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Abstract

Effective and powerful survival mediation models are currently lacking. To partly fill such

knowledge gap, we particularly focus on the mediation analysis that includes multiple DNA

methylations acting as exposures, one gene expression as the mediator and one survival

time as the outcome. We proposed IUSMMT (intersection-union survival mixture-adjusted

mediation test) to effectively examine the existence of mediation effect by fitting an empirical

three-component mixture null distribution. With extensive simulation studies, we demon-

strated the advantage of IUSMMT over existing methods. We applied IUSMMT to ten TCGA

cancers and identified multiple genes that exhibited mediating effects. We further revealed

that most of the identified regions, in which genes behaved as active mediators, were cancer

type-specific and exhibited a full mediation from DNA methylation CpG sites to the survival

risk of various types of cancers. Overall, IUSMMT represents an effective and powerful

alternative for survival mediation analysis; our results also provide new insights into the

functional role of DNA methylation and gene expression in cancer progression/prognosis

and demonstrate potential therapeutic targets for future clinical practice.

Author summary

DNA methylation has a causal effect on tumorigenesis and gene expression may be an

important mediator of such influence. However, inferring the existence of mediation

effect of gene expression is statistically challenging, especially when multiple and even

high-dimensional DNA methylation exposures are collectively analyzed. To solve such

challenge, we developed a new mediation approach called IUSMMT, in which mediation

effects are determined by two separate tests: one for the association between methylations

and the expression, the other for the association between the expression and the survival

PLOS COMPUTATIONAL BIOLOGY

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1009250 August 31, 2021 1 / 29

a1111111111

a1111111111

a1111111111

a1111111111

a1111111111

OPEN ACCESS

Citation: Shao Z, Wang T, Zhang M, Jiang Z,

Huang S, Zeng P (2021) IUSMMT: Survival

mediation analysis of gene expression with

multiple DNA methylation exposures and its

application to cancers of TCGA. PLoS Comput Biol

17(8): e1009250. https://doi.org/10.1371/journal.

pcbi.1009250

Editor: Oscar Rueda, University of Cambridge,

UNITED KINGDOM

Received: January 13, 2021

Accepted: July 6, 2021

Published: August 31, 2021

Peer Review History: PLOS recognizes the

benefits of transparency in the peer review

process; therefore, we enable the publication of

all of the content of peer review and author

responses alongside final, published articles. The

editorial history of this article is available here:

https://doi.org/10.1371/journal.pcbi.1009250

Copyright: © 2021 Shao et al. This is an open

access article distributed under the terms of the

Creative Commons Attribution License, which

permits unrestricted use, distribution, and

reproduction in any medium, provided the original

author and source are credited.

Data Availability Statement: All files are available

from the TCGA database (https://portal.gdc.cancer.

gov/legacy-archive/).

https://orcid.org/0000-0002-4776-429X
https://orcid.org/0000-0003-2710-3440
https://doi.org/10.1371/journal.pcbi.1009250
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1009250&domain=pdf&date_stamp=2021-09-13
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1009250&domain=pdf&date_stamp=2021-09-13
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1009250&domain=pdf&date_stamp=2021-09-13
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1009250&domain=pdf&date_stamp=2021-09-13
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1009250&domain=pdf&date_stamp=2021-09-13
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1009250&domain=pdf&date_stamp=2021-09-13
https://doi.org/10.1371/journal.pcbi.1009250
https://doi.org/10.1371/journal.pcbi.1009250
https://doi.org/10.1371/journal.pcbi.1009250
http://creativecommons.org/licenses/by/4.0/
https://portal.gdc.cancer.gov/legacy-archive/
https://portal.gdc.cancer.gov/legacy-archive/


outcome conditional on methylations. IUSMMT effectively combines the evidence of the

two tests and infers the emergence of mediation effect by fitting an empirical three-com-

ponent mixture null distribution. To evaluate the performance of IUSMMT, we con-

ducted extensive simulation and analyzed ten TCGA cancers. Overall, we demonstrated

the robustness, validity, and utility of IUSMMT under a wide variety of scenarios.

This is a PLOS Computational Biology Methods paper.

Introduction

Many recent studies have revealed that epigenetic abnormalities, particularly aberrant changes

in methylation, exert an important causative effect on complex diseases [1,2]. However, the

mechanisms regarding how alterations of DNA methylation influence diseases remain largely

elusive. Biologically, it has been widely acknowledged that DNA methylation leads to a direct

functional modification of the genome by regulating gene expression [3–13], which reversely

affects various diseases [14–17]. Statistically, this motivates researchers to consider gene

expression as a critical causal mediator of DNA methylation on the development of diseases.

However, the principal genes that control the pathogenesis of diseases have not yet been iden-

tified and the underlying mechanisms of causal genes on diseases are also unclear.

With respect to statistics, mediation analysis, particularly popular in sociology, epidemiol-

ogy, and psychology [18–22], offers a flexible means to interpret the interplay between DNA

methylation, gene expression and diseases. The essential requirement of mediation analysis

arises when researchers are interested in potential underlying mechanism between an expo-

sure (e.g., DNA methylation) and an outcome (e.g., the survival time and status of cancer

patients) and long to acquire an in-depth insight into such understanding. Formally, a mediat-

ing variable (or mediator) is defined as an intermediate variable (e.g., gene expression) in the

causal sequence that relates the exposure to the outcome [18].

With datasets available from The Cancer Genome Atlas (TCGA) project as an illustrative

example [23], in this study we aim to utilize appropriate mediation models to investigate the

mechanism of gene expression on the signaling pathway from DNA methylation to the sur-

vival risk of cancers. In recent years, there have been a lot of methodology extensions of tradi-

tional linear mediation analysis to time-to-event outcome with censored data. Tein and

MacKinnon (2003) [24] studied the estimation and inference of mediated effect for survival

outcome under the context of the log-survival and log-hazard time models. Lange and Hansen

(2011) [25] formulized the natural direct and indirect effects for time-to-event outcome using

an additive hazard model within the counterfactual framework and illustrated its application

by analyzing socioeconomic status, work environment, and long-term sickness absence. The

natural direct and indirect effects were further described using a proportional hazards model

with a rare outcome or an accelerated failure time model [26]. Wang and Zhang (2011) [27]

proposed a Bayesian Tobit approach to examine the mediation effect for censored data and

applied it to study whether verbal memory ability mediated the relationship between age and

everyday functioning. More recently, Luo et al. (2020) [28] investigated survival mediation

methods with high-dimensional mediators by borrowing the idea of screening-penalization

procedure [29]. Although great advances have been achieved (see [30] for a comprehensive

review of statistical methods for high-dimensional mediation analysis in the era of high-
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throughput genomics), methods for survival mediation analysis are still yet to be developed.

These prior methods often consider one or multiple mediators and cannot be readily applied

to our setting where multiple exposures, sometimes high-dimensional, would be involved. Spe-

cially, we wish to implement a gene-centric mediation analysis to simultaneously model a

group of DNA methylation CpG sites as exposures and explore the mediating role of gene

expression in the influence of methylations on the survival risk of cancer patients (Fig 1).

To effectively examine mediation effect in survival studies with multiple exposures, we first

employed the variance component-based score test to assess the association between a group

of DNA methylation CpG sites and expression level for each gene under the framework of lin-

ear mixed-effects model (lmm) [31–34], and then tested for the effect of gene expression on

the overall survival time while adjusting for the direct influence of these methylations within

the framework of Cox linear mixed-effects model (coxlmm) [35–38]. This mediation analysis

procedure is displayed in Fig 1, where the methylation-expression effect (i.e., α) and the

expression-survival effect (i.e., β) can be causally interpreted if individual mediation models

are correctly constructed and identifiability assumptions are satisfied [39–41]. Besides the

explicit assumption of temporal ordering between methylation, gene expression and survival

outcome, the additional assumptions for causal interpretation of these effects include: (i) the

confounding between the methylations and the survival outcome is correctly controlled; (ii)

the confounding between the gene expression and the survival outcome is correctly controlled;

(iii) the confounding between the methylations and the gene expression is correctly controlled;

and (iv) there should be no expression-survival confounders which are themselves affected by

the methylations. The above assumptions are also known as sequential ignobility assumptions

or no unmeasured confounding assumptions [20,42–45]. Note that, our mediation analysis

method can still be employed for identifying potential methylation CpG sites or candidate

genes for further exploration, even when the above causality conditions are not completely

satisfied.

