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ABSTRACT: Vibrational spectroscopy is a nondestructive
technique commonly used in chemical and physical analyses to
determine atomic structures and associated properties. However,
the evaluation and interpretation of spectroscopic profiles based on
human-identifiable peaks can be difficult and convoluted. To
address this challenge, we present a reliable protocol based on
supervised manifold learning techniques meant to connect
vibrational spectra to a variety of complex and diverse atomic
structure configurations. As an illustration, we examined a large
database of virtual vibrational spectroscopy profiles generated from
atomistic simulations for silicon structures subjected to different stress, amorphization, and disordering states. We evaluated
representative features in those spectra via various linear and nonlinear dimensionality reduction techniques and used the reduced
representation of those features with decision trees to correlate them with structural information unavailable through classical
human-identifiable peak analysis. We show that our trained model accurately (over 97% accuracy) and robustly (insensitive to noise)
disentangles the contribution from the different material states, hence demonstrating a comprehensive decoding of spectroscopic
profiles beyond classical (human-identifiable) peak analysis.

■ INTRODUCTION
The vibrational modes of atoms in a lattice dictate many
transport properties including thermal expansion, heat and
electric conductivities, and the Debye temperature. The
vibrational density of states (VDoS) is a spectral property
that is sensitive to variations in local atomic arrangements and
the state of deformation of the material. For instance,
instabilities in the VDoS can be associated with phase
transitions as seen across many different materials.1−6

Similarly, vibrational states can be correlated with elastic
heterogeneity at the nanoscale in increasingly disordered
crystals, but the VDoS becomes almost insensitive to disorder
once an amorphization threshold has been reached.7 Likewise,
the vibrational modes of nanoparticles deviate from the
corresponding bulk vibrational spectrum due to the increased
contribution from undercoordinated surface atoms.8−11

Experimentally, the vibrational structure of a material can be
probed using absorption-based (such as infrared (IR) spec-
troscopy) or scattering-based (such as inelastic neutron
scattering (INS) or Raman spectroscopy) techniques which
modify the vibrational state of a material through absorption or
scattering, respectively. By quantifying changes in the
measured spectra, such as peak shifts or peak broadening,
these techniques have been used for instance to identify
deformation states and phase transformations12−15 or to
measure pressure dependence in materials’ properties.16−18

However, the predictive power of interpreting profiles based
on human-identifiable peaks suffers from inconsistencies

depending on the width method being used.19 As pointed
out by Weidenthaler,20 in many cases the evaluation and
interpretation of the results from these 1D spectroscopic
profiles can be difficult or erroneous, especially when the
material being probed deviates from a pristine, defect-free state
to being in a deformed and defected state. Even though
spectroscopic measurements are often accompanied by density
functional theory (DFT) or molecular dynamics (MD)
simulations to facilitate their interpretation,21−26 regressing
changes in the vibrational properties to the state of the material
remains a challenging problem, notably when multiple
microstructural sources simultaneously affect changes in the
vibrational spectrum. These challenges are associated with
identifying key representative features in the spectral profile
and relating their characteristics to the structural character-
ization. Currently, most spectroscopy practitioners focus on
the positions and widths of human-identifiable peaks as
representative features and compare the attributes of these
peaks to known standard profiles in order to infer information
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on the underlying atomic structure. Complications also arise
due to experimental noise when doing these comparisons.

As an alternative, researchers have recently applied advances
in machine learning techniques to successfully map atomic
structures to spectral properties such as VDoS or diffracto-
grams27−37 and help with a systematic and unbiased
interpretation of spectroscopic data. For instance, Lee et al.31

trained a convolutional neural network (CNN) on a data set of
synthetic X-ray diffraction (XRD) diffraction line profiles and
used the trained model to predict the phase fractions of
multiphase inorganic compound powders in experimental XRD
data. Similarly, Kong et al.35 employed a generative model for
predicting ab initio phonon and electronic densities of states
for thousands of pristine crystalline materials. Other research
groups have used graph neural networks36,37 to perform the
same task. Most of these studies focus on perfect crystalline
atomic structures and leverage crystallographic and lattice
symmetries in the architecture of their algorithms to achieve
good accuracy and prediction of the corresponding atomic
structures. However, when these symmetries are degenerated
or broken, as is the case for structures containing defects or for
material systems undergoing a gradual phase transformation or
being deformed for instance, the mapping from spectral
properties to changes in the atomic structure remains difficult
due to the output complexity and finite data volume.

In this work, we evaluate the connection between vibrational
spectra and the state of the material when it deviates from a
pristine, defect-free configuration by building a predictive
model using machine learning models. We formulate this task
as being equivalent to learning a mapping function

I s: M N , where I is a high-dimensional array
of dimension M (10000) describing the one-dimensional
(1D) VDoS spectrum and the vector s describes the
corresponding state of the atomic structure in terms of
N (10) variables representing the deformation and the
defect states present in the material. To build this model, we
represented the VDoS in a low-dimensional, latent space Z of
dimension L (10)d , Ld ≪ M, using different dimension-
ality reduction techniques (Figure 1c). We then used this
reduced representation of the VDoS to predict the state of the
material from an observed VDoS using a decision tree
regression model. The VDoS and corresponding material
state databases were obtained from MD simulations we
performed on a monocrystalline silicon (Si) system (Figure
1a). We selected Si as a model material system due to available
information on spectral properties in the literature. We
calculated the VDoS for this atomistic system undergoing
hydrostatic and uniaxial compression and also when disorder
was progressively introduced (Figure 1b) or both for
compression and disorder combined. We selected these
environments as they provide a large taxonomy of material
states and associated changes in their spectral signatures. We
performed several analyses to evaluate the performance of our
model as a function of the dimensionality reduction and
regression techniques used. Our supervised-learning protocol
accurately (over 97% accuracy) and robustly (filtering out
noise) predicts the state of the material from an observed
VDoS and can deconvolve the contribution from the
deformation state and that of the amorphization and
disordering states, demonstrating that the vibrational spectra

Figure 1. Schematic of the workflow utilized for this work. (a) Complex atomic structures are obtained by deforming a Si monocrystalline system
under hydrostatic and uniaxial compression and by progressively introducing disorder. (b) VDoS database is computed from atomistic models. (c)
Mapping consists of reducing the dimensionality of the VDoS spectrum, I, into a latent variable, Z, of dimension Ld and using this latent
representation to regress material state descriptors s via a gradient boosting decision tree model.
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do contain the necessary information to represent the state of
complex atomic structure configurations.

