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Abstract

Transmission of mechanical stimuli through the actin cytoskeleton has been proposed as a mechanism for rapid long-
distance mechanotransduction in cells; however, a quantitative understanding of the dynamics of this transmission and the
physical factors governing it remains lacking. Two key features of the actin cytoskeleton are its viscoelastic nature and the
presence of prestress due to actomyosin motor activity. We develop a model of mechanical signal transmission through
prestressed viscoelastic actin stress fibers that directly connect the cell surface to the nucleus. The analysis considers both
temporally stationary and oscillatory mechanical signals and accounts for cytosolic drag on the stress fibers. To elucidate the
physical parameters that govern mechanical signal transmission, we initially focus on the highly simplified case of a single
stress fiber. The results demonstrate that the dynamics of mechanical signal transmission depend on whether the applied
force leads to transverse or axial motion of the stress fiber. For transverse motion, mechanical signal transmission is
dominated by prestress while fiber elasticity has a negligible effect. Conversely, signal transmission for axial motion is
mediated uniquely by elasticity due to the absence of a prestress restoring force. Mechanical signal transmission is
significantly delayed by stress fiber material viscosity, while cytosolic damping becomes important only for longer stress
fibers. Only transverse motion yields the rapid and long-distance mechanical signal transmission dynamics observed
experimentally. For simple networks of stress fibers, mechanical signals are transmitted rapidly to the nucleus when the
fibers are oriented largely orthogonal to the applied force, whereas the presence of fibers parallel to the applied force slows
down mechanical signal transmission significantly. The present results suggest that cytoskeletal prestress mediates rapid
mechanical signal transmission and allows temporally oscillatory signals in the physiological frequency range to travel a
long distance without significant decay due to material viscosity and/or cytosolic drag.
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Introduction

Mechanical forces regulate cellular growth, differentiation,

motility, and apoptosis through pathways that remain incompletely

understood. The mechanisms governing cellular mechanotransduc-

tion, the process by which cells sense mechanical forces and

transduce these forces into biochemical signals, are currently under

intense investigation. Mechanochemical conversion in cells often

initiates at or near the cell membrane and is mediated by specific

surface molecules [1,2] including mechanosensitive ion channels

[3–6], integrins [7], the cellular glycocalyx [8], cell-cell adhesion

complexes [9], and G protein-coupled receptors [10]. Activation of

protein kinases [11,12] and other membrane-associated signaling

pathways rapidly ensues. Ultimately, mechanical stimulation

activates transcription factors, leading to force-dependent changes

in gene expression and protein synthesis.

The cytoskeleton is intricately involved in cellular mechan-

otransduction. Mechanical forces induce rapid cytoskeletal

deformation [13], regulate cytoskeletal organization [14], and

activate acto-myosin motors [15] as well as protein kinases bound

to cytoskeletal elements (such as Src) [16,17]. Of particular

relevance to the present study, actin stress fibers have been reported

to directly transmit mechanical stimuli applied to integrins on

the cell surface to the nucleus [18], thereby potentially regulating

nuclear ion channels [19,20], transcription/splicing factors [21],

and ultimately gene expression. A key feature of mechanical

stimulus transmission through stress fibers is that it allows much

faster long-distance mechanotransduction than is possible via

diffusion- and reaction-limited membrane receptor-driven signaling

cascades. For instance, mechanical stimuli transmitted via the

cytoskeleton have been reported to travel a distance of 50 mm in less

than 300msec, while chemical signaling cascades require more than

10sec to travel the same distance [17,21].

Actin stress fibers in cells are in a state of ‘prestress’ (pre-existing

isometric tension) [22,23]. Experiments have shown that disrupt-

ing the actin cytoskeleton or dissipating cytoskeletal prestress

inhibits rapid long-distance cellular mechanotransduction [17,24–

28]. This suggests that cytoskeletal prestress plays an important

role in long-distance mechanical signal transmission. It has

recently been conjectured that rapid mechanical signal transmis-

sion occurs via elastic waves in stress fibers [17,21], a seemingly

plausible mechanism in light of the fact that elastic waves in stress
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fibers are estimated to travel at a velocity of *30m=s. However,

stress fibers are not elastic structures but rather viscoelastic as has

been clearly demonstrated in recent experiments of fiber retraction

following laser severing [23]. Importantly, that study suggested

that the time scale for viscoelastic retraction is on the order of a

few seconds, orders of magnitude larger than the microsecond

time scale derived from the elastic wave argument. Therefore, the

same experiments that show that stress fibers bear prestress also

demonstrate the strong viscoelastic nature of actin stress fibers,

casting doubt on the notion that rapid and long-distance

mechanical signal transmission by stress fibers occurs via elastic

wave propagation.

Although experimental findings indicate that prestress in actin

stress fibers is critical for rapid long-distance mechanical signal

transmission [17,26,27], a physical understanding of this process is

lacking. The present study aims to elucidate the physical factors

that govern the dynamics of mechanical signal transmission

through prestressed actin stress fibers using a relevant mathemat-

ical model. To extract fundamental information on the physical

factors that determine the time scale for stress transmission, we

begin by considering the highly simplified case of a single stress

fiber. The underlying assumption is that mechanical signals are

transmitted via force-induced deformation of the stress fiber, and

the effects of stress fiber prestress and viscoelastic behavior as well

as cytosolic drag on this deformation are computed. The

governing equations are solved numerically, and the results are

supplemented with dimensional analysis to provide insight into the

dominant physical processes involved in mechanical signal

transmission. Whenever possible, the results are also discussed

vis-a-vis available experimental data. The paper concludes by

extending the analysis to simple stress fiber networks in order to

investigate the effects of cytoskeletal connections on the dynamics

of mechanical signal transmission.