We subsequently determined the existence of mediation effect to detect candidate genes

with potentially mediating roles by adherence to the principle of intersection-union test (IUT)

[46–52], in which the maximum of the two P-values (denoted by Pmax) in the two tests above is

Fig 1. Statistical framework of the survival mediation analysis with multiple exposures, one mediator and one

censored outcome. The mediation analysis involves in multiple DNA methylations (M) as exposures, one gene

expression (G) as the mediator and one survival time as the outcome (T). There are two types of effects from M to T:

the direct effect of M on T (i.e., γDE) and the indirect effect of M on T via the intermediate variable G. The indirect

effect represents the amount of mediation coming from two sources: the effect from M to G (i.e., α) and the effect from

G to T (i.e., β).

https://doi.org/10.1371/journal.pcbi.1009250.g001
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taken as the significance measurement. Although it is conceptually straightforward, this naïve

IUT-based approach is oftentimes extremely conservative especially in large scale mediation

effect tests due to its composite null nature [43,53], which can be equivalently expressed as a

combination of three disjoint component null hypotheses. To correct the intrinsic conserva-

tiveness of IUT, we estimated the proportion for each component null hypothesis and con-

structed a novel null distribution for Pmax by fitting a three-component mixture null

distribution [54], which, in contrast to the naïve uniform null distribution of Pmax assumed in

previous literature [51,52,55], can lead to a desirable control of family-wise error rate (FWER)

or false discovery rate (FDR). We thus refer to our proposed approach framework as the inter-

section-union survival mixture-adjusted mediation test (IUSMMT).

Finally, we applied IUSMMT to ten TCGA cancers and identified multiple genes with

mediation effects. We revealed that, although DNA methylation CpG sites across the whole

genome showed pleiotropic regularization on gene expressions of various cancers, most of the

detected genetic regions, in which gene expressions played key roles as active mediators, were

cancer type-specific and exhibited full mediations lying in the signaling pathway from DNA

methylation CpG sites to the survival risk of cancers. Overall, IUSMMT represents an effective

and powerful statistical tool for survival mediation analysis; our results also provide new

insights into the functional role of DNA methylation and gene expression in cancer progres-

sion/prognosis and demonstrate potential therapeutic targets for future clinical practice.

Results

Overview of IUSMMT

We first offer an overview of the proposed IUSMMT method (Fig 2), with more details illus-

trated in the S1–S4 Texts and the section of Materials and Methods. IUSMMT is a gene-centric

mediation method especially for survival data and dedicates to detect candidate genes with

potential mediating effects standing on the signaling pathway from DNA methylation CpG

sites to cancer survival. It proceeds in the following steps. First, IUSMMT calculates P-values

of the methylation-expression effect (i.e., Pα) and the expression-survival effect (i.e., Pβ) and

takes them as input (Fig 2A); here Pα is obtained via a variance component-based score test

within lmm by assuming each of a following a mean-zero normal distribution with an

unknown variance, and Pβ is yielded through the Wald test within coxlmm. Second, to deter-

mine whether a gene of focus has a mediation effect, IUSMMT classifies the joint null hypothe-

sis H0: αβ = 0 into three composite null sub-hypotheses and takes the maximum of Pα and Pβ
as a significance measurement in terms of the IUT principle (Fig 2B). Finally, to enhance the

statistical power, IUSMMT estimates the proportion for each component of the three null

hypotheses (Fig 2C) and constructs a newly empirical exact null distribution by fitting a three-

component mixture null distribution. Afterwards, an effective control of FWER or FDR is

achieved on the basis of the estimated mixture null distribution. As shown below, the power of

IUSMMT would improve and the bias in estimated mixture proportions would decrease with

the increase of sample sizes.

Results for simulation studies

Estimated null proportions

Following the statistical framework of survival mediation analysis shown in Fig 1, we gener-

ated expression and survival outcome based on a set of real methylation values of TCGA

under various sample sizes and proportion parameters, with details of simulation described in

the Materials and Methods section. We first present the results for simulation studies and
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display estimated proportion parameters for the three-component mixture null distribution

under various simulation scenarios in Tables 1 and S1. Totally, the estimates of these propor-

tions show slight to moderate biases in the alternative scenarios but are relatively close to the

true values in other cases. Nearly in all scenarios, κ00 is over-estimated especially when sample

size is small. Specifically, in the sparse alternative cases, as can be expected, κ10 and κ01 are also

over-estimated because they are non-negatively estimated but their true values are actually

zero, which necessarily results in the underestimation for κ11. In contrast, in the dense alterna-

tive cases, the opposite patterns are observed, with κ00 is over-estimated but κ01 is under-esti-

mated, which is certainly a direct consequence of limited power when testing the effect of the

exposure on the mediator (i.e., τ2) and the effect of the mediator on the survival outcome (i.e.,

β) (S1 Fig). Particularly, in all the simulation scenarios, κ11 is always underestimated or

approximately unbiased, implying that we can minimize the false discovery when examining

the mediation effect. In addition, we find that the estimates of some proportion parameters

(e.g., κ00) have greater bias under the dense null compared to these under the sparse null. The

reason is primarily due to relatively more sufficient information that can be available for esti-

mating these non-zero proportion parameters under the sparse null compared to the dense

null (e.g., 90% vs. 10%).

Fig 2. An overview of IUSMMT for examining the mediation effect in survival model. Here, a = (α1, . . ., αK) is the

vector of effect sizes of a set of DNA methylation CpG sites (i.e., the exposures) on the gene expression level (i.e., the

mediator), with K the number of CpG sites within that gene; and β is the expression-survival effect; S indicates the total

number of genes; n denotes the sample size. (A) IUSMMT first separately evaluates the significance of a and β, and

calculates Pα and Pβ; where Pα is obtained by a variance component-based score test within the linear mixed-effects

model by assuming each of a following a mean-zero normal distribution with an unknown variance τ2, while Pβ is

yielded through the Wald test within the Cox linear mixed-effects model. Then, IUSMMT takes the two P-values as

input. (B) The hypothesis testing of mediation effect is to examine whether the product of α and β is zero or not (i.e.,

H0: αβ = 0) and can be divided into three composite null sub-hypotheses. (C) In the three-component mixture null

distribution, κ10 stands for the probability that the exposures are related to the mediator in the exposure-mediator

model but the mediator is not associated with the survival outcome in the mediator-outcome model; κ01 stands for the

probability that the exposures are not related to the mediator in the exposure-mediator model but the mediator is

associated with the survival outcome in the mediator-outcome model; κ00 stands for the probability that the exposures

are not related to the mediator in the exposure-mediator model and the mediator is not associated with the survival

outcome in the mediator-outcome model. The definition of other notations used in B and C can be found in the

Materials and Methods section.

https://doi.org/10.1371/journal.pcbi.1009250.g002
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Moreover, to evaluate the impact of various numbers of mediators on the estimators of pro-

portions, we implemented an additional simulation with 103 genes (i.e., mediators) with κ11 =

0.10, κ10 = 0.75, κ01 = 0.05, and κ00 = 0.10 (a case that was very close to proportions obtained

from our real applications). As can be anticipated, due to more information available (e.g.,

more genes), it turns out that increasing the number of mediators from 103 to 104 can gener-

ally improve the accuracy in estimating these proportion parameters (S2 Table).