■ METHODS
The foundational methods supporting our predictive model rest on
three elements: (i) atomistic simulations performed to generate the
various deformed and defected atomic systems, (ii) calculations of the
VDoS for these different atomic configurations, and (iii) dimension-
ality reduction techniques and regression models to regress material
state descriptors representing the atomic system from the observed
VDoS.
Atomistic Simulations. We generated a large database of

monocrystalline Si atomic structures using the Large-scale Atomic/
Molecular Massively Parallel Simulator (LAMMPS).38 The inter-
actions between pairs of Si atoms were described using a modified
embedded atom method (MEAM) potential developed by Lenosky et
al.39 This interatomic potential was fit to force and energy data as well
as the formation energies for various defects calculated by ab initio
simulations for a wide range of Si polymorphs. This potential was
found to accurately reproduce the elastic constants and phonon
properties of various Si phases and polymorphs. The initial Si
structure consisted of a cubic diamond structure with a lattice
constant of 5.431 Å. The simulation cell for the compression
simulations consisted of a 12 × 12 × 12 unit cell containing 13 824
atoms. The simulation cell for the disorder simulations consisted of a
19 × 19 × 19 unit cell containing 54 872 atoms. Prior to any
compression or disorder insertion, we equilibrated the Si atomic
structure at 300 K and zero pressure for 200 ps.

Compression simulations were performed under both uniaxial and
hydrostatic loading conditions. Structures were oriented such that the
⟨100⟩ family of crystallographic directions was along the x, y, and z
axes of the simulation box. All compression simulations were
performed under a canonical (NVT) ensemble at a constant
temperature of 300 K, with the compression of the cell being
handled by the fix deform command in LAMMPS using atomic
displacements. Both hydrostatic and uniaxial compression simulations
were strain-controlled with constant engineering strain rates of 10−4

ps−1 (108 s−1). Uniaxial compression simulations were performed
along the [001] direction while maintaining the dimensions of the
simulation cell in the [100] and [010] directions. Hydrostatic
compression simulations were performed by reducing the dimensions
of the simulation cell along each of the ⟨100⟩ directions at strain rates
computed with the following relation:

1 (1 )(1 )(1 )xx yy zztot+ = + + + (1)

where εṫot is the previously mentioned strain rate of 10−4 ps−1 and εẋx,
εẏy, and εżz are the strain rates along each of the simulation cell axes.
Simulations of hydrostatic and uniaxial compression were run to a
final engineering strain, εtot, of 30%.

We introduced disorder in the Si crystalline structure by gradually
inserting Frenkel pairs (i.e., vacancy−interstitial pairs) over time.40−42

In these simulations, each disorder insertion step consisted of 50
randomly selected atoms being displaced from their original positions
by a randomly sampled distance between 20 and 60 Å, creating 50
Frenkel pairs. These displacements were adjusted so that none of the
displaced atoms would be within 2 Å of any other atom. After 50
atoms (<0.1% of the atoms within the structure) had been selected
and displaced, the system was evolved under an isothermal−isobaric
(NPT) ensemble held at 300 K and zero pressure for 0.5 ps with a
time step of 0.1 fs and then for 2.5 ps with a time step of 0.5 fs. This
process was repeated until the number of displaced atoms was equal
to the number of atoms in the structure (i.e., on average every atom
was displaced once).

Finally, we performed simulations that combined both disorder and
compression. These simulations consisted of initially disordered
atomic structures that were subsequently deformed under uniaxial or
hydrostatic compression following the same procedure described
above.

Material State Descriptors. For all the simulations performed,
we extracted several material state descriptors si, namely, the average
stress over the entire structure (σtot), the applied strain (εtot), and the
phase fraction of disordered atoms (ϕtot). The average stress was
obtained using the standard approach in LAMMPS for the
computation of stresses, including both the kinetic energy
contribution and the virial contribution.43 The applied strain was
known for all compressed states, with the strain for uniaxial
compression corresponding to the applied strain along the z-direction
and the strain for hydrostatic compression being computed using eq
1. The stress and strain values were recorded as system averages as
well as broken into their respective x, y, and z components. The phase
fraction of the disordered Si atoms was identified as atoms not in the
perfect cubic diamond structure as defined by the “identify diamond-
structure modifier”44 in the OVITO software package.45

Additionally, when disorder is present, as in the case of the uniaxial
compression or disorder simulations, we also calculated the
characteristic length scale, , associated with the disorder parameter
ϕtot. This length scale characterizes the morphology of the disordering
within the atomic structure. We computed using a modified version
of the FoamExplorer program.46 The input to this calculation was the
Si atomic structure with all atoms that were not in the perfect cubic
diamond structure removed. FoamExplorer was then used to measure
the size distributions of the voids created by removing these atoms.
The characteristic length scale, , was extracted by averaging the
entire set of length measurements produced by FoamExplorer.
Microstructures that did not have any disorder present (such as the
pristine microstructures under low strains or the entirety of the
pristine hydrostatically compressed simulation) had their disorder
length scale set to be the first nearest neighbor distance. For
microstructures where no cubic diamond phase was identified, the
characteristic length scale was set to the length scale of the simulation
box. Note that additional descriptors could have been considered for a
more comprehensive description of the state of materials. However,
these would have to be materials specific and a decision would have to
be made prior to the supervised-learning analysis for label definition.
For instance, there is the possibility of an intermediate-range ordering
in amorphous Si47−49 that could potentially exist in our data.