Methods

Model of a prestressed cytoskeletal filament
We consider the highly simplified configuration where a

viscoelastic cytoskeletal filament directly links an integrin on the

cell surface to the nucleus as depicted in Fig. 1. We assume that the

cytoskeletal filament is an actin stress fiber because stress fibers

have been implicated in mechanical force transmission [17,24–28]

(we will briefly discuss microtubules and intermediate filaments

later). Stress fibers generate prestress mainly due to actomyosin

motor activity [23]; thus, we assume that prestress sp is uniformly

distributed along the stress fiber length. The length of the stress

fiber (L) is chosen as 10 mm, a representative length scale in many

eukaryotic cells. This length is considerably shorter than the

persistence length (Lp) of a typical stress fiber

(Lp(:EI=kT)w50mm [29], where E is the elastic modulus, I
the second moment of inertia, k the Boltzman constant and T the

absolute temperature; Lp~19mm using the parameters in the

present study). The long persistence length allows us to neglect

stochastic motion caused by thermal effects and therefore to

consider a purely deterministic description of stress fiber motion.

We first consider the transverse motion of the stress fiber driven

by a forcing with stress amplitude sf ,v applied at x~x0 as depicted

in Fig. 1A. In this case, prestress acts as a restoring force in the

transverse direction in a manner similar to tension in a string [30].

Therefore, we combine the prestress-associated restoring force

with the Euler-Bernoulli beam equation. The stress fiber is

assumed to be a viscoelastic material whose constitutive relation is

given by the Kelvin-Voigt model as verified by recent experimen-

tal observations [23]. Cytosolic drag on the moving stress fiber is

derived assuming Stokes flow and is implemented as an external

damping force. The resulting equation of stress fiber transverse

motion, assuming small-scale deformation, is written as:

rA
L2wv

Lt2
~

L
Lx

(VpzVEzVvis){Cvm
Lwv

Lt
zsf ,vAd(x{x0), ð1aÞ

where

Vp~spA
Lwv

Lx
,VE~{EI

L3wv

Lx3
,Vvis~{cI

L4wv

Lx3Lt
: ð1bÞ

Here, wv is the transverse (or vertical) displacement of the stress

fiber, A the cross-sectional area of the fiber, Vp the restoring force

by prestress sp, VE the restoring force by flexural rigidity EI , Vvis

the internal damping force by the flexural material viscosity cI , Cv

the cytosolic resistance coefficient for transverse motion, m the

viscosity of the cytosol, and d(x) the Dirac delta function. At the

integrin, we impose a stress-free (and hence force-free) boundary

condition so that:

Lwv

Lx
Dx~0~

L3wv

Lx3
Dx~0~0: ð1cÞ

At the nucleus, we consider a ‘pinched’ boundary condition

whereby:

wvDx~L~
L2wv

Lx2
Dx~L~0: ð1dÞ

Here, zero displacement is imposed because the nucleus is

considerably more rigid than cytoskeletal elements. The second

boundary condition at the nucleus, which denotes a moment-free

boundary, is chosen to allow force transmission to the nucleus.

Figure 1. Schematic diagram of the present model for (A)
transverse and (B) axial motion. The integrin is positioned at x~0
and the nuclear edge at x~L. An actin stress fiber of length L~10mm
directly links the integrin to the nucleus. A prestress sp~3|105Pa is
assumed to be uniformly distributed throughout the stress fiber. The
transverse and axial forces are applied at x0~1mm.
doi:10.1371/journal.pone.0035343.g001
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Axial motion is also considered and is schematically depicted in

Fig. 1B. Forcing is applied at x = x0 with a stress amplitude sf ,l . In

this case, contrary to transverse motion, prestress does not act as a

restoring force, and it changes the stress fiber’s elasticity and

material viscosity only when the axial displacement is sufficiently

large to result in nonlinear viscoelastic behavior [31], a situation

which is not considered here. Therefore, maintaining the Kelvin-

Voigt model for the viscoelastic constitutive relation, the equation

for axial motion is given as:

rA
L2wl

Lt2
~

L
Lx

(TEzTvis){Clm
Lwl

Lt
zsf ,lAd(x{x0), ð2aÞ

where

TE~EA
Lwl

Lx
,Tvis~cA

L2wl

LxLt
: ð2bÞ

Here, wl is the axial (or longitudinal) displacement of the stress

fiber, TE the restoring force by the elastic modulus E, Tvis the

internal damping force by the material viscosity c, and Cl the

cytosolic resistance coefficient for axial motion. Stress-free and

zero displacement boundary conditions are applied to the integrin

and the nucleus, respectively so that:

Lwl

Lx
Dx~0~wl Dx~L~0: ð2cÞ

It should be noted that the stress-free condition imposed at the

integrin for both transverse and axial motion allows movement of

the stress fiber when the forcing is applied near the integrin (see

also Fig. 2), which roughly mimics experiments where force is

directly applied using magnetic or optical tweezers to a microbead

bound to integrins on the cell surface. For this reason, the forcing

location is chosen near the integrin (x0~1 mm). We also note that

the present formulation is not restricted to an integrin-nucleus link

but is equally applicable to the situation where a stress fiber

directly links integrins on the cell surface to other relatively rigid

cellular structures such as focal adhesion sites, cell-cell adhesion

proteins, etc. In that case, the boundary condition at any of these

other sites would be similar to that presented here for the nucleus.