Type I error and power. Based on these estimated proportion parameters, the mixture

null distribution is constructed, and the mediation effect test is implemented. First, when

assessing the performance of type I error control, we demonstrate that IUSMMT, which is

based on the estimated mixture null distribution, can maintain the type I error correctly across

these simulation scenarios (Figs 3 and S2); however, IUT, which utilizes the uniform distribu-

tion as its null distribution, is conservative. This conservativeness of IUT indicates it would be

underpowered in the detection of significant mediation effect. In the power assessment, due to

the adjustment of the mixture null distribution, IUSMMT is much more powerful compared

to IUT (Figs 3 and S3). For instance, when n = 400 and β = 0.05, compared with IUT,

IUSMMT has a 0.06, 0.12, 0.07 or 0.11 higher power under the sparse alternative and 0.25,

0.49, 0.45 or 0.30 higher power under the dense alternative when τ2 = 0.02, 0.04, 0.05 or 0.10,

clearly indicating the benefit of estimating the empirical power function in the mixture null

distribution. Moreover, it is clearly shown that IUSMMT has a much more pronounced

Table 1. Estimated and true proportion parameters (mean and standard deviation) in the three-component mixture null distribution under the five simulation sce-

narios with different sample sizes and numbers of mediation tests.

dense null κ00 = 0.1 κ01 = 0.85 κ10 = 0.05 κ11 = 0

n = 250 0.441 (0.175) 0.536 (0.174) 0.022 (0.012) 0.001 (0.001)

n = 400 0.293 (0.155) 0.675 (0.154) 0.031 (0.012) 0.001 (0.001)

n = 548 0.215 (0.116) 0.750 (0.116) 0.034 (0.012) 0.000 (0.002)

sparse null κ00 = 0.99 κ01 = 0.01 κ10 = 0 κ11 = 0

n = 250 0.977 (0.017) 0.022 (0.017) 0.000 (0.001) 0.001 (0.003)

n = 400 0.986 (0.011) 0.013 (0.011) 0.000 (0.001) 0.001 (0.001)

n = 548 0.977 (0.018) 0.023 (0.019) 0.000 (0.001) 0.000 (0.000)

complete null κ00 = 1 κ01 = 0 κ10 = 0 κ11 = 0

n = 250 0.993 (0.011) 0.005 (0.010) 0.002 (0.006) 0.000 (0.000)

n = 400 0.998 (0.003) 0.001 (0.003) 0.001 (0.002) 0.000 (0.000)

n = 548 0.994 (0.013) 0.004 (0.012) 0.003 (0.008) 0.000 (0.000)

dense alternative κ00 = 0.1 κ01 = 0.75 κ10 = 0.05 κ11 = 0.1

n = 250 0.394 (0.179) 0.537 (0.174) 0.070 (0.036) 0.000 (0.000)

n = 400 0.241 (0.145) 0.667 (0.143) 0.081 (0.035) 0.011 (0.022)

n = 548 0.172 (0.098) 0.725 (0.097) 0.077 (0.037) 0.027 (0.034)

sparse alternative κ00 = 0.9 κ01 = 0 κ10 = 0 κ11 = 0.1

n = 250 0.900 (0.021) 0.055 (0.020) 0.033 (0.018) 0.013 (0.018)

n = 400 0.892 (0.017) 0.047 (0.026) 0.025 (0.018) 0.036 (0.028)

n = 548 0.870 (0.029) 0.061 (0.031) 0.040 (0.026) 0.028 (0.028)

Note: κ10 stands for the probability that the exposures are related to the mediator in the exposure-mediator model but the mediator is not associated with the survival

outcome in the mediator-outcome model; κ01 stands for the probability that the exposures are not related to the mediator in the exposure-mediator model but the

mediator is associated with the survival outcome in the mediator-outcome model; κ00 stands for the probability that the exposures are not related to the mediator in the

exposure-mediator model and the mediator is not associated with the survival outcome in the mediator-outcome model; κ11 stands for the probability of the existence of

mediation effects. The number of genes (i.e., the mediators) was set to 104. Note that, here we only present the estimates of one simulation scenario, with more results

shown in S1 Table.

https://doi.org/10.1371/journal.pcbi.1009250.t001
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advantage in power over IUT under the dense alternative (Figs 3 and S3). For example,

IUSMMT is on average 29.8% more powerful than IUT under the dense alternative, while is

on average only 7.3% more powerful under the sparse alternative.

DNA methylations are significantly associated with the survival risk of

cancers

We now applied IUSMMT to ten types of cancers available from TCGA [23]; summary infor-

mation of these cancers is shown in S3 and S4 Tables. We first examine the association

between a group of DNA methylation CpG sites and the survival risk of cancers for each gene

(i.e., H0: γTE = 0). A total of 57 (30 unique) regions of DNA methylation CpG sites are identi-

fied to be associated with the overall survival of these cancers (FDR< 0.05) except BLCA and

HNSC (Table 2), including 8 methylation regions for BRCA, 7 for CESC, 7 for COAD, 17 for

KIRP, 4 for LUAD, 1 for LUSC, 9 for SARC and 4 for STAD. Approximately 23.3 (= 7/30) of

these regions of DNA methylation CpG sites exhibit pleiotropic effects (Fig 4A). For example,

methylation CpG sites located in ACAA2, NUSAP1, OGFOD1, PSMD5, SNRNP40 and XRCC6
are simultaneously associated with five cancers including BRCA, CESC, COAD, KIRP and

SARC; methylation CpG sites located in USP37 are simultaneously related to four cancers (i.e.,

BRCA, CESC, COAD and SARC). Moreover, we recognize some cancer type-specific methyla-

tion CpG sites, including all the associated methylation sites identified for LUAD, STAD or

LUSC, and partly for KIRP (11 out of 17), SARC (2 out of 9), or BRCA (1 out 8).

Identified associations between methylation and expression

We here evaluate the association between a group of DNA methylation CpG sites and gene

expression (i.e., H0: α = 0) through SKAT with the linear kernel. As a result, a particularly

large number of associations are detected (FDR< 0.05) (Table 2), with the number of methyla-

tion-regulated genes ranging from 8,182 (62.8% = 8,182/13,029) for KIRP to 11,872 (89.5% =

11,872/13,270) for BRCA and an average of 79.3% across these cancers. There are approxi-

mately 98.2% methylation-regulated genes shared by at least two types of cancers, including

3,801 genes (e.g., HIST1H4F, FBP1 and CPEB4) shared across all cancers.

Fig 3. The QQ plot (A) and the average power curve (B-C) for IUSMMT and IUT. The QQ plot (A) is under the

scenario of sparse nulls. The average power curve is calculated when the mediation strength parameter τ2 increases

under the sparse alternative (B) and the dense alternative (C). Here, n = 400, β = 0.3, and τ2 = 0.01, 0.02, 0.04, 0.05 or

0.10 at the x-axis. The magnitude of τ2 quantifies the strength of association between DNA methylation CpG sites and

gene expression. In B and C, the number of genes (i.e., mediators) was set to 104.

https://doi.org/10.1371/journal.pcbi.1009250.g003
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We also performed the similar methylation-expression analysis in 193 normal tissues com-

bined across the ten cancers and find that 43.9% (= 6075/13840) of genes are methylation-reg-

ulated (FDR< 0.05). This proportion is relatively smaller than that obtained from the tumor

tissues, which may be a direct consequence of low power due to smaller sample size of normal

tissues compared tumor tissues and the distinction mechanism in gene regulation between

normal and tumor tissues. On average, 81.0% of methylation-regulated genes discovered in

normal tissues are overlapped with these detected in tumor tissues across the cancers (S5A

Fig). Interestingly, we observe that the effect of methylation on expression is much stronger in

tumor tissues compared with that in the normal tissue. For example, the median value of τ2,

which can be employed to quantify the magnitude of the methylation effect on expression, is

3.7 times higher in the BRCA tissue than that in the normal tissue (S5B Fig).