For the single-output regression model, the material descriptor
vector is a scalar s consisting of either s = σtot, s = εtot, or s = ϕtot. For
the multioutput regression model, we extended the prediction such
that the material descriptor vector s = [si], i = 6, consists of the three
components of the stress tensor: σxx, σyy, σzz; the total strain εtot; the
disorder parameter ϕtot; and the characteristic length scale .
Vibrational Density of States. We measured the velocity

autocorrelation function using the compute vacf command in
LAMMPS, which performs the following operation:

t
N

v t v( )
1

( ) (0)
i

N

i i
at 1

at

= ·
= (2)

where Nat is the total number of atoms in the simulation cell, vi(t) is
the velocity vector of atom i at time t, and vi(0) is the velocity vector
of atom i at the start of the measurement period. The VDoS is then
computed by taking the Fourier transform of γ(t) to convert the data
to the frequency domain

f t t( ) ( )e dti2= (3)

The result of the Fourier transform contained both real and
imaginary components; for the purpose of this work, only the real
portion of the spectrum was used. We truncated the VDoS at a
frequency of 900.09 cm−1, resulting in a 1D VDoS vector with M =
10 794 values. The output of the Fourier transform contains a
significant amount of noise, so we smoothed the VDoS using a
Savitsky−Golay filter50 prior to visualization or use in model training.

The form of the simulated VDoS profile is influenced by the
simulation conditions, namely, the interatomic potential used, the size
of the simulation volume, the time interval chosen for writing the
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output of the velocity autocorrelation function, and the number of
measurements taken for the velocity autocorrelation function. We
performed test simulations using several interatomic potentials of
various functional styles.39,51−55 The MEAM potential by Lenosky et
al.39 was selected due to its acceptable computational cost and the
resemblance of the predicted VDoS to that predicted by density
functional theory (DFT) (see the Supporting Information for the
comparison between DFT and MD). We also performed sensitivity
studies for all of our simulation conditions, and we chose values that
balanced the computational cost of the simulations with consistency
in the measurements of the VDoS. As illustrated in the Supporting
Information, we verified and validated our VDoS implementation by
comparing the VDoS for a pristine Si atomic structure computed by
DFT and by MD. We note slight differences in peak shapes and
positions; however, there is general agreement between the two
techniques. Some of these differences, particularly differences in peak
widths,56 can be attributed to temperature effects due to the dynamic
nature of the measurement of the VDoS via MD. In both simulated
spectra, the peaks correspond to specific branches in the dispersion
relation for Si.56−58 For the simulated VDoS computed by MD, the
distinct features include (i) the highest-intensity peak with a
maximum at approximately 470 cm−1; (ii) three lower-intensity
peaks with maxima at roughly 385, 335, and 232 cm−1; and (iii) a
broad peak with no clear maximum between frequencies 130 and 200
cm−1.

All simulations performed to compute VDoS were performed
under the canonical (NVT) ensemble held at 300 K for a simulated
time of 400 ps with the velocity autocorrelation value being recorded
every 0.01 ps. These simulations were dynamic, and as such it is
expected that materials that are in nonequilibrium states such as
systems that have mobile defect structures or systems that are in the
process of undergoing a phase change are expected to evolve while the
velocity autocorrelation function is being measured. This likely
impacts the measurement of the velocity autocorrelation function and
through that the measured VDoS. Examinations of the structures pre-
and post-simulation found that little to no change in the defect
content occurred during the measurement of the velocity
autocorrelation function, and changes in phase transformations
progressed by less than 2% of the total system volume during the
measurement period. In total, we generated 770 unique VDoS
measurements for Si atomic structures under a variety of compressive
and disorder states. Two different metrics were measured as an
analysis of human-identifiable features: the frequency where the
maximum intensity of the VDoS profile was measured and a full width
at half-maximum (FWHM) for the primary peak of the spectrum. The
maximum intensity of the VDoS profile always aligned with the high-
frequency peak while that peak was present. The FWHM was
measured as the peak width at half of the maximum intensity for that
profile.
Dimensionality Reduction. To detect the underlying structure

of the VDoS data and circumvent issues pertaining to its high
dimensionality (dimension M = 10 794), we used dimensionality
reduction methods. As illustrated in Figure 1, dimensionality
reduction is the mathematical mapping I Z: M Ld, Ld
≪ M, of high-dimensional data (in this case 1D VDoS profile I) into a
meaningful representation of the intrinsic dimensionality (compact
representation of VDoS Z). The intrinsic dimensionality is the lowest
number of variables (Ld) that one can use to represent the true
structure of the data and capture the most salient features of the
atomic structure. Although we did not try to review all possible
dimensionality reduction techniques, we tested linear and nonlinear
embedding techniques to conclude which techniques do well in
representing 1D VDoS spectral properties. Namely, we tried principal
component analysis (PCA),59 the isometric mapping method
(Isomap),60,61 and a convolutional autoencoder.62

PCA was chosen as an example of a linear embedding technique
and because it is a widely used technique in materials and physical
sciences. It consists of an orthogonal transformation of the VDoS
profile into a vector of linearly, uncorrelated principal components
that are ordered so that the first Ld components retain most of the

original variability in the data. Generally, PCA achieves optimal
reduction when the data lies on a linear manifold (e.g., a Ld-
dimensional hyperplane). However, the VDoS data may lie on a
nonlinear manifold (e.g., a Ld-dimensional hypersphere). Isomap
embedding and an autoencoder were chosen as examples of nonlinear
embedding techniques since PCA may not necessarily be suitable.
Isomap embedding is a manifold-learning algorithm that constructs a
neighborhood graph among all data points and computes geodesic
distances between all these points. This graph is then used to compute
the low-dimensional representation of the data by applying multi-
dimensional scaling (MDS). The MDS algorithm determines the low-
dimensional representation that best preserves the interpoint
distances by minimizing the cost function of error between the
pairwise geodesic distances in the low-dimensional and high-
dimensional representations of the data. The convolutional
autoencoder is a nonlinear, artificial neural network map that learns
the “coding” of the data. The encoder compresses the input (VDoS)
data to a (latent) code, Z, and the decoder reconstructs the VDoS
data from that code. For all these dimensionality reduction
techniques, the latent dimension Ld was selected as being 10.
Regression Model.With the dimensionality of the VDoS reduced

using one of the dimensionality reduction techniques described above,
the problem of predicting the condition of the state of the material
from an observed VDoS becomes tractable. Surrogate models,