Therefore, the governing system considered here can in principle

also be used to extract information on the dynamics of mechanical

signal transmission via stress fibers to other intracellular sites.

Model parameter values
Table 1 summarizes the geometric and mechanical charcter-

istics of the stress fiber considered in the present study. The stress

fiber is assumed to be a circular cylinder composed of a

homogeneous mixture of actin filaments and cross-linking

proteins. The stress fiber radius is set to R~0:1mm [23,31], which

leads to the cross sectional area A and the second moment of area

I values provided in the table. The density of the stress fiber r is

assumed to be that of water (also that of an actin filament [29]);

this value has previously been used to estimate the speed of an

elastic wave in a stress fiber [17]. Prestress within the stress fiber is

computed (sp~F=A) from a recent experiment [31] where the

pre-existing tension of isolated stress fibers from smooth muscle

cells was measured as F^10nN. The elastic modulus is also

obtained from the same experiment [31]. While the elastic

modulus of a stress fiber is generally a nonlinear function of axial

strain, it remains virtually constant in the tension range Fƒ10nN

[31]. Thus, because force amplitudes used in mechanotransduc-

tion studies are typically very small (for instance, a stress of less

than 20 Pa is sufficient for Src activation in smooth muscle cells

[17]), we assume a constant value of the elastic modulus as given in

Table 1. The material viscosity of the stress fiber c is assumed to be

constant and is obtained from a recent report of the time constant

associated with the retraction of viscoelastic stress fibers after laser

severing [23]: c~tE, where t is the time constant. For cytosolic

drag, the reference value of the cytosolic viscosity m is assumed to

be that of water. The cytosolic transverse and longitudinal

resistance coefficients Cv and Cl are approximated using a Stokes

flow assumption as detailed in Materials S1.

The individual contributions of prestress, elasticity, material

viscosity, and cytoplasmic drag are systematically studied by

examining a large range of their values. This parametric study is

also important since the nominal values chosen for the reference

case may have non-negligible deviation. For instance, a recent

Figure 2. Temporal evolution of stress fiber displacement: (A)
transverse motion wv(x) at t~0:5,1,1:5 and 2msec; (B) axial
motion wl (x) at t~2,4,6 and 8sec. Arrows indicate the positions of
stress application (x0~1mm).
doi:10.1371/journal.pone.0035343.g002

Table 1. Parameters values for the present model.

Reference value Test range Source

R(m) 1|10{7 - [23,31]

A(m2) p|10{14 - A~pR2

I(m4) p=4|10{28 - I~
Ð

r2dA

r(kg=m3) 103 - [17]

sp(Pa) 3|105 3|103{3|107 [31]

E(Pa) 106 104{108 [31,32,43]

c(Pasec) 4|106 4|104{4|108 [23]

m(Pasec) 10{3 10{5{10{1 -

Cv 1 - Materials S1

Cl 0:8 - Materials S1

doi:10.1371/journal.pone.0035343.t001
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measurement showed that the elastic modulus is E^104 Pa [32],

which is two orders of magnitude smaller than the reference value

in Table 1. Also, physiological prestress can be an order of

magnitude smaller than the reference value since the radius of a

stress fiber varies in the range of R~0:1*0:4mm [23,32].

Numerical methods
Equations (1) and (2) are numerically solved using the finite

difference method [33]. The axial direction is uniformly

discretized using a second-order central difference scheme with

N~101 grid points. The Dirac delta function in the forcing term

is approximated using a Gaussian with sufficiently narrow width:

d(x)~1=
ffiffiffiffiffiffiffiffiffiffi
2ps2
p

e½{x2=(2s2)� with s~0:2mm. Time-integration is

conducted semi-implicitly with second-order accuracy [33]: the

stress transport terms related to prestress and elasticity are

advanced using a third-order low-storage Runge-Kutta method,

and the material viscosity and cytosolic drag terms are integrated

using the second-order Crank-Nicolson method. The code is

implemented in Fortran 90 and is validated with a resolution test

for the reference parameters. More specifically, the computational

results (e.g. time constant of the strain at the nucleus) with the

present resolution show approximately 1% difference from results

with N~201. All computations in this study were carried out on

an Intel Xeon CPU E5345 operating Linux.

Results and Discussion

To examine mechanical signal transmission through the stress

fiber, we consider both constant and purely oscillatory time-

periodic forcing applied to an initially stationary stress fiber: i.e. an

initial condition of zero displacement and zero velocity. Constant

forcing is applied with a very short time ramp to avoid numerical

errors associated with abrupt switching: sf ~sf 0(1{e({t=t))
where t~1msec. For the same reason, oscillatory forcing is

considered as a sinusoidal function in time: sf ~sf 0sin(2pft)
where f is the forcing frequency. For both constant and oscillatory

forcing, the amplitude of the forcing is chosen as sf 0~{20Pa

(the minus sign implies downward and outward pulling for

transverse and axial motion, respectively), which is sufficiently

large to elicit a bilogical cellular response (e.g. Src activation) [17].

