expression, while BMP6 (a member of the TGF-f family) can downregulate miR-21 expression
[24]. These contrasting functions suggest that the members of the TGF- family may establish
an equilibrium state, which is disrupted within the tumour microenvironment because tumour
cells can excessively express autocrine TGF-f1 [25, 26], which can lead to further production
of an abundance of miR-21 and generate a feed-forward loop in cancer progression.

Upregulation of miR-21 can promote tumour progression because the majority of targets of
miR-21 are tumour-suppressing genes. Studies of miR-21 upregulation and its tumour-pro-
moting roles have been reported in various cancers, for example, in lung cancer [27], gastroin-
testinal cancer [28], colorectal cancer [29], breast cancer [30], glioblastoma [31], oral cancer,
and HNSCC [32, 33]. Moreover, the target genes of miR-21 are generally PDCD4, RECK, p53
and PTEN, as well as their associated signalling pathways [33]. In the study of The Cancer
Genome Atlas Network for HNSCC, the percentages (%) of PTEN genetic alterations in HPV
(+) and HPV (-) tumours were 12% and 6%, respectively [34], and either PTEN mutation or
inhibition could result in PIK3CA/CCND1/CDK®6 pathway activation and thereby enhance
cell proliferation [34]. In conclusion, these target genes and pathways perform tumour-sup-
pressing functions, and their functional loss may result in tumour progression and distant
metastasis. Consistent with previous studies, our results validated the upregulation of miR-21
and its tumour-promoting role in both the UMSCC-1 and UPCI-4B cell lines.

Inhibited PTEN expression resulted in the cisplatin resistance in HNSCC and recovery the
PTEN function had high potential for better functional preservation and survival improve-
ment. Previous studies had revealed that miR-21 could directly bind PTEN mRNA and thereby
disrupt PTEN mRNA stability and inhibit PTEN protein expression. Specifically, PTEN is a
lipid phosphatase that antagonizes phosphatidylinositol 3 kinase (PI3K) signaling by
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converting phosphatidylinositol trisphosphate (PIP3) to phosphatidylinositol bisphosphate
(PIP2). This converting suppressed PIP3-dependent kinases (i.e., AKT, PDK1) that enhanced
cell growth, protein synthesis, and cell cycling and migration and thereby inhibited tumor pro-
gression [35]. Importantly, cisplatin is widely used in cancer chemotherapy since its cellular
toxicity function with DNA damage and inhibition of DNA synthesis, which further activates
tyrosine kinase and AKT/PI3K signaling, while AKT/PI3K signaling can enhance cellular pro-
liferation and cisplatin resistance [36]. Therefore, PTEN can inhibit AKT/PI3K signaling and
enlarge the effects of cisplatin chemotherapy, while loss of PTEN resulted in chemotherapy
resistance in various tumors [37]. Our finding had validated miR-21 can inhibit PTEN, and
targeting miR-21 may have the potential to improve the effects of cisplatin chemotherapy.

MiR-21 overexpression can induce drug resistance, and this resistance mechanism, based
primarily on miR-21’s target genes and pathways, has potential therapeutic relevance. In breast
cancer, miR-21 can decrease PTEN and PDCD4 expression, whereas treatment with a miR-21
inhibitor combined with trastuzumab [38] or doxorubicin [39] can restore drug sensitivity.
Similarly, in leukaemia, miR-21 upregulation leads to daunorubicin (DNR) resistance via
PTEN suppression [40]. Moreover, miR-21 in glioblastoma cells can target LRRFIP1 and
thereby facilitate NFkB pathway activation [41], while silencing miR-21 can strengthen the
anti-tumour effects of sunitinib (a tyrosine kinase inhibitor) in U87 human glioblastoma cells
[42]. Similar to these previous findings, our study on HNSCC cancer cell lines established that
miR-21 overexpression can induce chemotherapeutic resistance to cisplatin via PTEN suppres-
sion, while miR-21 inhibition can restore drug sensitivity. In laryngeal cancer, concurrent
chemo- and radiotherapy help to preserve laryngeal function [43], and restoration of drug sen-
sitivity may contribute to reducing the motility of HNSCC cells.

Many studies have focused on tumour-associated miRNAs and their roles in carcinogene-
sis; however, quantitative studies of miR-21 inhibitors, from cellular mechanistic studies in
vitro and tumour-bearing mouse models in vivo to clinical trials with full evaluation, have
rarely been reported. Furthermore, miR-21 is essential for effective CD8+ T cell activation [44]
and type 1 macrophage (M1) polarization and maintenance [45], which plays a crucial role in
antitumour immunity. Similar to the side effects of chemotherapy on the immune system,
miR-21 inhibitors may also inhibit these tumour-killing immune cells while suppressing
tumour progression. Therefore, further observation of the effects of miR-21 inhibitors on
tumour-infiltrating lymphocytes (TILs) in vitro and in vivo is suggested.

Conclusion

In our studies, we confirmed that miR-21 overexpression is prevalent across HNSCC tissues
and cell lines, and we further identified that miR-21 can enhance cell proliferation, reduce apo-
ptosis and induce cisplatin resistance by inhibiting PTEN expression. Taken together, these
findings indicate that miR-21 performs crucial functions in HNSCC cell proliferation and cis-
platin resistance, while targeting miR-21 may facilitate the discovery of drugs with greater
effectiveness and fewer side effects than current drugs, which may further improve the thera-
peutic strategies for HNSCC.

Supporting information

S1 Fig. Representative chip images demonstrate regions of miRNA transcripts. Five
patient-matched snap-frozen head and neck tissue samples were employed for expression
analysis of microRNAs by LC Sciences (http://www.lcsciences.com/; Houston, TX). Each chip
included multiple control probes and 471 miRNA transcripts as listed in Sanger miRBase
Release 9.2 (http://www.sanger.ac.uk/Software/Rfam/mirna/). T, tumor tissue; C, patient-
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matched adjacent normal control tissue. When Cy3 level was higher than Cy5 level, the color
is green; when Cy3 level is equal to Cy5 level, the color is yellow; and when Cy5 level is higher
than Cy3 level the color is red.

(TIF)

S2 Fig. Flow cytometry analysis demonstrates that miR-21 can enhance cisplatin resistance
(three independent experiments).
(TIF)

S3 Fig. The gating strategy divides cell cycling into three phases.
(TIF)

S§1 Table. Differentially expressed miRNAs in five patient-matched samples.
(DOCX)

S2 Table. Predicted protein targets of miR-21 in human by bioinformatics analysis.
(DOCX)

S1 Raw images.
(PDF)
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