Z I s: ( )= , which map the low-dimensional representation
of the VDoS, Z, to the state of the material, s, were created using two
different approaches depending on the dimensionality of the s vector
that was being predicted. Surrogate models that predicted single
values were created using a gradient boosting decision tree model.63

This approach belongs to the ensemble-learning method that
combines regression trees with boosting and consists of an additive
regression model in which individual terms are simple trees that are
fitted in a forward, sequential, and stagewise manner. Models that
predicted multiple outputs simultaneously were performed using a
decision tree regressor without boosting. The implementations of the
gradient boosting decision tree and the decision tree without boosting
were taken from Scikit-learn,64 with all default parameters used for
both approaches except for the number of boosting stages for the
gradient boosting decision tree, which was set to 10 000. For both
regression approaches and each regression task, 10 different models
were created by altering the distribution of the data in the training and
validation sets. All regression models were trained and tested using a
70−30% test−train split of the complete VDoS data set.

The accuracy of the trained regression models was quantified by
determining the coefficient of determination (R2) score using the
r2_score function from Scikit-learn. For single-output regression
models trained using the latent spaces produced by PCA, Isomap
embedding, or the 10 different autoencoder latent spaces, 10 different
regression models were trained with 10 randomly selected test−train
splits, such that a maximum, average, and standard deviation could be
determined from that sample of 10 regression models per
dimensionality reduction technique. The averages and standard
deviations for the autoencoder regression models included all 100
regression models trained with autoencoder latent spaces. For
multioutput regression models, averages and standard deviations of
the R2 scores were determined using the same approach as for the
single-output regression models. The maximum R2 scores for
multioutput regression models is determined by taking an average
of the R2 scores for each component of the output vector. Maximum
R2 scores presented for the components of the output vector for
multioutput regression models are those that were averaged to create
the highest average R2 score.
Training of the Machine Learned Models. The fitting

operations for PCA and Isomap were performed with the entire
data set at once; i.e., there was no training−validation split for either
PCA or Isomap. Both PCA and Isomap were fit using their respective
functions from the Scikit-learn64 Python library, with default settings
being used for both PCA and Isomap with the exception of the
svd_solver setting for PCA, which was set to full. As
illustrated in Figure 2a, dimensionality reduction through PCA was
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able to capture over 90% of the total variance of the data set with the
first four PC scores, with over 97.5% of the variance of the data set
being captured when LdPCA = 10.

Training for the purpose of dimensionality reduction was also
performed with an autoencoder. The encoder is composed of five
convolutional layers, each with a kernel size of 10 and a stride of 3.
Schematically, the encoder architecture can be described as follows:
Conv8×3595

ReLU × Conv16×1196
ReLU × Conv32×396

ReLU × Flat1×12672 × Linear1×L dd=10.
The nomenclature “Conv” describes a convolutional layer, “Linear”
describes a linear layer, and “Flat” describes a flatten operation. The
superscript represents the activation function; the subscript represents
the dimensionality after the layer with the first number indicating the
number of channels and the second the size of the layer. The decoder
architecture is composed of the inverse structure and was used during
the model training process. Each autoencoder was trained for a total
of 300 epochs with a batch size of 32 VDoSs and a learning rate of
0.001.

The autoencoders were trained with a training−validation split of
70% training and 30% validation. This training−validation split was
created using the random_split function from the Pytorch
Python library.65 Ten different training−validation splits were created
by altering the random seed prior to performing the split. These 10
different training−validation splits were then used to train 10 different
autoencoders using identical training conditions. The loss function
used during the training process was the mean squared error function,

and the optimization of the parameters of the autoencoder was
performed using the Adam optimizer from the Pytorch library. After
each epoch, the losses computed from the training data set and the
validation data set were compared to ensure that the model was not
being overfit to the training data. A comparison between an input
VDoS and its reconstruction from the decoder is shown in Figure 2b,
with that particular reconstruction having a reconstruction error of
less than 3%.

■ RESULTS AND DISCUSSION
Dependence of Vibrational Modes on the State of

the Material. We first analyze the VDoS data based on a
classical (human-identifiable) peak analysis to describe
observed trends and correlations between the material state
and changes in VDoS data. As illustrated in Figure 3,
vibrational modes are sensitive to the global and local states
of the atomic structure. Under hydrostatic compression
(Figure 3a), the Si structure remains in the cubic-diamond
phase throughout the entirety of the compression process, with
no observed defect formation or phase change. In this case, the
human-identifiable main peaks of the VDoS shift to higher
frequencies with increasing pressure (or equivalently with
increasing strain). The evolution of the high-amplitude peak
mirrors trends observed in the 520 cm−1 peak seen in the
Raman spectra of compressed Si.66,67 The evolution of the
VDoS under uniaxial compression (Figure 3b) is very similar
to that of the hydrostatically compressed case for strain values
below 15% strain. However, unlike the hydrostatic case, under
uniaxial compression, the Si structure undergoes some
structural transformations. Once the structural transformations
begin, we note that the evolution of the VDoS starts diverging
from that of the hydrostatic case, with the onset of these
structural transformations aligning with the gradual splitting of
the high-intensity peak in the VDoS starting at 15% strain as
seen in Figure 3b.