Identified associations between expression and survival risk

We next explore the association between the expression level and the survival risk of cancers

for each gene (i.e., H0: β = 0) while adjusting for the direct effects of methylation alterations

within the framework of coxlmm. The number of associated genes varies from zero for COAD

to 204 for SARC (FDR< 0.05). Approximately 2.6% of these associated genes are simulta-

neously shared by at least two cancers (Fig 4B), while most of the associated genes (~97.4%)

are cancer type-specific. In addition, a total of 69 (41 unique) regions of methylation CpG sites

also exhibit direct influence (i.e., γDE6¼0) on the overall survival of some cancers (except

BLCA, HNSC and LUSC) (Table 2 and Fig 4C); and approximately 17.1% of significant

regions of methylation CpG sites show direct pleiotropic effects. For example, the methylation

regions located in ACAA2, NUSAP1, OGFOD1, PSMD5, SNRNP40, USP37 and XRCC6 are

shared by five cancers (i.e., BRCA, CESC, COAD, KIRP and SARC). Moreover, we find that

there are 12 methylation regions (i.e., located within ACAA2, NUSAP1, OGFOD1, PSMD5,

Table 2. Number of associated regions of DNA methylation CpG sites and genes identified in the survival mediation analysis.

cancers γTE α (%#) β (%#) γDE (%#) Mediation effect test

IUT (%$) IUSMMT (%$)

BLCA 0 11,325 (86.29) 76 (0.58) 0 (0) 41 (0.31) 61 (0.46) 8 (13.1)

BRCA 8 11,872 (89.46) 56 (0.42) 8 (0.05) 30 (0.23) 46 (0.35) 14 (30.4)

CESC 7 10,059 (76.19) 9 (0.07) 8 (0.06) 1 (0.01) 1 (0.01) 0 (0)

COAD 7 8,963 (68.25) 0 (0) 7 (0.05) 0 (0) 0 (0) 0 (0)

HNSC 0 11,284 (84.73) 42 (0.32) 0 (0) 23 (0.17) 49 (0.37) 8 (16.7)

KIRP 17 8182 (62.80) 170 (1.30) 32 (0.22) 34 (0.26) 34 (0.26) 1 (2.9)

LUAD 4 10,342 (77.80) 17 (0.13) 1 (0.01) 176 (1.32) 188 (1.41) 39 (20.9)

LUSC 1 11,427 (84.73) 3 (0.02) 0 (0) 3 (0.02) 3 (0.02) 0 (0)

SARC 9 10,653 (81.73) 204 (1.57) 10 (0.07) 88 (0.68) 156 (1.2) 18 (11.5)

STAD 4 10,879 (80.84) 8 (0.06) 3 (0.02) 4 (0.03) 5 (0.04) 0 (0)

total 57 104,986 585 69 400 543 88 (16.3)

unique 30 13,801 570 41 392 529

pleiotropy (%) 7 (23.3) 13,553 (98.2) 15 (2.6) 7 (17.1) 8 (2.0) 14 (2.6)

Note

# denotes the proportion among the total genes under investigation

$ denotes the proportion among the genes that are associated with the survival risk of cancers; the proportion of pleiotropy is computed by the ratio between the

number of associations with pleiotropic effects and the number of unique associations. The last second column shows the number and proportion of genes with

mediating effects, and the last column shows the number and proportion of potential passenger methylation events among genes with mediating roles.

https://doi.org/10.1371/journal.pcbi.1009250.t002
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SNRNP40, USP37, XRCC6, CCL18, DPP6, GRIK3, LZTFL1, and LACTB) that not only have

non-zero total effect on the survival risk, but also have substantial direct influence on the sur-

vival risk of cancers.

Associated genes with mediating effects

We now utilize IUT and IUSMMT to assess whether the expression level of a gene has substan-

tial mediating effect on the pathway from methylation CpG sites to the survival risk of cancers.

The estimated proportion parameters for the three-component mixture null distribution for

each cancer are shown in Table 3. These proportions also reflect the probability of the associa-

tion between the methylations and the gene expression (i.e., κ10), and between the gene expres-

sion and the survival time (i.e., κ01), in line with the results described above. The QQ-plot of

Pmax for each cancer is demonstrated in S4 Fig. An observable upward deviation of Pmax from

the diagonal line implies the presence of mediating genes for most of these cancers except

COAD. Specifically, IUSMMT detects 35.8% more genes with mediating effects compared to

IUT, and all genes having mediation effects identified by IUT (a total of 400 genes) are also dis-

covered by IUSMMT. Therefore, in the following we focus on the results of IUSMMT. As sug-

gested by the association results described above and in terms of the principle of IUSMMT,

except COAD (consistent with the pattern of the distribution of its Pmax shown in S4 Fig), we

identify multiple genes mediating the impact of methylation CpG sites on the survival risk of

various cancers (Table 2 and Fig 4E). Specifically, there are a total of 543 (529 unique) signifi-

cant methylation-expression mediation associations, with the number of genes exhibiting

Fig 4. Upset plot and heatmap plot of the P-values (A-F). In the heatmaps of γTE (A) and γDE (C), the color of each box indicates the magnitude of the P-value.

The number in the comment part represents the P-value processed by the negative logarithmic transformation. The darker the color, the smaller the P-value. In the

Upset plots of γTE, β, γDE, IUT, and IUSMMT, each bar shows the number of shared genes. In these Upset plots, the blue part represents cancer type-specific genes,

and the red, green, orange, and purple parts represent genes shared in two, three, four and five types of cancers. (F) The heatmap of the P-values of the 14 overlapped

genes across all the cancers. The color of each box indicates the magnitude of the P-value. The number in the comment part represents the P-value processed by the

negative log transformation, the darker the color, the smaller the P-value.

https://doi.org/10.1371/journal.pcbi.1009250.g004
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mediating effects ranging from 1 for CESC, to 156 for SARC and 188 for LUAD. It is very

interesting that these mediating genes are more likely cancer type-specific as approximately

97.4% of genes are identified for a single cancer while only 2.6% (i.e., a total of 14 genes,

including CD79A, HPN, CBFA2T3, TACC3, KIF18B, RRM2, CIDEC, GNG7, B3GNT8, APOL2,

CBX7, APOBEC3G, APOL1, and PEX11G) are shared across distinct cancers (Fig 4F).

Functional role of selective DNA methylation and gene expression on

TCGA cancers

It first needs to emphasize that among these methylation-expression mediation associations,

nearly all are full mediations, with only one being partial mediation (i.e., ZNF763 for CESC)

(S6 Fig). ZNF763 is a typical zinc finger protein containing Krüppel-associated box (KRAB),

which is reportedly related to the development of cervical cancer. In addition, KRAB activates

NF-κB by participating in the assembly of the IκB kinase (IKK) complex and promoting phos-

phorylation of IKK [56], while NF-κB is a multifunctional transcription factor and is related to

the occurrence and development of cervical cancer [57]. Taken together, it is suggested that

ZNF763 may contribute to the occurrence of cervical cancer by enhancing NF-κB signaling

and changing cell growth. In addition, among the 3,801 methylation-regulated genes that are

shared by all analyzed cancers, 39 are histone genes. It has been revealed that histone gene loci

are abnormally hypermethylated in a wide range of solid tumors [58,59]. For example,

HIST1H4F, one of the identified histone genes with mediating effect, was abnormally hyper-

methylated in 17 types of cancers, acting as a potential universal-cancer-only methylation

(UCOM) marker [59].

Prior studies also offered empirical evidence for these identified mediating genes, three of

which are described in detail as follows, with all the mediating genes shown at https://github.

com/biostatpzeng/IUSMMT. First, TRIM26, as a mediating gene associated with BLCA, was

proved to play a key role in several types of cancers. For example, it was demonstrated that

Table 3. Estimated proportion parameters in the three-component mixture null distribution for 10 TCGA

cancers.

cancers κ10 κ01 κ00 κ11

BLCA 0.858 0.001 0.136 0.005

BRCA 0.891 0.001 0.105 0.004

CESC 0.761 0.000 0.238 0.001

COAD 0.683 0.000 0.317 0.000

HNSC 0.844 0.000 0.152 0.003

KIRP 0.621 0.006 0.366 0.007

LUAD 0.777 0.000 0.222 0.001

LUSC 0.847 0.000 0.153 0.000

SARC 0.803 0.002 0.181 0.014

STAD 0.808 0.000 0.191 0.000

average 0.789 0.001 0.206 0.004

Note: κ10 stands for the probability that the methylations are related to the gene expression in the exposure-mediator

model but the gene expression is not associated with the survival outcome in the mediator-outcome model; κ01

stands for the probability that the methylations are not related to the gene expression in the exposure-mediator

model but the gene expression is associated with the survival outcome in the mediator-outcome model; κ00 stands for

the probability that the methylations are not related to the gene expression in the exposure-mediator model and the

gene expression is not associated with the survival outcome in the mediator-outcome model.

https://doi.org/10.1371/journal.pcbi.1009250.t003
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TRIM26 had an oncogene impact on bladder cancer through regulating cell proliferation,

migration and invasion via the Akt/GSK 3 β/β-catenin pathway [60], and methylation CpG

sites had a significant effect on the regulation of TRIM26 [61]. Second, ZNF496, as a mediating

gene related to BRCA, was shown to significantly suppress ERα transactivation through over-

expression, reduce the expression of estrogen receptor-alpha specific target genes, and inhibit

the growth of breast cancer cells via ERα in an E2-dependent manner [62]. On the other hand,

ERα is a key transcription factor involved in the proliferation and differentiation of mammary

epithelia and has been demonstrated as an important predictor of breast cancer prognosis and

a therapeutic target [63,64]. Moreover, the ZNF family, to which ZNF496 belongs, has been

shown to be mechanically linked to DNA methylation variability [65]. Third, TMBIM6, as a

mediating gene discovered for HNSC, played an important role in the progression of laryngeal

squamous cell carcinoma as a downstream target of RBM15-mediated N6-methyladenosine

modification [66]. In addition, N6-methyladenosine methylation modification involved by

RBM15 regulates gene expression of TMBIM.