Because (1) and (2) are linear systems, the forcing amplitude does

not change the conclusions presented in this paper.

It has been suggested that force-induced biological responses in

cells may be attributable to mechanical deformation of proteins

that bind signaling molecules [17]. Therefore, we assume that

mechanical signal transmission to the nucleus occurs via stress

fiber deformation and define the relevant mechanical signal

transmitted to the nucleus as the deformation-related stress at the

nucleus. For transverse motion, the deformation-related stress has

both prestress and elasticity contributions and takes the following

form:

sdef ,v:sp
Lwv

Lx
Dx~L{

EI

A

L3wv

Lx3
Dx~L: ð3aÞ

For axial motion, on the other hand, only elasticity contributes to

deformation, which leads to the following expression for

deformation-related stress at the nucleus:

sdef ,l:E
Lwl

Lx
Dx~L: ð3bÞ

Constant forcing
We first consider mechanical signal transmission driven by

constant forcing. The temporal evolution of transverse and axial

displacements for the reference parameter values defined in

Table 1 is depicted in Fig. 2. The stress fiber displacements

increase progressively with time for both the transverse and axial

directions; however, the transverse motion exhibits a much faster

response. This can be seen more clearly in Fig. 3 which illustrates

the temporal evolution of deformation-related stress at the nucleus.

For transverse motion, the deformation-related stress at the

nucleus attains the applied stress (20Pa) within a few milliseconds,

whereas axial stress requires several seconds for transmission of the

applied stress to the nucleus. It should be noted that both of these

time scales are considerably longer than the few microseconds

predicted by the conjecture of elastic wave stress transmission

where material viscosity and cytosolic damping are neglected

[17,21]. These results suggest that material viscosity and/or

cytosolic damping play crucial roles in delaying mechanical signal

transmission. A more detailed discussion of this notion is provided

later.

We investigated the individual roles of physical parameters

including prestress, stress fiber viscoelastic properties, and cytosolic

viscosity by conducting a parametric study on the time constant

characterizing mechanical signal transmission to the nucleus

(defined as the time required for deformation-related stress at

the nucleus to reach 63:2% of the applied stress). The range of the

parameters studied is summarized in Table 1. In this parametric

study, each parameter of interest was varied individually while all

other parameters were maintained at their reference values. Fig. 4

illustrates the dependence of the time constant on prestress, stress

fiber elasticity, stress fiber material viscosity, and cytosolic viscosity

for both transverse and axial motion. For transverse motion, an

increase in stress fiber prestress significantly reduces the time

constant for mechanical signal transmission to the nucleus (Fig. 4A).

The effect of stress fiber elasticity is found to be negligible for

transverse motion; however, for axial motion, an increase in

Figure 3. Temporal evolution of the deformation-related stress
at the nucleus (x~L): (A) transverse motion; (B) axial motion.
Dots indicate the time corresponding to the displacement snapshots in
Fig. 2.
doi:10.1371/journal.pone.0035343.g003
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elasticity results in a significant reduction in the time constant

because elasticity constitutes the only mechanism for stress

propulsion in this case (Fig. 4B). These results suggest that

cytoskeleton-mediated mechanical signal transmission from the

cell surface to the nucleus occurs through different mechanisms

depending on the direction of the force: a transverse mechanical

stimulus is mainly propelled by prestress while axial stimulus

transmission is mediated by cytoskeletal elasticity. These different

propelling processes are significantly delayed by the material

viscosity which leads to internal damping; thus, the time constant

for both transverse and axial mechanical signal transmission

increases with an increase in material viscosity (Fig. 4C). Cytosolic

drag, on the other hand, plays a negligible role in delaying

mechanical signal transmission in both the transverse and axial

directions as evidenced by the fact that the time constant for

mechanical signal transmission is virtually independent of cytosolic

viscosity (Fig. 4D). These findings indicate that for the configura-

tion considered here, material viscosity is the dominant dragging

mechanism of mechanical signal transmission.

Oscillatory forcing
The results above were derived using a constant forcing

function. There is ample evidence that cells respond differently

to oscillatory forcing than they do to constant forcing [34–36];

therefore, we have also studied the transmission of a time-periodic

mechanical stimulus. The specific waveform we consider is a

sinusoidally oscillating stress with a zero mean and an amplitude of

20Pa. Fig. 5 illustrates representative time traces for the

deformation-related stress at the nucleus for oscillatory forcing

applied in both the transverse and axial directions. For both

directions, the deformation-related stress, as in the case of constant

forcing, exhibits an initial transient before eventually settling to a

time-periodic steady state response with a saturation amplitude

and a frequency matching that of the applied forcing frequency

(1000Hz for transverse forcing and 1Hz for axial forcing).

As expected, the saturation amplitude of the deformation-

related stress at the nucleus is strongly dependent on the forcing

frequency as illustrated in Fig. 6. For both transverse and axial

motion, low frequency forcing is transmitted to the nucleus

without a decay in amplitude. However, for a sufficiently large

forcing frequency, the deformation-related stress at the nucleus

progressively decays with an increase in frequency, although

transverse motion also exhibits very slight amplification of the

applied forcing around f ~100Hz. These results suggest that the

governing equations (1) and (2) are strongly damped linear

systems; thus, individual stress fibers behave as low-pass filters of

mechanical forcing. It is noteworthy that transverse motion

exhibits a much broader filter width than axial motion: the filter

width for transverse motion extends to f^1000Hz whereas the

filter width for axial motion extends only to f^0:1Hz.