Figure 4a illustrates the corresponding Si structure during
and after the phase transformation. Different short and
intermediate ordering can also be observed. The radial
distribution function for atomic positions in Figure 4 shows
the splitting of the second nearest neighbor peak during the
phase transformation. The stress at which this phase transition
begins aligns well with reported literature values for the phase
transition of Si from cubic diamond to the β-SN structure67,68

under compression. An amorphous shear band forms at around
23% compressive strain, and the system completely amorphizes
at around 28% strain and a corresponding stress of 46.6 GPa.
The VDoS profile in Figure 3b at 30% strain does differ
substantially from the expected experimental VDoS for
compressed amorphous Si.69 This can likely be attributed to
the choice of interatomic potential. However, for the purposes
of this work, the primary interest is in training models that can
predict the state of the material based on the profile of the
VDoS, and while the inability of the chosen interatomic
potential to reproduce the expected VDoS for compressed
amorphous Si is regrettable, it does not impede the process of
dimensionality reduction and model training.

As can be seen in Figure 4b, the gradual insertion of disorder
resulted in the formation, growth, and coalescence of small
amorphous domains uniformly distributed throughout the Si
atomic system. Figure 3c shows that the formation and growth
of these amorphous domains do not cause large shifts in peak
positions in the VDoS like those observed in the uniaxial
compression case, but rather that they result in a gradual peak

Figure 2. Training of dimensionality reduction techniques. (a)
Explained variance and cumulative variance as a function of the
intrinsic dimensionality, Ld. Note that Ld = 10 captures over 97.5% of
the variance in our data set. (b) Quality of the VDoS reconstruction
when using an autoencoder with Ld = 10. Error between the original
and (autoencoder) reconstructed VDoSs is less than 3%.
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broadening and intensity softening of the spectra. In other
words, as more disorder is introduced in the system, the ratio
between the first and second peaks decreases, while the higher
frequency peaks broaden at the same time. As seen in Figure
3d, when compression and disorder are combined, the spectral
signal becomes convoluted and complex. Indeed, we observed
a shift in the primary peak that lies between the primary peak
when disorder alone is present with no stress which has a lower
frequency than that of the primary peak when uniaxial
compression is solely applied which has a higher frequency.
In addition, we note a peak broadening and reduction of the
intensity of the primary peak for combined effects, but no peak
splitting as observed in the uniaxial compression case, even
though disorder domains are present in the atomic system.
These results show that the VDoS spectrum is not a simple
superposition of the disorder and compression cases. They
illustrate the complexity of interpreting the microstructure
state from the VDoS spectrum.

The presence of disorder in the atomic structure, as is the
case in the uniaxial compression case, the disorder case, or
when disorder and compression are combined, also results in
the emergence of an internal characteristic length scale, ,
which changes with the state of the material. The differences of
this characteristic length scale as a function of the
configuration of the atomic structures are illustrated in Figure
4c. As expected, in the case of the hydrostatic case, the internal
characteristic length scale is constant and relates to the first
nearest neighbor by construction. In the uniaxial compression
case, the internal characteristic length scale only emerges when
the amorphization starts and corresponds to the peak splitting
observed in the VDoS (Figure 3b). The drop in at 23%
strain corresponds to the formation of the amorphous shear
band previously discussed. However, no obvious feature in the
VDoS corresponds to this nonmonotonic change of . For the

disorder configurations, we observe a progressive increase in
the internal characteristic length scale with increasing disorder.
This gradual change seems to correlate with the progressive
broadening and reduction in intensity of the main human-
identifiable peak in the VDoS (Figure 3c). When disorder and
compression are combined, we observe that the preexisting
presence of disorder (at zero strain) corresponds to a nonzero
internal characteristic length scale and then this characteristic
length scale increases with increasing strain. In this case, it is
hard to infer any obvious qualitative correlation between
changes in the internal characteristic length scale and changes
in the VDoS.

When individual conditions are applied (i.e., compression
without the introduction of disorder or conversely disorder
without compression), it is conceivable that simple metrics
such as shifts and/or broadening of human-identifiable peaks
could be used to create models that predict individual material
conditions such as applied strain, stress, or the level of
disorder. These simple correlations are evidenced for example
in Figure 5 (additional analyses are provided in the Supporting
Information), for which we observe some correlations between
stress and peak position in the case of the hydrostatic and
uniaxial compression (Figure 5a,b) or between the disorder
parameter and FWHM in the case of the disordered
configuration (Figure 5c). However, this approach is nonethe-
less fraught with biases and potential errors when selecting and
measuring the appropriate human-identifiable features19,20,34

and does not necessarily reflect the nonmonotonic behavior
observed for the material descriptors. For instance, the
selection of a human-identifiable peak in the case of the
uniaxial case when amorphization starts is not obvious, or as
shown with the lack of correlations between the disordering
parameter and peak location in Figure 5c. Additionally, when
complex atomic configurations are considered together, as

Figure 3. Changes in the VDoS in Si as a function of the state of the material for (a) hydrostatic compression, (b) uniaxial compression, (c)
disorder, and (d) combined disorder and compression. For (a) and (b) the corresponding stress and strain measurements are provided next to their
respective VDoS profiles. The circled area in (b) zooms in on the primary peak at 15% for the uniaxial compression case and shows the start of peak
splitting. For (d), the bottom VDoS corresponds to disorder only, the middle VDoS corresponds to uniaxial compression only, and the top VDoS
corresponds to disorder and compression combined. The vertical dashed line indicates the location of the human-identifiable peak for combined
conditions. Profiles highlighted in blue indicate the VDoS for the pristine atomic configuration. Vertical offset is provided for clarity.
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illustrated in Figure 5d, or when material conditions become
more complicated, the ability to use human-identifiable
features to produce predictive models becomes less feasible.
We posit that these spectral profiles actually do contain such
subtleties and that sensitivities to the state of the material can
be captured through manifold learning.70

Low-Dimensional Representations of Vibrational
Spectra. As such, we now turn our attention to how the
changes observed in the VDoS spectra are captured in their
low-dimensional representations. Figure 6 shows representative
results for the distribution of the full 770 VDoS data set (i.e., it
comprises all of the hydrostatic and uniaxial compressions,
disordered, and combined disordered + compression config-
urations) for the first four latent dimensions produced through
the various dimensionality reduction techniques we tested. For