Enrichment pathway analysis for mediating genes

We performed the gene ontology (GO) and KEGG pathway enrichment analysis for all identi-

fied mediating genes using the DAVID database [67] and showed results in S7 Fig. In brief, the

GO analysis demonstrates that the biological processes of these genes are concentrated in

DNA template, immune response and cell-cell adhesion, the cellular components of these

genes mainly involve cytoplasm, cytosol and perinuclear region of cytoplasm, and the molecu-

lar functions of these genes are primarily manifested in protein binding, cadherin binding and

microtubule binding. The KEGG analysis of these genes also reveals multiple signaling path-

ways which are related to PI3K-Akt, Ras and histidine metabolism.

Direction of mediation effects

We further examined the direction of the effect of methylation CpG sites on expression and

the effect of expression on the survival risk for these mediating genes (Table 4). It is found that

the expression level of most of the genes (68.7% = 373/543) were inhibited by methylation

alterations, while the expression level of some genes (~31.3%) was also upregulated by

Table 4. Direction of the effect of methylations on expression and the effect of expression on the survival risk of

cancers for identified genes with mediating influence.

cancers N Direction (α & β)

+ + - - - + + -

BLCA 61 12 24 12 13

BRCA 46 2 28 4 12

CESC 1 1 0 0 0

HNSC 49 2 18 3 26

KIRP 34 5 11 16 2

LUAD 188 19 70 59 40

LUSC 3 2 0 1 0

SARC 156 8 59 64 25

STAD 5 1 1 3 0

total 543 52 211 162 118

Note: N denotes the number of genes with mediating effect; + or—refers to the positive or negative direction in the

effect of methylations on expression (i.e., α) or in the effect of expression on the survival risk of cancers (β).

https://doi.org/10.1371/journal.pcbi.1009250.t004
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methylation alterations, in line with prior observations of the dual function of methylations on

gene expression [68, 69]. The downregulated expressions may lead to higher (43.4% = 162/

373) or lower (56.6% = 211/373) survival risk of cancers, and the upregulated expressions can

also likely result in higher (30.6% = 52/170) or lower (68.8% = 118/170) survival risk of can-

cers. Totally, 48.4% of (= 263/543) genes have the methylation-expression effect and the

expression-survival effect in the same direction and 51.6% (= 280/543) of genes have opposite

directions.

Distinguish passenger methylation events from mediation methylation

events

Finally, we highlight that the effect pathway in our mediation analysis depends on a critical

assumption that DNA methylation CpG sites regulate gene expression rather than conversely.

However, such assumption may not fully hold as recent methylation studies in large cancer

datasets have revealed that a bulk of methylation alterations observed in cancers might be a

consequence of global epigenetic remodeling mechanism including (i) global loss via replica-

tion related errors; and (ii) CpG island/shore methylation gain associated with tumor prolifer-

ation [70,71]. Under this case, altered expression of a handful of key genes would have a

reverse influence on DNA methylation CpG sites over the cancer epigenome. Namely, the

expression of a gene can affect the survival risk of cancers while impacting DNA methylations,

leading to the biological consequence that changed DNA methylations are just passenger

events.

Therefore, distinguishing passenger methylation events from mediation methylation events

that are likely to have a direct or indirect (via expression mediation) influence on the survival

risk of cancers is necessary for the biological interpretation of results in our mediation analysis.

In terms of the result of multivariate variance-component score test conducted via MultiSKAT

[72], we find that approximately 16.3% (= 88/543) of the discovered mediation methylation

events might be passenger methylation events across these cancers after the adjustment with

Bonferroni’s method (P< 0.05) (Table 2).

Discussions

In the present study we have proposed a novel statistical approach, called IUSMMT, for exam-

ining high-dimensional mediation effects in survival models with multiple exposures and one

mediator. We have applied IUSMMT to ten TCGA cancers to identify genes that likely exhib-

ited mediation effects of gene expression on the signaling pathway from DNA methylation

CpG sites to the survival risk of cancers and observed some interesting results which provide

supplementary insights on the biological mechanism from DNA methylation to gene expres-

sion and to survival outcome. First, only a few of DNA methylation CpG sites showed a total

impact on the survival risk of cancers, although we cannot completely rule out the possibility

of low statistical power due to small sample sizes and high censoring rates of these analyzed

cancers. Second, we found that DNA methylation CpG sites can influence expression level

directly for a wide range of genes and that most of these methylation-regulated genes were

shared across distinct cancers, authenticating the prior finding that DNA methylation is a per-

vasive epigenomic mechanism of gene regulation [73,74].

Third, many genes were related to the survival risk of cancers, whereas most of them

(~84.6%) were cancer type-specific, with only a few simultaneously shared between various

cancers. As a result, although a wealth of genes mediated the influence of DNA methylation

CpG sites on the overall survival time of cancers, the majority of the mediations associations

were also cancer type-specific. This specificity largely reflects the inter-tumor heterogeneity of
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the transcriptomic influence on cancers and the tissue distinction in cancer prognosis [75],

implying that mediated pathways of the epigenomic impact vary cancer by cancer although

DNA methylation pervasively regulates gene expression. It also has important implication on

targeted therapies of precision cancers medicine by intervening DNA methylations [76–78].

Fourth, besides the indirect impact mediated by genes, multiple regions of DNA methyla-

tion CpG sites also have direct effects on these cancers. Fifth, we found that almost all the asso-

ciations were full mediations, with only few partial mediations. Besides the truly biological

mechanism, other possible explanations also include low power in examining the direct effects

(i.e., γDE) of DNA methylation CpG sites for these TCGA cancers. Note that, potentially due to

the lack of coverage of distal regulatory elements in the TCGA 450K chip, our analysis cannot

include distal enhancer when defining methylation loci for every gene although we can con-

sider methylation alterations around the promoter. It has been shown that the distal enhancers

of CpG sites are unmethylated in normal cells but often gain methylations in cancer cells and

tissues [79,80]. With the growing increase in the use of whole genome bisulfite whole genome

sequencing (WGBS) and Illumina’s newly released methylated EPIC BeadChip [81], including

methylation loci around the enhancer would become feasible and important in epigenetic

mediation analysis from both the biological and statistical perspectives. For instance, a media-

tion event, which was identified as partial mediation using only promoter CpG sites, may be

tagged as fully mediated if enhancers/transcription factor binding would be considered as well.

This is certainly an interesting topic for future work. It also needs to emphasize that our analy-

sis cannot directly indicate these mediating genes include in proliferation or cell cycle related

genes. Further experimental studies are warranted to elucidate the biological function of these

genes.

In addition, although many studies have demonstrated that the variability in DNA methyla-

tion level can be largely attributable to diverse cell types and that cellular composition can be

an important factor for elucidating biological processes [82] (e.g., the ratio of infiltrating neu-

trophils to plasma cells has important prognostic significance in cancer survival [83]), in the

present analysis we followed prior work (e.g., [43,84]) and did not consider cell types as covari-

ates due to two main reasons listed below. First, because cell types are often inferred directly

from gene expressions or methylations [85–87], we did not incorporate them in the mediation

model to avoid using data twice. Second, to our knowledge, adjusting cell types is primarily for

DNA in the blood sample, and is very rare in the tumor tissue. Nevertheless, we recognize the

critical role of cell types in the high-dimensional mediation analysis [88] and would pursue

this issue in our future work.