We studied the individual roles of physical parameters including

prestress, stress fiber viscoelastic properties, and cytosolic viscosity

on the frequency response by computing the critical frequency

below which full signal transmission is achieved (i.e. stress fiber

filter width). This critical frequency is defined as the frequency at

which the amplitude of deformation-related stress at the nucleus

equals to 63:2% of the amplitude of the applied forcing. Because a

wide range of forcing frequencies is considered, the critical

frequency was obtained using a third-order spline interpolation of

the computed data for peak stress at the nucleus as a function of

each of the physical parameters of interest plotted on log-log axes.

Fig. 7 depicts the dependence of the critical frequency on prestress,

elasticity and material viscosity of the stress fiber, and cytosolic

viscosity. For transverse motion, prestress significantly increases

the critical frequency (Fig. 7A) whereas, similar to constant forcing,

the effect of elasticity is negligible (Fig. 7B). For axial motion, on

the other hand, an increase in elasticity leads to a significant

increase in the critical frequency (Fig. 7B). These results suggest

that for oscillatory forcing, the filter widths for transverse and axial

motion are determined by different mechanisms. For both

transverse and axial motion, an increase in stress fiber material

viscosity significantly reduces the critical frequency (Fig. 7C),

whereas cytosolic damping plays a negligible role (Fig. 7D). These

findings indicate that material viscosity plays a dominant role as a

system damper in mechanical signal transmission, similar to the

case of constant forcing.

Figure 4. Effect of (A) prestress, (B) elasticity, (C) material
viscosity, and (D) cytosolic viscosity on the time constant t for
the deformation-related stress evolution at the nucleus
(x~L):––––, transverse motion; width 3.429 pt height 0.5 pt
width 3.429 pt height 0.5 pt width 3.429 pt height 0.5 pt width
3.429 pt height 0.5 pt, axial motion. Stars denote the reference
values.
doi:10.1371/journal.pone.0035343.g004
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Prestress mediates rapid long-distance mechanical signal
transmission

The results of the previous sections suggest that the primary

propellant of cytoskeleton-mediated mechanical signal transmis-

sion is prestress for force applied in the transverse direction and

cytoskeletal elasticity for force applied in the axial direction. To

further understand the mechanisms of mechanical signal trans-

mission, we use Eqs. (1) and (2) to derive expressions for the energy

exchange rates for both transverse and axial motion as detailed in

Materials S1. For transverse motion, the equation for energy

exchange rate is written as:

dEv

dt
~Ppre,vzPE,vzPvism,vzPviscyt,vzPf ,v, ð4aÞ

where Ev is the kinetic energy for transverse motion, and Ppre,v,

PE,v, Pvism,v, Pviscyt,v and Pf ,v are respectively the work rates by

prestress, elasticity, material viscosity, cytosolic drag, and the

driving forcing. Similarly, the equation for axial motion is written

as:

dEl

dt
~PE,lzPvism,lzPviscyt,lzPf ,l , ð4bÞ

where El is the kinetic energy for axial motion, and PE,l , Pvism,l ,

Pviscyt,l and Pf ,l are respectively the work rates by elasticity,

material viscosity, cytosolic drag, and the driving forcing.

Fig. 8 depicts time traces of the work rate associated with each

term for both transverse and axial motion for the case of constant

forcing. At steady state, all work-rate terms drop off to zero

(because each term is multiplied by the stress fiber velocity).

Immediately after forcing is applied, material viscosity plays the

dominant role in reducing the velocity of the stress fiber for both

transverse and axial motion. With the decrease in velocity, the

material viscosity terms Pvism drop off to zero faster than the

Figure 5. Time trace of oscillatory forcing (- - - -) and the
resulting deformation-related stress (––––) at the nucleus: (A)
transverse motion with f ~1000Hz; (B) axial motion with
f ~1Hz.
doi:10.1371/journal.pone.0035343.g005

Figure 6. Effect of the forcing frequency on the amplitude of
the deformation-related stress at the nucleus (x~L):––––,
transverse motion; - - - -, axial motion.
doi:10.1371/journal.pone.0035343.g006

Figure 7. Effect of (A) prestress, (B) elasticity, (C) material
viscosity, and (D) cytosolic viscosity on the critical frequency
f crit of the deformation-related stress evolution at the nucleus
(x~L):––––, stress in the transverse direction (sdef ,vDx~L); - - - -,
stress in the longitudinal direction (sdef ,l Dx~L). Stars denote the
reference values.
doi:10.1371/journal.pone.0035343.g007
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forcing terms Pf because Pvism*O(DLw=LtD2) whereas

Pf *O(DLw=LtD). Following decay of the material viscosity term,

the driving force is borne by the prestress term Ppre,v in the case of

transverse motion and by the elasticity term PE,l for axial motion,

resulting in deformation of the stress fiber. The contributions of

the remaining terms ( _EEv, PE,v and Pviscyt,v for transverse motion

and _EEl and Pviscyt,l for axial motion) are negligible.