PCA (Figure 6a), the latent dimensions are ordered such that
the first dimension captures the greatest amount of variance in
the data set, and each following dimension captures less
variance than the previous one. As shown previously in Figure
2, the first four dimensions capture 90.4% of the total variance
in the data set. Taking a PCA latent dimension LdPCA = 10
captures over 97%. For this linear embedding technique, we
observe that for the VDoS data there is a strong, nonlinear
association among the various dimensions. We make a similar
observation when the VDoS data is represented via Isomap
(Figure 6b) with an Isomap latent dimension LdIsomap = 10.
Conversely, the latent representation of the VDoS data using
the autoencoder (Ldautoencoder = 10) shows a more compact
representation in latent space. This comparison illustrates that,
in the cases of PCA and Isomap, the VDoS data is more spread

Figure 4. Change of the Si atomic structure (a) under uniaxial compression or (b) with the gradual insertion of disorder. The radial distribution
functions (g(r)) quantify the change from ordered structures to amorphous/disordered structures. Blue atoms indicate atoms in the cubic diamond
configuration; white atoms indicate atoms not in the cubic diamond phase. (c) Evolution of the internal characteristic length scale, , for different
states of the atomic structure as a function of the total strain (x1-axis for hydrostatic and uniaxial compressions and when disorder and compression
are combined) and as a function of the disorder parameter (x2-axis when only disorder is present).
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Figure 5. Peak analysis (peak location and FWHM) of the VDoS as a function of the state of the material for (a) hydrostatic compression, (b)
uniaxial compression, (c) disorder, and (d) combined disorder and compression. For (a) and (b), the analysis is plotted against the average stress,
σtot. For (c) and (d), the analysis is plotted against the disorder parameter, ϕtot.

Figure 6. Latent representations of VDoS using (a) PCA, (b) Isomap, and (c) an autoencoder. Only the first four dimensions (out of 10) are
represented. Scales of latent dimensions are unique per latent representation and cannot be compared. Symbol nomenclature is as follows: circles
(yellow) are for the hydrostatic data set, pentagons (green) are for the uniaxial data set, squares (dark blue) are for the disorder insertion data set,
and triangles (light blue) are for the combined data set. Points are colored according to the peak position in the VDoS profile.
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out than in the case of the autoencoder. Additionally, we note
that, when using PCA or Isomap, it can be hard to pick up the
distinction among the different atomic configurations (hydro-
static compression versus uniaxial compression) when the
latent dimension is colored and labeled as a function of the
material state (hydrostatic in yellow circles and uniaxial in
green pentagon symbols). However, the representations of the
different configurations are more distinct when using an
autoencoder.

Figure 7 provides further insights into the interpretation of
the low-dimensional representation of the VDoS when
separated by the configuration of the atomic structure. Panels
a and b of Figure 7 capture the changes observed in the VDoS

for the hydrostatic and uniaxial compressions, while panel c
represents changes due to disordering and panel d shows the
changes due to the combined effects of disordering and
uniaxial compression. We observe in Figure 7a,b that the
reduced representations between hydrostatic and uniaxial
compressions are similar and nonlinear for strains εtot at or
below 15% deformation and that the data is ordered as a
function of the human-identifiable features such as peak
position, for instance. This observation is expected since we
could not distinguish noticeable differences in the human-
identifiable peaks in the actual VDoS. The deviation between
the two representations for hydrostatic and uniaxial compres-
sions starts for a deformation state above 15% when

Figure 7. Latent representations of VDoS using autoencoder projection (first two dimensions) for (a) hydrostatic compression (circles), (b)
uniaxial compression (pentagons), (c) disordering (squares), and (d) combined disordering and compression (triangles). Points for (a) and (b) are
colored according to peak position, and points for (c) and (d) are colored according to FWHM.

Figure 8. Parity plots for the single-output regression models trained using data reduced via the autoencoder. Parity plots are for models trained to
predict the following material conditions: total strain (εtot), stress (σtot), and fraction of disordered atoms (ϕtot).
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coincidentally the atomic system starts to amorphize and
develops an internal characteristic length scale in the case of
the uniaxial compression. In the case of disordering (Figure
7c), we observe a compact and linear representation of the
VDoS that seems to correlate with the gradual broadening of
the human-identifiable peaks in the actual VDoS. When
disordering and compression are combined, we also note a
more compact representation as compared to the compression
cases in Figure 7a,b. However, the low-dimensional repre-
sentation of the VDoS for the combined case appears to be
more complex than a simple superposition of the disordering
(Figure 7c) and compression cases (Figure 7a,b), indicating
complex correlations between the atomic configuration and its
VDoS spectral signature.
Predictions of Material Conditions from Latent

Representations. With the data prepared through dimen-
sionality reduction, the task of creating predictive models for
connecting the VDoS spectra to material conditions can be
performed. Figure 8 shows parity plots of single-output
regression models trained on the latent space produced by
the autoencoder. These plots represent the models that had
the highest R2 scores across all the single-output models
trained on the latent spaces produced via the different
autoencoders we tested. These parity plots show that our
regression models are accurate when a single-output material
descriptor is predicted from an observed VDoS spectrum. This
statement is especially true when predicting the applied strain
or fraction of disordered atoms. However, we also note that a
single-output regression model is less accurate to predict the
average stress given the noted uncertainty in the intermediate
stress regime above 10 GPa. Table 1 further reinforces these

observations by reporting the average R2 scores and their
standard deviations for the single-output regression models
trained on data reduced through different dimensionality
reduction techniques. In Table 1 we note that, regardless of the
dimensionality reduction technique used, the prediction of the
average stress is more difficult as reflected by the lower R2

values. Note that the resolution of the VDoS (i.e., the number
of pointsM in the VDoS) affects the accuracy of our regression
(see the analysis provided in the Supporting Information).
However, one could circumvent this issue by fitting the
potentially downsampled VDoS with Gaussian and Lorentzian
functions to get a reasonable VDoS resolution.