It needs to highlight that IUSMMT adopted the principle of intersection-union test and is

conceptually straightforward [47,49,50]. Like many previous mediation analyses, we imple-

mented IUSMMT in two stages. Specifically, in the first step, the influence of DNA methyla-

tion CpG sites on the gene expression was examined and in the second step the association

between the expression levels was investigated. Note that, although there are two null hypothe-

ses involved in IUSMMT, no adjustment for multiplicity is needed because the overall null

hypothesis of no mediation effect is rejected if and only if each of individual null hypotheses

(rather than any of individual null hypotheses) is rejected. It is evident that the power of

IUSMMT depends on the individual power in each stage.

Our analysis relies on an implicit assumption that DNA methylation CpG sites can regulate

gene expression [89–92]. This assumption is largely supported by prior finding that epigenetic

modification is closely relevant to the gene expression level which in turn has a direct function

consequence on complex human diseases including malignant tumors [93,94]. Previous stud-

ies also showed that genes often exhibited cancer type-specific methylation changes and con-

tributed to a higher incidence in cancer patients [95]. In addition, methylation CpG sites not
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only affect the survival through the expression of its located genes but also work via a variety of

other mechanisms, including splice variants and enhancer regions [96–98]. Recent work dis-

covered that the methylation profiles of patients of four cancer subtypes played an important

role in regulating gene expression during many biological processes and identified some func-

tional genes with different methylation status in different subtypes [99].

However, the regulation assumption from DNA methylations to gene expression may

not fully hold as revealed in terms of recent studies which found that methylation alter-

ations can be reversely regulated by gene expression under the global epigenetic remodel-

ing mechanism [70,71]. As a consequence, altered DNA methylation may simply

represent a passenger event rather than a mediation event. To distinguish passenger meth-

ylation events from mediation methylation events, using the reverse regression analysis

we found statistically supportive evidence that a small fraction of mediation associations

may be passenger methylation events. However, this reverse analysis strategy is an ad-hoc
approach which has no clear theoretical basis and which only considered the cis influence

of gene expression regulation on methylation. It also demonstrates an important limita-

tion of mediation analysis; namely, although it is useful for uncovering evidence of causal

association, mediation analysis per se can be inadequate for completely determining the

direction of the identified causal relationship. Therefore, addressing passenger methyla-

tion event in our epigenetic mediation analysis comprehensively is a promising but chal-

lenging direction for future investigation.

We finally highlight that there is still some room for further enhancement of the power in

the first stage where the relationship between a set of DNA methylation CpG sites and gene

expression level was examined with the variance-component test with a linear kernel function

in the present study. As well-documented in previous studies, other more complicated kernels

or a composite optimal kernel may have the potential to improve the power [100–106]. In

addition, herein we implicitly suppose that all DNA methylation CpG sites had an influence

on the gene expression, which may not hold in the real-life dataset. Instead, there may be only

a few DNA methylation CpG sites regulating the expression level of a gene. Under this circum-

stance, a sparse relationship between DNA methylation CpG sites and the expression level

should be modeled [51,107]. Furthermore, IUSMMT may be sub-optimal if the effect sizes of

DNA methylation CpG sites located within the gene have the same direction (e.g., all are posi-

tive or negative). In this scenario, the burden test with a weighted score across these methyla-

tion CpG sites often leads to more powerful mediation approaches [33,101,108]. However, it

seems very challenging to select a test that is consistently optimal across various settings

because of the true relationship is unknown. Alternatively, it is hence desirable to construct a

feasible omnibus mediation effect test that can aggregate all these strengths stated above. Nev-

ertheless, in the present study we offer a very general framework for the assessment of media-

tion effect and we leave these issues mentioned above as an important and promising research

avenue in our further work.

Materials and methods

Modeling framework for survival mediation analysis with multiple

exposures

IUSMMT is a gene-centric high-dimensional survival mediation approach and considers

one gene at each time. Assume there are multiple exposures (M; e.g., a set of DNA methyl-

ation values for CpG sites located within a given gene), one mediator (G; e.g., expression

level of that gene) and one survival outcome (T; including the survival time t and the sur-

vival status d) for n individuals. In the conventional mediation analysis [18–22], the
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impact of M on T stands for the direct effect, and the influence of M on G and subse-

quently G on T for the indirect effect. Our objective is to evaluate the causal effect of M on

T that is mediated via G. If M affects T only through G (i.e., γDE = 0), it is called full media-

tion; otherwise, it is referred to as partial mediation if γDE 6¼ 0 [109]. For a gene under

investigation, the associations between DNA methylations, expression, or clinical covari-

ates (X) and the survival outcome can be determined within the framework of mediation

analysis through the following procedures.

Step 1: Cox linear mixed-effects model testing for the total effect of

methylations on the survival outcome

Following previous work [28,38], we first fit an exposure-outcome Cox model (i.e., methyla-

tion-survival model) to examine the association between a group of DNA methylation CpG

sites (M) of a gene of focus and the survival outcome (T) (i.e., M! T) while adjusting for the

impact of existing covariates (X)

logðhðtjM;XÞ=h0ðtÞÞ ¼
XK

k¼1

Mkg
TE
k þ Xw1 ¼ MγTE þ Xw1 ð1Þ

where h(t|M,X) is the hazard risk at time t given M and X; γTE ¼ ðgTE
1
; . . . ; gTEK Þ is the vector

of total effect sizes of exposures on the survival outcome; w1 = (w11,. . .,w1L) denotes the

vector of effect sizes of L covariates in the exposure-outcome model; h0(t) is an arbitrary

baseline hazard function, and K is the number of methylations. Nota bene, K varies gene

by gene. In terms of the weighted residual method proposed in [110], we find that the pro-

portional hazards assumption required by the utilization of the Cox model (here only

covariates are considered; see below) is satisfied across all the ten TCGA cancers (P>0.05)

(S5 Table).

To assess the relationship between M and T (H0: γTE = 0), one may treat γTE to be fixed

effects and apply the classical score test (or multivariate Wald test) for hypothesis testing.

However, as the number of methylations (i.e., K) in a gene might be very large up to sev-

eral hundred and highly correlated with each other (S8 Fig), the fixed-effects test methods

would have a large degree of freedom and are thus underpowered [31–33,111]. Alterna-

tively, we assume gTEk ðk ¼ 1; . . . ;KÞ follows a normal distribution N(0, τ1) in terms of pre-

vious relevant studies [32–34], leading to the so-called coxlmm [35,38]. Based on this

effect assumption, we estimate and test the direct path within the framework of kernel-

machine (KM) based Cox model relying on another equivalent null hypothesis H0: τ1 = 0

via the coxKM package [112].

Traditionally, the presence of a significant total effect (i.e., γTE 6¼ 0) is the prerequisite for

the subsequent mediation test [22]. However, in practice it is not uncommon for the situation

where the total effect is nonsignificant (i.e., γTE = 0) but a substantial mediation effect remains

[113]. Therefore, we always further investigate the existence of mediation effect irrespective of

the significance or insignificance of γTE.

Step 2: Linear mixed-effects model testing for the effect of methylations on

gene expression

Next, in the exposure-mediator model (i.e., methylation-expression model) we evaluate the

association path from methylation CpG sites to expression while controlling the influences of

other covariates (i.e., M! G). With the similar reason described in the first step, like γTE we
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also suppose the effects of methylations α have a normal distribution with variance τ2

G ¼
XK

k¼1

Mkak þ Xw2 þ ε ¼ Mαþ Xw2 þ ε

akeNð0; t2Þ

εeNð0; s2
εÞ

ð2Þ

where α = (α1,. . .,αK) is the vector of effect sizes of exposures on the mediator; w2 = (w21,. . .,

w2L) denotes the vector of the effect sizes of covariates in the exposure-mediator model; and ε
is a mean-zero normal residual with variance s2

ε. We examine the null hypothesis H0: α = 0 (or

equivalently τ2 = 0) by utilizing the variance component-based score test within the framework

of lmm [31,32,114–116] albeit the likelihood ratio-based test is also applicable [33,117,118]

Q ¼
XK

k¼1

Xn

i¼1

½MikðGi � Xiŵ2Þ�
2

( )

ð3Þ

where ŵ2 is the estimate of w2 under the null model (i.e., G = Xw2+ε). Under H0, the score sta-

tistic Q follows a mixture of chi-square distribution and the P-value is approximately obtained

by Davies’ method [32,119]. We implement this test via the SKAT package [32].