An important difference between transverse and axial motion in

Fig. 8 is the time at which the terms related to deformation (Ppre,v

for transverse motion and PE,l for axial motion) begin to play

important roles. This time is t^0:8msec for transverse motion and

t^3sec for axial motion. These time scales can also be obtained

using dimensional analysis by balancing the dominant terms for

each motion. Thus, for transverse motion, setting Ppre,v*Pvism,v,

yields:

tv*
c

sp

(
R

L
)2^1msec, ð5aÞ

where tv is the time scale of deformation in the transverse

direction. Similarly, for axial motion, the time scale of deformation

tl is obtained from the balance of PE,l*Pvism,l and yields:

tl*
c

E
^4sec: ð5bÞ

These two time scales are consistent with the results of Fig. 4 which

had shown that tv is proportional to s{1
p and c but is virtually

independent of the elastic modulus and cytosolic viscosity and that

tl is proportional to E{1 and c but is independent of the cytosolic

viscosity.

As already alluded to, the time scales for transverse and axial

motion tv and tl are both several orders of magnitude larger than

the time scale obtained from the elastic wave conjecture which

neglects material and cytosolic damping [17,21]. This suggests that

the damping terms significantly delay mechanical signal transmis-

sion. Taking this delay into account leads to the observation that

only the time scale for transverse motion tv is consistent with the

experimental observation that mechanical deformations are

transmitted a distance of *50mm in less than 300msec [17]. On

the other hand, the time scale for axial motion tl deviates

significantly from this experimental observation. It should be

noted that tl is consistent with the experimental result demon-

strating that viscoelastic retraction of a stress fiber in the axial

direction occurs with a time scale of 4*6sec [23]. Taken together,

the present results suggest that mechanical stimulus transmission

through transverse stress fiber motion is likely the only pathway for

very rapid mechanotransduction and that it is mediated primarily

by prestress.

The time scales in (5a) and (5b) also provide insight into the

results for oscillatory forcing. Since the time scale is an inherent

feature of a given system, its inverse provides the characteristic

frequency of the system. Thus, the characteristic frequencies for

transverse and axial motion fv and fl are as follows:

fv*
sp

c
(

L

R
)2^1000 Hz, ð6aÞ

fl*
E

c
^0:25Hz: ð6bÞ

This dimensional prediction is consistent with the critical

frequency values in Figs. 6 and 7.

Physiological time-periodic mechanical stimuli are often char-

acterized by frequencies in the range 0:1vf v10Hz (e.g. cardiac

and respiratory frequencies). The frequency scaling in (6a) and (6b)

suggests that for mechanical signal transmission via an actin stress

fiber, only transverse stress fiber motion allows time-periodic

mechanical signal in the physiological frequency range to be

transmitted a long distance within a cell. In contrast, a

physiologically relevant time-periodic mechanical signal transmit-

ted via axial stress fiber motion would not propagate deeply into a

cell because material viscosity rapidly dampens the mechanical

signal. Importantly, the transverse motion critical frequency above

which internal viscosity significantly dampens mechanical signal

transmission is directly proportional to the prestress in the stress

fiber as was illustrated in Fig. 7. This suggests that when prestress

is reduced, this critical frequency would be significantly lowered so

that mechanical signals in the physiological frequency range would

be rapidly damped, preventing long distance mechanical signal

transmission. This prediction is in qualitative agreement with the

experimental finding that dissipation of stress fiber prestress by

pharmacological agents (e.g. caldesmon) inhibits long-distance

mechanical stimulus transmission in smooth muscle cells [24,26–

28]. Despite this encouraging qualitative agreement, the complex

physiology of the cytoskeleton and its intracellular connections

complicate efforts at more quantitative predictions by the present

model. For instance, while experimental studies have suggested

that low levels of caldesmon which significantly inhibit transmis-

sion of a 0:3Hz oscillatory signal dissipate approximately 50% of

the existing cytoskeletal prestress [27], the present model predicts

that a 50% reduction in prestress leads to a critical frequency of

O(100)Hz, implying that a time-periodic mechanical signal with a

frequency of 0:3Hz would be transmitted through a stress fiber.

An additional implication of our numerical and dimensional

analysis for steady and harmonic forcing is that the nature of

mechanical signal transmission in an actin stress fiber is

fundamentally different for transverse motion than for axial

motion. For transverse motion, prestress plays an essential role as a

stiffness, while the effect of material stiffness, i.e. flexural rigidity

(EI ), is negligible. This notion is confirmed by the following

Figure 8. Time evolution of the individual work-rate contribu-
tion of each term for the (A) transverse and (B) longitudinal
components of the applied force.
doi:10.1371/journal.pone.0035343.g008
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dimensional analysis:

Ppre,v

PE,v
*

sp

E
(

L

R
)2*O(104)&1: ð7Þ

Prestress also renders mechanical signal transmission through

transverse motion dependent on stress fiber aspect ratio (R=L) (see

(5a) and (6a)), and this indeed is an essential reason why transverse

motion provides rapid long-distance mechanical signal transmis-

sion. Importantly, the time scale for transverse motion in (5a) is

inversely proportional to the square of the length, suggesting that a

longer stress fiber would more rapidly transmit mechanical signal.

For axial motion, mechanical signal transmission is dependent

only on mechanical properties (see (5b) and (6b)); thus, the

geometry of the stress fiber does not influence the speed of

mechanical signal transmission.