Despite their good performance, these single-output
regression models are incapable of making distinctions
between the different loading conditions, as the information
related to the loading condition is not represented within a
single material condition. We therefore trained multi-output

regression models that allow for the prediction of material
descriptors reflecting such information on the state of the
atomic structure. When these multi-output regression models
are trained on the xx, yy, and zz components of the stress
tensor, the model can distinguish between the hydrostatic
loading and uniaxial loading that was applied to the Si atomic
structures. In addition, this multi-output model also predicts
the deformation state, εtot, and the two metrics associated with
disorder of the structure, namely ϕtot and .

Figure 9 shows parity plots produced for each element of the
material descriptor vector s for the multi-output regression
model with the highest R2 value trained on a latent space
produced by an autoencoder. Comparing the R2 values for εtot,
ϕtot, and the different components of the stress tensor from
Figure 9 to those shown in Figure 8, we note that for εtot and
ϕtot we obtained a slight reduction in the value of the R2 scores,
while the scores for the stress components are comparable to
the total stress score from the single-output regression model.
Examining the distribution of the data points in Figure 9 to
those in Figure 8, it can be seen that the noted decrease in the
R2 scores for comparable conditions seems to be primarily
driven by the presence of several outliers in the predictions of
the multi-output regression model, while the majority of the
points are distributed similarly between the two approaches.
Table 2 reports the average R2 scores for multi-output
regression models trained with different dimensionality
reduction techniques to predict the full material descriptor
vector s, reinforcing the observations made by comparing
Figures 8 and 9, where expanding the regression model to
predict multiple material conditions results in a decrease in the
accuracy of the predictions for εtot and ϕtot while maintaining
the accuracy of the predictions of the stress. Predictions of the
characteristic length scale are quite good from the multi-
output regression models, with the error increasing as
increases beyond 80 Å, corresponding with atomic structures
that have neared complete amorphization.
Robustness and Sensitivity to Noise. In Figure 10, we

illustrate the accuracy and robustness of our trained model by
systematically increasing the noise levels in the VDoS data and
compare the predictions to their true values. We randomly
selected a VDoS spectrum from our validation set for which we
added Gaussian white noise to our VDoS data with zero mean
and a standard deviation of ranging from 20 to 40%. We also
considered impulsive noise by randomly selecting 100−300
points in our VDoS data with no noise, adding spikes to those
points resulting in 1−3% spikes (appearing as sharp vertical
lines in Figure 10) and then adding 40% Gaussian white noise
on top of it. In the selected VDoS example in Figure 10, the Si
atomic structure underwent combined disorder and compres-
sion loading. As seen in Table 3, our autoencoder-based
protocol (i.e., when we use the autoencoder as the
dimensionality reduction technique) proves to be exceptionally
resilient to noise and is almost insensitive to noise up to 40%
Gaussian white noise with and without impulse noise. Indeed,
we note that the errors between the true and predicted values
for all the material descriptors do not change noticeably when
noise is added to the VDoS data (∼5% relative error), with
roughly the same relative error as compared to predictions
without noise. The predictions deteriorate a little when
impulse noise is present, especially for the disorder and
internal characteristics length, but they nonetheless remain
relatively accurate (∼10% relative error). Such denoising

Table 1. Predictions from the Single-Output Regression
Models for Different Dimensionality Reduction Techniques

dim. red. target descriptor avg R2 std dev max R2

PCA εtot 0.9944 0.00073 0.9953
σtot 0.8479 0.1419 0.9583
ϕtot 0.9590 0.0215 0.9877

Isomap εtot 0.9910 0.0023 0.9932
σtot 0.8747 0.0635 0.9530
ϕtot 0.8717 0.0683 0.9617

autoencoder εtot 0.9921 0.0063 0.9960
σtot 0.8334 0.1520 0.9730
ϕtot 0.9212 0.0473 0.9904
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capability is a known attribute of autoencoders.71,72 Using an
autoencoder as the dimensionality reduction technique does
exactly that by filtering out the noise in the VDoS data and

only retaining its dominant features in the latent space. As
tabulated in Table 3, we note however that, when using PCA
as the dimensionality technique, the predictions are not as
good as the ones with the autoencoder for high noise level or
when impulse noise is added to the white noise VDoS data.
This observation is true across the board with 20−100%
relative error on the stress and disorder predictions. By
comparing the performance of the PCA-based protocol with
that of the autoencoder-based protocol, we exemplify the
importance of the choice of dimensionality reduction
technique in the robustness of our protocol. Overall, the
performance of the autoencoder-based protocol demonstrates
the robustness to interferences (noise, spikes, baseline drift)
potentially occurring during the acquisition of spectroscopic
data which could lead to errors in the subsequent analysis of
the spectra when using human-identifiable peaks, for instance.
This denoising capability also bypasses the need for spectral
preprocessing methods73,74 meant to clean up the spectra prior
to any analysis, limiting yet another source of error in the
interpretation of those spectra.

■ CONCLUSIONS
Throughout this work, we presented a simple, reliable, and
robust protocol that enables an extended mapping from
vibrational spectra to a variety of complex configurations of
atomic structures. The models connecting spectra to the state
of the materials are based on two elements of supervised
manifold learning: the representation of the VDoS spectra via
dimensionality reduction techniques and a (decision-tree)

Figure 9. Parity plots for the multi-output regression models trained using data reduced via the autoencoder. Parity plots are for models trained to
predict the following material conditions: total strain (εtot), disorder parameter (ϕtot), internal characteristic length scale ( ), and the stress tensor
(σii, i = x, y, or z).