Step 3: Cox linear mixed-effects model testing for the effect of gene

expression on the survival outcome

In the third step under the mediator-outcome model (i.e., expression-survival model), we

examine the path from gene expression (G) to the survival outcome (T) conditional on methyl-

ation CpG sites (i.e., G! T) through coxlmm

logðhðtjM;G;XÞ=h0ðtÞÞ ¼
XK

k¼1

Mkg
DE
k þ Gbþ Xw3 ¼ MγDE þ Gbþ Xw3 ð4Þ

where γTE ¼ ðgTE
1
; . . . ; gTEK Þ is the vector of the direct effects of methylations, β is the effect size

of gene expression, and w3 = (w31,. . .,w3L) denotes the vector of the effect sizes of covariates in

the mediator-outcome model. In the same principle, we suppose gDEk ðk ¼ 1; . . . ;KÞ follows a

normal distribution N(0, τ3). Herein, we are interested in testing H0: β = 0. We estimate β and

implement a Wald test via the coxme package [35,120].

Based on these models described above, the average nature direct effect and nature indirect

effect can then be derived (S1 Text) [26,121]; the modeling assumptions required for estima-

tion identifiability and causal interpretation of these effects are also given (S1 Text).

Intersection-union survival mixture-adjusted mediation test (IUSMMT)

Finally, to verify whether a given gene has mediation effect on the path from methylation CpG

sites to the survival risk, we test the joint null hypothesis in which both effects have to be zero:

H0: α = β = 0 (or equivalently, H0: τ2 = β = 0). As mentioned before, we need to implement the

similar hypothesis testing across the whole genome. Therefore, this is a high-dimensional

problem of mediation effect test. That is, we have H0j (j = 1, . . ., S) for all S genes. For simplic-

ity, in the following we here ignore the subscript j. The individual mediation effect test is also

equivalent to the hypothesis testing whether the mediation effect exists or not (H0: αβ = 0 ver-

sus H1: αβ 6¼ 0) in the absence of interactions between the exposures and the mediator and
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can be divided into three composite null sub-hypotheses

H0 ¼

H10 : α 6¼ 0ðt2 6¼ 0Þ and b ¼ 0

H01 : α ¼ 0ðt2 ¼ 0Þ and b 6¼ 0

H00 : α ¼ 0ðt2 ¼ 0Þ and b ¼ 0

ð5Þ

8
><

>:

The hypothesis in (5) can be formulated within the framework of the intersection-union

test (IUT) (S2 Text) [46–50]

H0 ¼ H10 [ H01 [ H00 versus H1 ¼ Hc
10
\ Hc

01
\ Hc

00
ð6Þ

with A denoting the complement of set A.

To conduct IUT, we additionally define Hα
0

: α ¼ 0 versus Hα
1

: α 6¼ 0 and Hβ
0 : β ¼ 0 ver-

sus Hβ
1 : β 6¼ 0, and suppose the P-value obtained from Hα

0
is Pα and the P-value obtained

from Hb

0 is Pβ. To ensure the desirable type I error control of IUT, we exploit Pmax = max(Pα,

Pβ) to evaluate the overall significance of the mediation effect. IUT is advantageous in that the

resulting mediation effect test has conceptual simplicity and feasibility of maneuver, and Pmax

per se can be employed as the P-value for assessing the significance of mediation

[51,52,55,122]. Obviously, when rejecting H0 if Pmax is less than the given significance level of

α, IUT is indeed a level-α test, representing that the type I error of IUT is guaranteed at most α
once the rejection decision for H0 is made [47,49].

However, IUT is oftentimes extremely conservative especially when both Hα
0

and Hb

0 (i.e.,

H00) hold [43,53], which is particularly true in genome-wide mediation studies where most of

molecular markers such as gene expression or DNA methylation may be not expected to be

related to the outcome of interest. To our knowledge, the commonly-used Sobel test [123,124],

which is also often overly conservative [53,125], cannot be directly applicable for examining

gene-centric high-dimensional mediation effects. Alternatively, to efficiently correct this con-

servativeness of IUT, we estimate the proportion for each component of the three null hypoth-

eses and construct a new empirical null distribution for Pmax by fitting a three-component

mixture null distribution (S3 Text) [54]

PrðPmax � ujH0Þ ¼ k10p10uþ k01p01uþ k00u2

p10 ¼ PrðPa � ujH10Þ

p01 ¼ PrðPb � ujH01Þ

ð7Þ

where κ10, κ01 and κ00 are the proportions corresponding to the three null hypotheses illus-

trated in (5), u is a given threshold value for the significance evaluation, while p10 and p01 are

actually the power of rejecting a = 0 under H10 or β = 0 under H01 respectively; and can be esti-

mated via the Grenander method [126]. The estimation of these proportion parameters

required in (7) can be easily implemented with methods that were well-established in the FDR

literature (S4 Text) [29,127–135]. Once the estimates of these proportions are obtained, the

estimated mixture null distribution for Pmax can be built to control FWER or FDR. A compre-

hensive theoretical derivation with regards to the control of FWER or FDR can be conferred in

[54].

To distinguish from the naïve IUT-based mediation test which takes Pmax as the statistic

and the uniform as the null distribution, we refer to the proposed approach as IUSMMT

(intersection-union survival mixture-adjusted mediation test) which exploits the estimated

mixture as the null distribution. IUSMMT is freely available at https://github.com/

biostatpzeng/IUSMMT.
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Simulation studies for type I error control and power evaluation

To evaluate the performance of IUSMMT, we undertake extensive simulations to investigate

the type I error control and power. To simulate the truth in practice, we generated the gene

expression level (G) and the survival outcome with 50 methylation CpG sites (M) of B3GALT4
on 548 BRCA individuals in TCGA [23]. Of note, the selection of this gene and this cancer was

primarily because the number of methylation CpG sites and the sample size satisfied our simu-

lation settings. Specifically, we first simulated G via a linear mixed-effect model with the num-

ber of methylation CpG sites varying in terms of a uniform distribution (ranging from 10 to

30, with an average of 20). Two covariates x1 (based on the age of the BRCA patients) and x2

(based on the cancer stage of the BRCA patients) (X) were also included, both having an effect

size of 0.5 in the exposure-mediator model

G ¼
XK

k¼1

Mkak þ 0:5x1 þ 0:5x2 þ ε ¼ Mαþ 0:5x1 þ 0:5x2 þ ε

ak � Nð0; t2Þ

ε1 � Nð0; 1Þ

ð8Þ

Thereafter, we employed the inverse probability method to create the survival time (i.e. t) in

terms of the Weibull distribution with a fixed shape parameter λ = 1 and a fixed scale parame-

ter ρ = 0.01 [136]. The location parameter of the Weibull distribution was determined by M, G
and X in the mediator-outcome model

logt ¼
1

r
log � logðuÞ=ðlexpðZÞÞð Þ

Z ¼
XK

k¼1

Mkg
DE
k þ Gbþ 0:5x1 þ 0:5x2 ¼ MγDE þ Gbþ 0:5x1 þ 0:5x2

u � Uð0; 1Þ

γDE � Nð0; t3Þ

ð9Þ

where u was a 0–1 uniform variable and τ3 = 0.02. The censored rate was fixed to be 50% in a

random manner (the high censored rate corresponded to the similar situation observed in

TCGA cancer dataset; see below).