Material and cytosolic damping
In the present analysis, both material viscosity and cytosolic

drag act as damping factors that slow down mechanical signal

transmission through a stress fiber. For the reference parameters,

we have shown that material viscosity is the dominant factor in

slowing down mechanical signal transmission. To further delineate

the relative contributions of material and cytosolic damping, Fig. 9

provides time traces of deformation-related stress of transverse and

axial motion at the nucleus for the following four scenarios: 1) no

damping, 2) cytosolic damping only, 3) material damping only,

and 4) both material and cytosolic damping. Without any

damping, prestress and elasticity act as restoring forces for

transverse and axial motion, respectively. Therefore, both

transverse and axial motion exhibit elastic oscillations of the

deformation-related stress due to the generation and reflection of

elastic waves (solid lines in Fig. 9). Indeed, the behavior of axial

motion is identical to that conjectured in [17,21]: the elastic wave

travels with a velocity v~
ffiffiffiffiffiffiffiffiffi
E=r

p
^30m=sec; thus, the nucleus

begins to deform at t^0:3msec (Fig. 9B). When only cytosolic

damping is considered, the elastic oscillations in stress for both

transverse and axial motion completely disappear (dashed lines in

Fig. 9); however, the time constant for both cases is on the order of

several microseconds, indicating that cytosolic damping, while

effective at damping stress oscillations, plays only a partial role in

delaying mechanical signal transmission. Material viscous damp-

ing plays a much more prominent role in delaying mechanical

signal transmission as evidenced by the fact that both transverse

and axial motion with only material viscous damping exhibit

dynamics that are virtually identical to those of the reference cases

where all damping terms are included (overlapping dashed-dot

and dashed-double-dot lines in Fig. 9).

Dimensional analysis of material and cytosolic damping

provides further insight. The ratio of cytosolic damping to

material damping for transverse motion is given as:

Pvism,v

Pviscyt,v
~

c

Cvm
(
R

L
)4*O(10), ð8aÞ

while the same ratio for axial motion is:

Pvism,l

Pviscyt,l
~

c

Clm
(
R

L
)2*O(105): ð8bÞ

Here, it is interesting to note that the ratio for transverse motion is

only O(10) whereas that for axial motion is O(105). This suggests

that the influence of cytosolic damping is much larger for

transverse motion than for axial motion. Moreover, depending

on cell size, R=L may attain values of O(10{3) in which case the

ratio for transverse motion in Eq. (8a) would become

O(10{2*10{3). Thus, the contribution of cytosolic damping to

delaying transverse mechanical stimuli transmission is expected to

be considerably larger for stress fibers that are longer than those

considered in the present study.

Microtubules and intermediate filaments
Thus far, we have only discussed mechanical signal transmission

through a single actin stress fiber; however, the cytoskeleton also

contains microtubules, intermediate filaments, and a variety of

linker proteins. Mechanical signal transmission through the

cytoskeleton is likely to be significantly affected by the mechanical

properties of these other cytoskeletal elements as well as by the

detailed networking of these various elements.

Microtubules are thought to primarily bear compressive loads

[37,38]. Since the persistence length of a microtubule is of order

1 mm [39], it would appear that setting prestress to an appropriate

negative value and applying appropriate boundary conditions in

Eq. (1) (e.g. wDx~0~wDx~L~LxxwDx~0~LxxwDx~L~0) may pro-

vide physical insight into the dynamics of a weakly compressed

microtubule. For example, if we consider a Fourier-Laplace mode

for this case with zero material and cytosolic damping

(wv(x,t)~ŵwveikxzst where k~np=L for n~1,2,:::), the following

threshold of compressional force spA for the Euler-buckling

instability is obtained with the critical wavenumber kc~p=L:

DspADƒ
EIp2

L2
: ð9Þ

Figure 9. Time trace of the deformation-related stress at the
nucleus (x~L). (A) Stress in the transverse direction (sdef ,vDx~L) with
only the reference prestress (sp~3|105Pa, E~0): ––––, without
cytosolic or material viscosity (n~0, c~0); - - - -, with only cytosolic
viscosity (n~10{3Pasec, c~0); –-–-–-–, with only material viscosity
(n~0Pasec, c~4|106Pasec); –-–-–-, with both cytosolic and material
viscosities (n~10{3Pasec, c~4|106Pasec). (B) Stress in the axial
direction (sdef ,l Dx~L) with the reference elasticity (E~106Pa):––––,
without cytosolic or material viscosity (n~0, c~0); - - - -, with only
cytosolic viscosity (n~10{3Pasec, c~0); –-–-–, with only material
viscosity (n~0, c~4|106Pasec); –-–-–, with both cytosolic and material
viscosities (n~10{3Pasec, c~4|106Pasec). Note that the dash-dot and
dash-double dot traces overlap and that the time traces that include
material viscosity are amplified using the axes in the right in order to
better visualize their very small values.
doi:10.1371/journal.pone.0035343.g009
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The flexural rigidity of a microtubule has been reported as

EI~2:1|10{23Nm2 [40], which yields a critical force DspAD for

microtubule buckling on the order of 1 pN . However, this

probably does not accurately represent microtubule behavior in

cells. Indeed, the buckling wavelength of a microtubule in vivo has

been found to be considerably shorter than l(:2p=kc)~2L
predicted by Eq. (19) due to the coupling of microtubules to

surrounding cytoskeleton [38]. Importantly, this coupling appears

to allow microtubules in vivo to bear loads up to 100 pN, two

orders of magnitude larger than those predicted by the Euler

buckling analysis. Moreover, microtubules in cells are often highly

bent [38], suggesting that studying mechanical signal transmission

through microtubules with the present model, which only

considers small deformations of a straight filament, may not be

appropriate.