Table 2. Predictions from the Multi-Output Regression
Models for Different Dimensionality Reduction Techniques

dim. red. target descriptor avg R2 std dev max R2

PCA εtot 0.9787 0.0240 0.9887
σxx 0.8540 0.1971 0.9740
σyy 0.8530 0.1987 0.9752
σzz 0.8448 0.1949 0.9757
ϕtot 0.8494 0.0846 0.9844

0.9186 0.0388 0.9505
avg score 0.8831 0.1140 0.9748

Isomap εtot 0.9837 0.0055 0.9871
σxx 0.8717 0.1215 0.9590
σyy 0.8730 0.1224 0.9611
σzz 0.8723 0.1108 0.9550
ϕtot 0.7821 0.1037 0.9274

0.9332 0.0187 0.9621
avg score 0.8860 0.0771 0.9586

autoencoder εtot 0.9800 0.0165 0.9895
σxx 0.8479 0.1082 0.9730
σyy 0.8480 0.1093 0.9757
σzz 0.8470 0.1075 0.9727
ϕtot 0.8199 0.0968 0.9630

0.9109 0.0578 0.9746
avg score 0.8756 0.0726 0.9748
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regression model that uses the reduced representation of the
VDoS to decode structural information unavailable through
classical human-identifiable peak analysis. The combination of
these techniques results in a model that takes an observed
VDoS spectrum as input and predicts a vector of material state
descriptors characteristic of the atomic structure as output.
These models were trained on over 700 simulated VDoS

spectra for Si atomic systems undergoing various deformation
and disordering states. Despite the fact that some spectra can
be very similar for very different configurations, we show that
our trained models accurately and robustly disentangle the
contribution from the different material states (e.g., hydrostatic
versus uniaxial compression) with an accuracy of over 97%
even in the presence of white noise, hence demonstrating that
these spectroscopic profiles do contain comprehensive
information on the state of the atomic structure beyond our
own (subject matter expert) cognition. We show that when
using an autoencoder as the technique to provide a low-
dimensional representation of the VDoS, the protocol is robust
to noise present in the spectroscopic profile and maintains a
good accuracy. The overall protocol is fast and easy to use and
can assist spectroscopy practitioners to quickly identify
complex atomic structure configurations, such as those
measured during pressure-induced instabilities in materials.
While we demonstrated our approach on Si as a model
material system, this work can be generalized to a broader class
of materials. Going forward, we note that our framework could
be extended to other structural descriptors, other loading
conditions, other materials, and other 1D spectroscopic
techniques. In the work presented here, we assessed the local
chemical environmental information in crystalline and
amorphous Si, but the same protocol could be equally applied
if we had extended our list of material descriptors (for instance,
by including the addition of an intermediate-ordering
descriptor) or if we had applied it to a different material
system with a different crystalline structure. In the latter case,
the practitioner would need to predefine a comprehensive list
of material state descriptors representative of that specific
material. For example, in a face-centered-cubic (fcc) system, in
addition to the strain and stress descriptors, we may want to
consider dislocation density and other characteristics of the
dislocation network as descriptors. In a porous material, void
density and percolation could be defined as representative
descriptors, or similarly in a nanocrystalline material, the grain
size and grain size distribution are natural descriptors. Finally,
while we used simulations to illustrate our concept and serve as
ground truths, this needs not to be the case. Experimental data
(such as surface topography or stress measurements) can also
be used. However, the generation and collection of multimodal

Figure 10. Example of VDoS spectra with increasing white and
impulse noise. VDoS with 0% white noise is also plotted as a
reference. The vertical lines showing up for the 40% white noise + 1%
impulse noise case correspond to the impulse noise added on top of
the white noise. For all VDoS spectra plotted, the corresponding Si
atomic system underwent disorder (starting disorder was 49.5% prior
to compression) followed by 10% uniaxial compression.

Table 3. Impact of Noise Level on Accuracy of Multi-Output Regression Model When Using the Autoencoder or PCA as a
Dimensionality Reduction Technique

predicted value (% relative error)

target descriptor true no noise 20% noise 40% noise 40% noise + 1% spike 40% + 3% spike

Autoencoder
εtot 0.1 0.09 (10%) 0.09 (10%) 0.09 (10%) 0.12 (20%) 0.11 (10%)
σxx(GPa) 5.4249 4.9892 (8.03%) 4.9892 (8.03%) 4.9892 (8.03%) 5.6403 (3.97%) 5.4836 (1.08%)
σyy(GPa) 5.4334 5.0166 (7.67%) 5.0166 (7.67%) 5.0166 (7.67%) 5.6595 (4.16%) 5.4608 (0.50%)
σzz(GPa) 7.5614 6.9431 (8.18%) 6.9431 (8.18%) 6.9431 (8.18%) 7.8371 (3.65%) 7.6275 (0.87%)
ϕtot 0.4745 0.4701 (0.93%) 0.4701 (0.93%) 0.4701 (0.93%) 0.5298 (11.66%) 0.5263 (10.92%)
(Å) 13.8242 13.8079 (0.12%) 13.8079 (0.12%) 13.8079 (0.12%) 15.97 (15.50%) 15.38 (11.22%)

PCA
εtot 0.1 0.09 (10%) 0.09 (10%) 0.09 (10%) 0.12 (20%) 0.12 (20%)
σxx(GPa) 5.4249 4.9892 (8.03%) 4.9623 (8.53%) 4.9623 (8.53%) 6.0658 (11.81%) 7.0963 (30.81%)
σyy(GPa) 5.4334 5.0166 (7.67%) 4.9761 (8.42%) 4.9761 (8.42%) 6.0621 (11.57%) 7.0828 (30.36%)
σzz(GPa) 7.5614 6.9431 (8.18%) 6.8917 (8.86%) 6.8917 (8.86%) 9.0083 (19.14%) 7.105 (6.03%)
ϕtot 0.4745 0.4701 (0.93%) 0.4718 (0.58%) 0.4718 (0.58%) 0.0176 (96.30%) 0.0 (100%)
(Å) 13.8242 13.8079 (0.12%) 13.4853 (2.45%) 13.4853 (2.45%) 6.5195 (52.84%) 2.245 (83.76%)
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(experimental) data to be used to construct material state
descriptors can be potentially cumbersome and costly.
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