To balance the statistical power, we set τ2 = 0, 0.01, 0.02, 0.04, 0.05 or 0.10 and β = 0, 0.15,

0.2, 0.25 or 0.30, and considered various configurations of the two parameters. For each con-

figuration, we set the sample size n = 250, 400 or 548, and generated 104 datasets with M, G, X,

and T; that is, we had S = 104 genes (i.e., mediators). Because there were too many possibilities

for the effect sizes and the mixture proportions, in the present study we were primarily inter-

ested in several cases that matched closely to our context application. Following the previous

study [54], five scenarios for proportion parameters were designed (S1 Table), including the

dense null under which κ11 was set to zero but κ10 or (and) κ10 had a small value, the sparse

null under whichκ11 was set to zero, but in contrast to the sparse nulls, κ00 had a small value,

and both κ10 and κ10 had a relatively large value, the complete null under whichκ00 was set to

one, the sparse alternative under whichκ11 was not equal to zero, κ00 had a large value, and κ10

and κ10 were set to zero, and the dense alternative under whichκ11 was not equal to zero, but

in contrast to the sparse alternative. The control of type I error was assessed with QQ plot and

the power was calculated by the proportion of true positive discoveries among the true media-

tion effects. We repeated the simulations 100 times and took the average across the

replications.
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Application to ten TCGA cancer datasets

We finally applied IUSMMT to ten cancer datasets (S3 Table) publicly available from TCGA [23].

For these cancers, we downloaded their clinical information, RNAseq expressions as well as DNA

methylations from UCSC Xena (https://xenabrowser.net/). DNA methylation levels were deter-

mined by Illumina Infinium HumanMethylation 450K platform and gene expression profiles

were measured via the Illumina HiSeq 2000 RNA Sequencing platform. For methylation mea-

surements, we removed non-CpG sites (i.e., these probes with ch labels) and CpG sites located on

sex chromosomes; we also excluded cross-reactive probes as suggested in [137]. The beta values of

methylation levels were logit-transformed to obtain the M-value for each CpG locus as the M-

value is not bounded between zero and one and is thus more valid for our subsequent statistical

analysis [138]. For each cancer, we focused on patients of self-report European ancestry while

excluding patients whose tissues were formalin-fixed and paraffin-embedded. For gene expres-

sion measurements, we only considered protein coding genes and removed genes with over 50%

zero expressions and variances smaller than 20% quantile of expression values. Then, we yielded

methylation-expression pair for each gene in terms of the position annotation file provided by

UCSC Xena. In each gene pair, we standardized both DNA methylation and expression level so

that methylation and expression have a mean zero and variance one. According to TCGA gene

annotation mapping file, we defined in our analysis methylations as those located within the

entire gene body and a 500 bps upstream of the transcription start site (TSS) so that the promoter

can be included. The distance of 500 bps is to some extent arbitrary and experience-based. In fact,

the optimal extension distance upstream of TSS is not clear and various choices were applied in

prior literature [139]. To examine the robustness of various extension distances, we performed a

sensitivity analysis by incorporating methylation CpG sites within distinct extended regions, and

found that the extension of the distance upstream of TSS in defining methylation loci seems to be

very robust and has little influence on our final identification of mediating genes for methylation

levels measured with the 450K platform (S9 Fig).

In addition, some clinical covariates available with only a few missing values, such as gender

(coded as 0 or 1), age (treated as continuous variable), stage (coded from 1 to 5 and treated as

continuous variable), estrogen receptor status (ER) (coded as 0 or 1) and progesterone recep-

tor status (PR) (coded as 0 or 1), were also considered. We had to ignore other common covar-

iates (e.g., alcohol consumption) that had too many missing values although they may be also

greatly important. For the remaining datasets, the missing values were simply imputed by the

mean if any. Notably, some of these covariates were cancer type-specific (e.g., ER and PR). Fol-

lowing previous studies [38,140–143], we employed the overall survival time and the corre-

sponding survival status as the outcome as there was minimal ambiguity in defining an overall

survival event [144]. In brief, overall survival in TCGA was the duration from the diagnosis of

cancer to the death of patients. The employed TCGA cancer datasets and data process are sum-

marized in S2 and S4 Tables.

Identify passenger methylation event via MultiSKAT

To distinguish passenger methylation events from mediation methylation events that are likely

to have a direct or indirect (via expression mediation) influence on the survival risk of cancers,

we here assume the gene expression may affect a set of DNA methylations and perform a

reverse analysis by regressing methylation measurements on expression for all the identified

mediating genes based on a multivariate model

M ¼
XK

k¼1

G~bk þ X ~W2 þ ~ε ¼ G~β þ X ~W2 þ ~ε ð10Þ
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where ~β = ð~b1; . . . ; ~bKÞ denotes the vector of effect sizes of gene expression on DNA methyla-

tion sites, ~W2 is the matrix of effect sizes for covariates, and ~ε is the matrix of residual error

terms. We further suppose that each ~bk (k = 1, . . ., K) follows a normal distribution with mean

zero and variance τ. Then, our objective is to test for the null hypothesis H0: ~β = 0, which is

equivalent to examining H0: τ = 0. The corresponding variance component score test statistic

is given as

QM ¼ fG
TðM � μ̂ÞV̂ � 1g

T
fGTðM � μ̂ÞV̂ � 1g ð11Þ

where μ̂ and V̂ are the estimated mean and covariance of M under the null hypothesis. Then,

the test statistic QM follows a mixture of chi-square distribution and this test can be imple-

mented via MultiSKAT [72].

Supporting information

S1 Fig. Estimated power for α and β. These powers are estimated under six alternative simu-

lation scenarios from A to I with various mixture proportions. The graph in the left column is

the power of β, and the x-axis is the value of β = 0.15, 0.20, 0.25 or 0.30; The graph in the left

column is the power of α, and the x-axis is the value of τ2 = 0.01, 0.02, 0.04, 0.05 or 0.10. These

powers are estimated by the average across the 100 replications.

(TIF)

S2 Fig. QQ plot for IUSMMT and IUT under various the scenarios of nulls and sample

sizes. Here (A), (B) and (C) represent the sample size n = 250, 400 and 548, respectively.

(TIF)

S3 Fig. Estimated power for IUSMMT and the IUT method. Here, τ2 = 0.01, 0.02, 0.04, 0.05

or 0.10 at the x-axis, β = 0.15, 0.20, 0.25 or 0.30 on the top. These powers are estimated for the

nine alternative simulation scenarios from A to I with various values for the mixture propor-

tions by the average across the 100 replications. (A), (B) and (C) represent the sample size

n = 250, 400 and 548, respectively.

(TIF)

S4 Fig. QQ plot for the mediation effect test statistic Pmax for 10 TCGA cancers.

(TIF)

S5 Fig. (A) Proportion of overlapped methylation-regulated genes discovered in various

cancer tumor tissues and these discovered in normal tissue. (B) Estimated values of τ2 in

the BRCA tissue and in the normal tissue. Here, τ2 can be employed to quantify the magni-

tude of the methylation effect on expression, the sample size for the normal tissue is combined

and analyzed across all the 10 cancers.

(TIF)

S6 Fig. Partial mediation framework of ZNF763 for CESC. Please refer to Fig 1 for the inter-

pretation of these parameters shown herein.

(TIF)

S7 Fig. Results of KEGG pathway enrichment analysis and the significant terms identified

by GO enrichment analysis for the genes.

(TIF)
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S8 Fig. Number of methylation markers belonging to each gene across the while genome in

TCGA cancer in terms of the annotation mapping file provided by UCSC Xena.

(TIF)

S9 Fig. Correlation between P-values (in–log10 scale) of the methylation-expression associ-

ation for all genes with meditation effects with various distances before the transcription

start site (TSS) so that the promoter can be included. Here, various distances before the TSS

were extended, ranging from 500bp to 5000bp with an increment of 500bp. For each exten-

sion, the methylations within that extended region and gene body were included to examine

their relationship with gene expression using the variance-component score test. The P-values

calculated with methylations within a 500bp upstream of the TSS were treated as the reference.

(TIF)

S1 Table. Estimated and true proportion parameters (mean and standard deviation) in the

three-component mixture null distribution under the five simulation scenarios and differ-

ent sample sizes and different numbers of mediators.

(DOCX)

S2 Table. Comparison of the effect of different numbers of mediators on the bias of the

estimators for these proportion parameters.

(DOCX)

S3 Table. Data process of the ten TCGA cancers used in our mediation analysis.
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S4 Table. Basic characteristics of the ten TCGA cancer datasets.
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S5 Table. Results for testing for the proportional hazards assumption in the used Cox

model.
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