Similar to stress fibers, intermediate filaments are tensile

cytoskeletal elements that bear large tensile forces [18]. Therefore,

one may expect mechanical signal transmission through interme-

diate filaments to be similar to that through stress fibers. However,

the persistence length of an intermediate filament is only on the

order of 1mm [39,41]. Therefore, a deterministic description of

mechanical signal transmission through an intermediate filament

with a length of order 10mm is not adequate due to its strong

stochastic nature. Although intermediate filaments may form

bundles in vivo [42], the mechanical properties of these bundles

(most notably prestress and material viscosity) have not been well

established, which limits the application of the present model to

the case of intermediate filaments.

Simple stress fiber networks
In cells, cytoskeletal elements are very commonly linked

together via a variety of linker proteins. There is also mounting

evidence that cytoskeletal coupling to the nucleus occurs through

specialized linker proteins such as nesprins [21]. Naturally, the

nature of all these links will affect the deformations of cytoskeletal

elements in response to an applied force and hence will influence

the dynamics of mechanical signal transmission considered here.

For a single stress fiber, the present results indicate that transverse

motion allows rapid long-distance mechanical signal transmission.

In the case of a network of linked stress fibers, one can envision

particular linking configurations that preserve rapid long-distance

mechanical signal transmission whose dynamics are consistent

with those observed in experiments [17,24–28].

A representative example is the case where several stress fibers

are aligned virtually parallel to one another and linked together at

their ends, as shown in Fig. 10 (A). In this case, a force applied in

the transverse direction at the integrin (Fext) will lead to primarily

transverse motion in each of the stress fibers; thus, the time scale

for transmission of deformation-related stress would be virtually

identical to that in 6(a):

t~*
c

sp

(
R

L
)2^1msec: ð10Þ

It should be noted that this rapid mechanical signal transmission is

essentially due to the absence of axial motion in the linked stress

fiber network which, had it occurred, would have significantly

slowed down mechanical signal transmission through each of the

stress fibers.

In contrast, other links that allow the axial motion of one or

more stress fibers to interfere with the transverse motion of other

stress fibers would be expected to prevent rapid mechanical signal

transmission. A representative situation is depicted in Fig. 10 (B),

where two stress fibers are rigidly aligned perpendicular to one

another with one of them allowed to move only in the axial

direction. If a force is applied in the transverse direction at the

integrin, this force will be transmitted to the node linking the two

fibers. This transmitted force will then be redistributed to each

stress fiber under the constraint of equal deformation and velocity

for both fibers at the linker node. Considering the dominant terms

involved in force transmission through each stress fiber, the force

balance at the linker node (Fext~Sfn in Fig. 10B) leads to the

following dimensional relation:

Fext*(Ez
sp

2
)
R2

L
wlnk

v zc
R2

L

dwlnk
v

dt
, ð11Þ

where wlnk
v is the vertical deformation of the linker node. Note

that, in this relation, the material damping force for transverse

motion of the stress fiber aligned horizontally is neglected because

it is much smaller than the material damping force related to axial

motion of the stress fiber aligned vertically. Since the deformation

at the linker node is proportional to the deformation-related stress

transmitted to the nucleus, the time scale for the nucleus to ‘feel’

the mechanical deformation is given by:

tz*
c

Ezsp=2
^3:5sec: ð12Þ

This time scale is of the same order as the one in 5(b), implying

that the network topology in Fig. 10 (B) significantly slows down

mechanical signal transmission to the nucleus despite the

transverse motion of some of the actin stress fibers.

The predictions of the present model for stress fiber networks

can be tested experimentally. Culturing cells on patterned surfaces

organizes stress fibers in the direction of the pattern [25]. Our

model predicts that mechanical signals applied to the cell surface

in a direction orthogonal to the substrate pattern would get

transmitted to the nucleus much more rapidly than stresses applied

in the direction of the pattern. The present findings also have

Figure 10. Examples of simple stress fiber network topologies.
(A) Three stress fibers aligned nearly parallel to one another and linked
together at their ends, and (B) two stress fibers aligned perpendicular
to one another with one of them constrained to move only in the axial
direction.
doi:10.1371/journal.pone.0035343.g010
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interesting and potentially important implications for normal

physiology and pathology. Stress fiber orientation is a major

determinant of cell shape, and cell shape often regulates cell

function. A vivid example is the case of the arterial endothelium.

In vivo, arterial regions prone to the development of atheroscle-

rosis are often associated with cuboidal (nearly round) endothelial

cells whose stress fibers are randomly oriented, whereas arterial

zones with elongated endothelial cells and highly aligned stress

fibers remain largely spared of the disease. Thus, the stress fiber

topologies in Figs. 10 (A) and 10 (B) can be thought of as

representative of elongated and cuboidal endothelial cells,

respectively. It would be particularly interesting to establish if

the differences in mechanical signal transmission dynamics

between these two topologies predicted by our present model

relate in any way to the observed functional differences between

cuboidal and elongated endothelial cells. Establishing such a

relationship promises to significantly enhance our understanding

of the role of mechanical forces in the development and

progression of atherosclerosis.
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